Accurate Computing Elementary Symmetric Functions

Hao Jiang1, Stef Graillat2, Roberto Barrio3
1 School of Science and The State Key Laboratory for High Performance Computation, National University of Defense Technology, China
2 PEQUAN, LIP6, Université Pierre et Marie Curie, France
3 Depto. de Matemática Aplicada and IUMA, Universidad de Zaragoza, Spain

Introduction

This work focuses on the numerical computation of the k-th elementary symmetric function (ESF) with floating-point inputs \(X = [x_1, \ldots, x_n] \), which is defined as

\[
S_k(X) = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}, \quad 1 \leq k \leq n.
\]

We focus mainly on the case \(2 \leq k \leq n - 1 \). For \(k = 1 \), the problem simplifies to the computation of the sum of floating-point numbers, and for \(k = n \), to the computation of floating-point product. The classic and widely-used method is the so-called Summation Algorithm, denoted by \text{SumESF} \(\hat{\Sigma} \), which is essentially the algorithm used by MATLAB’s \text{poly}.

Summation Algorithm

\[
\begin{align*}
\text{Input: } X &= [x_1, \ldots, x_n] \\
\text{Output: } k\text{-th ESF } S_k^n(X) &= S_k^n \\
\text{function } S_k^n &= \text{SumESF}(X, k) \\
S_k^n &= 1, 1 \leq i \leq n - 1; \quad S_k^n = 0, j > i; \quad S_k^n = x_i \\
\text{end}
\end{align*}
\]

The error analysis has been considered in [1], and the result implies that the algorithm is forward stable. We present the relative forward error bound as follows,

\[
\frac{|\text{SumESF}(X, k) - S_k^n(X)|}{S_k^n(X)} \leq \frac{1}{2^{2(n-k-1)}} \text{cond}(S_k^n(X))
\]

with

\[
\text{cond}(S_k^n(X)) = \frac{S_k^n(\lambda X)}{S_k^n(X)}
\]

where \(\lambda = \mu \cdot (1 - u) \) with \(u \) the rounding error unit in double precision \(u = 2^{-53} \) and absolute value is to be understood componentwise. However, when performed in floating-point arithmetic, the computed result by \text{SumESF} may still be less accurate than expected due to cancellations. This is why a more accurate algorithm is required.

Compensated Summation Algorithm

\[
\begin{align*}
\text{Input: } X &= [x_1, \ldots, x_n] \\
\text{Output: } k\text{-th ESF } S_k^n(X) &= S_k^n \\
\text{function } T_k^n &= \text{CompSumESF}(X, k) \\
T_k^n &= 1, 1 \leq i \leq n - 1; \quad T_k^n = 0, j > i; \quad T_k^n = x_i \\
\text{end}
\end{align*}
\]

The error analysis has been considered in [1], and the result implies that the algorithm is forward stable. We present the relative forward error bound as follows,

\[
\frac{|\text{CompSumESF}(X, k) - S_k^n(X)|}{S_k^n(X)} \leq \frac{1}{2^{2(n-k-1)}} \text{cond}(S_k^n(X))
\]

with

\[
\text{cond}(S_k^n(X)) = \frac{S_k^n(\lambda X)}{S_k^n(X)}
\]

where \(\lambda = \mu \cdot (1 - u) \) with \(u \) the rounding error unit in double precision \(u = 2^{-53} \) and absolute value is to be understood componentwise. However, when performed in floating-point arithmetic, the computed result by \text{CompESF} may still be less accurate than expected due to cancellations. This is why a more accurate algorithm is required.

Error Free Transformation

For a pair of floating-point numbers \(a, b \in \mathbb{F} \), when no underflow occurs, there exists a floating-point number \(y \) satisfying \(a + b = x + y \) with \(x = \text{fl}(a + b) \) is the usual floating-point approximation and \(y \) represents the exact rounding error. The transformation \((a, b) \rightarrow (x, y) \) is regarded as an EFT. The EFT algorithms for the addition and product of two floating-point numbers used in \text{CompESF} are \text{TreuHe} and \text{TwoProd} algorithms, respectively. One can see the details about their properties in [2].

CompESF

\[
\begin{align*}
\text{Input: } X &= [x_1, \ldots, x_n] \\
\text{Output: } k\text{-th ESF } S_k^n(X) &= S_k^n \\
\text{function } S_k^n &= \text{CompESF}(a, b) \\
x &= a \oplus b \\
y = (a \odot (x \oplus z)) \oplus (b \odot z) \\
\text{end}
\end{align*}
\]

CompESF

\[
\begin{align*}
\text{Input: } X &= [x_1, \ldots, x_n] \\
\text{Output: } k\text{-th ESF } S_k^n(X) &= S_k^n \\
\text{function } S_k^n &= \text{CompESF}(a, b) \\
x &= a \oplus b \\
y = (a \odot (x \oplus z)) \oplus (b \odot z) \\
\text{end}
\end{align*}
\]

Application

As an application, the ESFs appear when expanding a linear factorization of a polynomial

\[
\prod_{i=1}^{n}(x - x_i) = \sum_{i=0}^{n} \gamma_i x^i.
\]

It is an option to use our method to accurately evaluate polynomial’s coefficients from zeros, specially to compute characteristic polynomials from eigenvalues. The computation of \text{ESF} is also an important part of conditional maximum likelihood estimation of form parameters under the Flach model in psychological measurement [3]. It is promising that our method, improving the numerical accuracy, can allow much more items to be calibrated.

References