
Neural Network Precision Tuning
Using Stochastic Arithmetic

Quentin Ferro 1 Stef Graillat 1 Thibault Hilaire 1 Fabienne Jézéquel 1,2 Basile Lewandowski 1

1Sorbonne Université, CNRS, LIP6, France 2Université Paris-Panthéon-Assas, France

Contributions

▶ Methodology for tuning the precision of an already trained neural network using stochastic
arithmetic.

▶ Goal: obtain the lowest precision for each of its parameters, while keeping a certain accuracy on its
results.

Floating-Point Arithmetic

IEEE754 Standard types

Format Name Length Sign Mantissa Length Exponent Length
binary16 Half 16 bits 1 bit 11 bits 5 bits
binary32 Single 32 bits 1 bit 24 bits 8 bits
binary64 Double 64 bits 1 bit 53 bits 11 bits

Reduced precision:

Shorter execution time ,
Less volume of results exchanged (less memory used) ,
Less energy consumption ,
Less accurate results - rounding errors /

sign
exponent

(5 bits)

mantissa

(10 bits)

Figure 1. binary16 format

Discrete Stochastic Arithmetic (DSA)

Classic arithmetic

A⊕B R

R =3.14237654356891

DSA

A1⊕B1

A2⊕B2

A3⊕B3

Random

rounding

R1

R2

R3

R1 =3.141354786390989
R2 =3.143689456834534
R3 =3.142579087356598

Allows round-off error estimation

Based on random rounding

For each operation, computes 3 samples of a
result R

Number of correct digits estimated thanks to
Student’s test with confidence level 95%

Numerical Validation Tools

CADNA Software (cadna.lip6.fr)

Implements DSA for C/C++ or Fortran codes

Provides stochastic types: 3 values of a variable + 1 integer being
the estimated accuracy

Displays values with their exact number of correct digits

PROMISE (promise.lip6.fr)

Auto-tunes a C/C++ code to provide a mixed-precision version
satisfying a given accuracy

Uses CADNA to validate a configuration

Uses the Delta-Debug algorithm to test the different configurations
with mean complexity O(n log(n)) for n variables [Zeller, 2019]

PROMISE

initial code

instrumented
code

CADNA

reference

double

double float

comparison
double float

doublefloat half

comparison
mixed-precision

code

Delta Debug Delta Debug

step 1 step 2

Figure 2. PROMISE Dataflow

Methodology

Neural network Python file

Model saved in HDF file

Model parameters in CSV files

C++ file with PROMISE variables

Application of PROMISE with two approaches:

Considering one type per neuron (weight vector
and bias of one neuron have the same precision).

Considering one type per layer (weights and bias
of one layer have the same precision).

Considered Neural Networks

Sine NN: dense neural network,
approximation of sine function

MNIST NN: dense neural network,
classification of handwritten digits

CIFAR NN: convolutional neural
network, classification of pictures
among 10 classes

Inverted Pendulum: dense neural
network, computation of a
Lyapunov function [Chang et al.
2020]

Precision Auto-tuning Applied to CIFAR NN

3D-image
input

Convolutional Layer
+ ReLU Max-Pooling Convolutional Layer

+ ReLU Flattening Layer Dense Layer
+ Softmax Output

Figure 3. CIFAR NN architecture

Type distribution and PROMISE execution time:

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

111 1 2

24

75

86 89 89 89 89

3
11

81
88 88 87

65

14

3

108
100

30
23 22 22 22 22 22 22 22 22 22

required accuracy (nb of digits)

nu
m
b
er

of
gi
ve
n
ty
p
e

0

0.2

0.4

0.6

0.8

1

1.2
·104

ti
m
e
(s
)

1 2 3 4 5 6 7 8 9 10 11 12 13

L1
L2
L3
L4
L5

required accuracy (nb of digits)

L
ay
er
s

0

100

200

300

400

ti
m
e
(s
)

half
single
double
Runtime

Figure 4. Type distribution per neuron (left) and per layer (right) with image test data[386]

Mixed precision programs taking into account the required accuracy.

One type per layer: PROMISE execution time is reduced, but often leads to uniform precision
programs.

Input values have actually a low impact on the type configurations obtained.

Future Works

Analyse actual gain in time and memory

Consider the parallelization of the Delta-Debug Algorithm and PROMISE

Extend PROMISE to GPUs and to arbitrary precision on FPGAs

Extend PROMISE to other types such as bfloat16

Related works

Precision tuning tools with static approach ([Chiang et al.
2017], etc.) or dynamic approach ([Lam et al. 2013],
etc.).

Auto-tuning of neural networks in [Ioualalen and Martel
2019], with a different approach, not using stochastic
arithmetic.

References

Chang, Y.-C. et al. (Dec. 2020). “Neural Lyapunov Control”. In: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019).

Ioualalen, A. and M. Martel (2019). “Neural Network Precision Tuning”. In: Quantitative Evaluation of Systems. Ed. by D. Parker and V. Wolf. Cham:

Springer International Publishing.

Chiang, W.-F. et al. (2017). “Rigorous Floating-Point Mixed-Precision Tuning”. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages. POPL 2017. Paris, France: ACM.

Lam, M. O. et al. (2013). “Automatically Adapting Programs for Mixed-Precision Floating-Point Computation”. In: Proceedings of the 27th International

ACM Conference on International Conference on Supercomputing. ICS ’13. Eugene, Oregon, USA: ACM.

Further information:

Sparse Days 2022, Saint-Girons, France 20-22 June 2022

https://hal.archives-ouvertes.fr/hal-03682645

