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I. INTRODUCTION

In general, reproducibility refers to a capability of obtaining the
identical result, but it often means “re-playability” or “re-traceability.”
In computational science, reproducibility is considered from several
view points depending on the context and demand. For instance, the
following definition of reproducibility is actually desired: bit-level
reproducibility is the capability to reproduce the bit-wise identical
result with the same input on any hardware/software configuration.
But, the internal procedure of the computation is not necessarily
required to be identical. To establish this bit-level reproducibility,
several efforts have been conducted so far. For example, in linear
algebra, there are some implementations of Basic Linear Algebra
Subprograms (BLAS) such as ReproBLAS [14] and ExBLAS [7].
However, most such existing efforts rely on a special mechanism de-
signed for each mathematical problem. As far as we know, no general
approach for any floating-point computation has been proposed yet.
We consider that, in terms of the development cost, it is non-realistic
to support bit-level reproducibility on all floating-point computations
through such existing approaches.

In this study, we define the notion of weak numerical repro-
ducibility, i.e. the reproducibility, (up to a high probability) of the
computation result with a certain accuracy demanded by the user.
The underlying numerical validation is performed using a statistical
approach that estimates with a high probability the number of correct
digits in the computation result. This weak numerical reproducibility
can be established through the extension of our minimal-precision
computing scheme [10], which validates the accuracy (demanded by
the user) of the result through the minimal-precision use.

II. MINIMAL-PRECISION COMPUTING

The minimal-precision computing has been proposed for realizing
high-performance and energy-efficient as well as reliable (accurate,
reproducible, and validated) computations. It is a systematic ap-
proach combining hardware, software, and algorithmic approaches
internally. Specifically, our system combines: i) a precision-tuning
method [3], [4], [8] based on Discrete Stochastic Arithmetic (DSA)
[13], ii) arbitrary-precision arithmetic libraries, iii) fast and accurate
numerical libraries, and iv) Field-Programmable Gate Array (FPGA)
with High-Level Synthesis (HLS). Thus, our approach provides the
following features:

1) Reliable: Precision Tuning is processed to obtain the accuracy
requested by the user based on a numerical validation method. It
can meet the demands for accurate and reproducible computation.

2) General: the scheme is applicable to any floating-point compu-
tation. It contributes to low development costs and sustainability
such as easy maintenance and system portability.

3) Comprehensive: we propose a complete system that emerges from
Precision Tuning to the execution of the tuned code, combining
heterogeneous hardware and hierarchical software stack.

4) High-performance: our scheme considers utilizing fast numerical
libraries and accelerators (FPGAs and GPUs).

5) Energy-efficient: through the minimal-precision as well as energy
efficient hardware acceleration with FPGA and GPU

6) Realistic: our system can be realized by combining available
technologies.

Figure 1 presents the minimal-precision computing system with
the software and hardware stack, and its workflow. The system is a
general scheme for any floating-point computations, but we currently
target linear algebra computations as the first step (thus, we explain
a case for linear algebra computations). Below we explain the total
procedure and some key technologies in the system.

• Setup of inputs: The system accepts as input C code using IEEE
754-2008 floating-point numbers. Also, the requested accuracy of
the computation result is given by the user. Then, all the floating-
point variables and operations in the code can be translated to those
of the GNU Multiple Precision Floating-Point Reliably (MPFR)
[2] – a C library for multiple (arbitrary) precision floating-point
computations on CPUs. MPFR is used for precision-tuning with
arbitrary-precision and executing operations on FPGAs or CPUs as
FPGAs are not necessarily required. For linear algebra operations,
we can utilize MPLAPACK [11], a multi-precision Linear Alge-
bra PACKage (LAPACK) including BLAS based on some high-
precision arithmetic libraries including MPFR, and similar high
precision or reproducible numerical libraries such as QPEigenK
and QPEigenG [5], ExBLAS [7], and OzBLAS [9].

• Precision Tuning: The precision-tuner determines the optimal
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Fig. 1. System overview of minimal-precision computing system



floating-point precisions for all variables in the code, functions, or
code segments, which are needed to achieve the computation result
with the requested accuracy. Tuning is performed by comparing
with a computation result validated by DSA. Thus, the optimized
code is reliable. Simply speaking, DSA estimates the rounding
errors of floating-point operations with the guarantee of 95%
by executing the same code three times with random-rounding
(randomly round-down or -up). Then, these three results are used
to estimate the number of correct digits. It is a general scheme
applicable to any floating-point operation: it requires no special
numerical methods and needs only few code modifications that
can be automatized. Besides, it can be performed at a reasonable
cost in terms of both performance and development cost compared
to the other numerical verification or validation methods.

• Acceleration: Before executing the tuned-code, if it is possible to
speed up some portions of the code with some fast computation
methods (including GPU acceleration), these parts are replaced
with them. The method must be at least as accurate as that of the
required-precision. We may be able to use hardware-native floating-
point operations (e.g., FP16/FP32/FP64), some fast high-precision
arithmetic libraries, and some accurate numerical libraries. Addi-
tionally, we can utilize FPGAs. They enable us to implement and
perform arbitrary-precision floating-point operations: FPGAs real-
ize the ultimate minimal-precision computing and achieve better
performance and energy-efficiency than software implementations
on general processors. Owing to the HLS technology, we can use
FPGAs with existing programming languages such as C/C++ and
OpenCL [6], [12].

III. WEAK NUMERICAL REPRODUCIBILITY ON

MINIMAL-PRECISION COMPUTING

The minimal-precision computing system can be considered from a
user perspective as a black box where the user provides input parame-
ters, including the desired accuracy, and invokes an algorithm. Under
the hood, we may select different paths for execution due to the fact
that different working precisions as well as different hardware devices
may be used either to speed up computations and/or ensure energy-
efficiency. Under any circumstances, scenarios, execution paths, we
make sure that the weak numerical reproducibility is guaranteed with
the defined input accuracy requirements by using all the tools and
features of the system.

On the above system, we can guarantee weak numerical repro-
ducibility by validating the requested accuracy of the computation
demanded by the user. Here, if the computation method can achieve
the required result, any methods, any computation environments, and
any computation conditions can be accepted. We no longer need to
develop some reproducible variant(s) for each computation method or
mathematical problem. On the other hand, some accurate computation
methods may be required to achieve the requested accuracy. However,
in general, it is easier to develop accurate methods (not necessarily
reproducible) than reproducible methods. Comparing with re-playable
and re-traceable methods, it is easier to adapt to different (parallel)
architectures. Besides, existing methods and software for ensuring
bit-level reproducibility are still able to contribute: for instance, to
skip the validation of some parts of algorithms and/or to accelerate
the accurate computations needed to ensure the demanded accuracy,
if such method relies on some accurate method.

IV. SUMMARY

We proposed a new concept of weak numerical reproducibility
and a systematic approach for it with a support of minimal-precision

tuning and validation. We expect that the concept of weak numerical
reproducibility covers most of the demands for reproducibility in
computational sciences. Besides, the minimal-precision computing
system can address the demands for accuracy, high-performance, and
energy efficient computation as well; especially, when the system can
be realized with FPGAs. Although the proposed system is still in
development, some key components are already available, and many
of them have been developed by us.
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