

Neural Network Precision Tuning Using Stochastic Arithmetic

Thibault Hilaire ¹ Fabienne Jézéquel^{1,2} Basile Lewandowski¹ Stef Graillat¹ Quentin Ferro¹ ¹Sorbonne Université, CNRS, LIP6, France ²Université Paris-Panthéon-Assas, France

Contributions

- Methodology for tuning the precision of an already trained neural network using stochastic arithmetic.
- ► Goal: obtain the lowest precision for each of its parameters, while keeping a certain accuracy on its results.

Floating-Point Arithmetic

IEEE754 Standard	types
------------------	-------

Format	Name	Length	Sign	Mantissa Length	Exponent Length
binary16	Half	16 bits	1 bit	11 bits	5 bits
binary32	Single	32 bits	1 bit	24 bits	8 bits
binary64	Double	64 bits	1 bit	53 bits	11 bits

Reduced precision:

Considered Neural Networks

■ Sine NN: dense neural network, approximation of sine function

- MNIST NN: dense neural network, classification of handwritten digits
- CIFAR NN: convolutional neural network, classification of pictures

ne		W.		X	*	1	9	-19-	- 10		
obile	-				-	Tel			-	*	
	N.	ſ	t			-	27	1	1	1	

- Shorter execution time ☺
- Less volume of results exchanged (less memory used) ③
- Less energy consumption ☺
- Less accurate results rounding errors ☺

mantissa exponent (10 bits) (5 bits)

Figure 1. binary16 format

Discrete Stochastic Arithmetic (DSA)

Numerical Validation Tools

CADNA Software (cadna.lip6.fr)

- Implements DSA for C/C++ or Fortran codes
- Provides stochastic types: 3 values of a variable + 1 integer being the estimated accuracy
- Displays values with their exact number of correct digits

among 10 classes

■ Inverted Pendulum: dense neural network, computation of a Lyapunov function [Chang et al. 2020]

Precision Auto-tuning Applied to CIFAR NN

Figure 3. CIFAR NN architecture

PROMISE (promise.lip6.fr)

- Auto-tunes a C/C++ code to provide a mixed-precision version satisfying a given accuracy
- Uses CADNA to validate a configuration
- Uses the Delta-Debug algorithm to test the different configurations with mean complexity $O(n \log(n))$ for n variables [Zeller, 2019]

Methodology

Neural network Python file

100 half single double type --- Runtime number of given (s)60 (s) -ayers L3 200.27 8 9 10 11 12 13 required accuracy (nb of digits) 10 11 12 13 required accuracy (nb of digits)

Figure 4. Type distribution per neuron (left) and per layer (right) with image test_data[386]

- Mixed precision programs taking into account the required accuracy.
- One type per layer: PROMISE execution time is reduced, but often leads to uniform precision programs.
- Input values have actually a low impact on the type configurations obtained.

Type distribution and PROMISE execution time:

Sparse Days 2022, Saint-Girons, France

etc.)

arithmetic.

20-22 June 2022

Auto-tuning of neural networks in [loualalen and Martel Lam, M. O. et al. (2013). "Automatically Adapting Programs for Mixed-Precision Floating-Point Computation". In: Proceedings of the 27th International 2019], with a different approach, not using stochastic ACM Conference on International Conference on Supercomputing. ICS '13. Eugene, Oregon, USA: ACM.

Springer International Publishing.

- Chiang, W.-F. et al. (2017). "Rigorous Floating-Point Mixed-Precision Tuning". In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL 2017. Paris, France: ACM.

Ioualalen, A. and M. Martel (2019). "Neural Network Precision Tuning". In: *Quantitative Evaluation of Systems*. Ed. by D. Parker and V. Wolf. Cham:

References

Model saved in HDF file

Model parameters in CSV files

C++ file with PROMISE variables

Related works

Precision tuning tools with static approach ([Chiang et al.

2017], etc.) or dynamic approach ([Lam et al. 2013],

Application of PROMISE with two approaches: Considering one type per neuron (weight vector)

- and bias of one neuron have the same precision).
- Considering one type per layer (weights and bias) of one layer have the same precision).

Future Works

Analyse actual gain in time and memory

Consider the parallelization of the Delta-Debug Algorithm and PROMISE

Extend PROMISE to GPUs and to arbitrary precision on FPGAs

Extend PROMISE to other types such as bfloat16

Chang, Y.-C. et al. (Dec. 2020). "Neural Lyapunov Control". In: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019).

Further information:

