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Abstract
We present algorithms that allow one to emulate the fused multiply-add (FMA) 
instruction and the correctly-rounded sum of three numbers (ADD3) in binary 
floating-point arithmetic, using only rounding-to-nearest floating-point additions, 
multiplications, and comparisons. We then introduce variants of these algorithms 
that make it possible to compute the error of an ADD3 or FMA operation.

Mathematics Subject Classification  65G50 · 65Y04 · 65Y10

1  Introduction

1.1  Motivation

The fused multiply-add (FMA) instruction evaluates an expression of the form 
ab + c, where a, b, and c are floating-point numbers, with one final rounding only. 
It appeared in 1990 in the IBM POWER instruction set [8], and its specification was 
incorporated in the 2008 version of the IEEE-754 Standard for Floating-Point Arith-
metic [1]. It facilitates the software implementation of correctly rounded division and 
square root [9, 21], and, in general, allows for faster and more accurate evaluation of 
dot products and polynomials.

A typical application where the FMA instruction is very useful is the accurate 
implementation of transcendental functions [24]. Typically, after an initial range 
reduction, the problem of evaluating the function is reduced to the problem of eval-
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uating a polynomial a0 + a1x + a2x2 + · · · + anxn, where |x| is small (typically 
much less than 1). If the polynomial is evaluated using Horner’s scheme, the last 
step is the calculation of a0 + xρ, where ρ = a1 + x(a2 + x(a3 + · · · )). Since the 
reduced argument x is small, a small error in ρ will not change the result much, so 
most of the final error is in this last step. Performing this step with only one round-
ing error instead of two (one for the multiplication and one for the addition) makes a 
significant difference.

The FMA instruction is implemented in most general-purpose computing environ-
ments. However, there are a few notable exceptions: the Java Virtual Machine [19] 
and WebAssembly1. In special-purpose environments such as the microcontroller 
units used for instance in automotive applications, the situation is more varied and 
the FMA instruction is often absent. An example is the Bosch BHI260AB microcon-
troller based on the ARC EM4 CPU. If one wishes to use on such systems an algo-
rithm that requires the use of an FMA, one needs to emulate that instruction.

Another instruction that would simplify many calculations is the correctly-
rounded sum of three floating-point numbers, let us call it ADD3. As mentioned by 
Lauter [18], it would help the final rounding step in correctly-rounded elementary 
functions. It would also provide a way to “normalize” triple-word numbers, which is 
a key feature for implementing high-precision arithmetic [6, 11]. A fast, hardware, 
ADD3 would also allow the replacement of the 2Sum algorithm (Algorithm 2 below) 
by a much simpler algorithm (but we will not fulfill that purpose here, as we are going 
to use 2Sum to emulate ADD3!). The main difference with the FMA is that ADD3 
is not required by IEEE-754, and is therefore not offered by the current mainstream 
processors. In low-precision arithmetics (typically, 16-bit arithmetic), the recent Ten-
sor cores could be used to directly compute (i.e., without decomposing it into two 
consecutive additions) the sum of 3 numbers. Whether this would always be with 
correct rounding is still unclear [12].

The ability to compute the error of the FMA and ADD3 is also interesting. The 
error of an FMA operation can be “reinjected” later on in a calculation to compen-
sate for it. This is the key to compensated algorithms (the best-known compensated 
algorithm is Kahan’s compensated summation algorithm [15]). For example, an algo-
rithm developed by Boldo and Muller to compute the error of the FMA has been used 
by Louvet to construct a compensated polynomial evaluation algorithm [13, 20]. The 
error of ADD3 and the FMA can be used in double-word arithmetic, to improve or 
simplify the algorithms presented in [14].

Our goal in the paper is to present algorithms to emulate the FMA and ADD3 
operations and compute the error of these operations. We assume rounding-to-near-
est arithmetic. We aim to provide high-level algorithms, in the sense that they don’t 
use the specific internal binary representations of the floating-point numbers: they 
use only the floating-point operations and comparisons. In particular, they do not 
perform integer or logical operations on the bit strings representing the floating-point 
operands. We believe that such an approach results in more general, portable and 
“robust” programs, which will work even when the floating-point format of the oper-
ands is not one of the formats specified by IEEE-754 (incidentally, even within the 

1 ​h​t​t​p​s​:​​​/​​/​d​e​v​e​l​o​p​e​​r​.​m​o​​z​i​l​l​​a​​.​o​​r​g​/​​​e​n​​-​U​​S​/​d​​o​​c​s​/​W​e​​b​A​s​s​e​​​m​b​l​y​/​​R​e​f​e​​r​​e​n​c​e​/​N​u​m​e​r​i​c.
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IEEE-754 standard, problems of endianness2 can in rare cases affect the correctness 
of algorithms that use integer arithmetic).

Various authors have suggested algorithms for implementing these functions. 
Boldo and Melquiond [6] showed that ADD3 and the FMA can be easily emulated 
provided by using a round-to-odd rounding function. Unfortunately, this rounding 
function is not yet available on current processors and is not specified in the current 
version of the IEEE-754 Standard for Floating-Point Arithmetic. Boldo and Melqui-
ond give a solution for emulating round-to-odd (this is program OddRoundSum, 
included in the appendix of this paper). As we will see in Sect. 6, it is quite efficient, 
but it requires using the binary representation of the floating-point numbers. Lauter 
[18] provides a fast software implementation of ADD3 that uses integer arithmetic. 
Boldo and Muller [3, 7] give a high-level algorithm that computes the error of the 
FMA (assuming that a FMA instruction is available).

1.2  Notation and definitions

Throughout the paper, we assume a binary, precision-p floating-point (FP) arithme-
tic. Unless otherwise stated, the exponent range is assumed to be unbounded. This 
implies that the results presented here apply to conventional binary floating-point 
arithmetic provided that underflow and overflow do not occur. A floating-point num-
ber in such an arithmetic is a number of the form

	 x = Mx · 2ex−p+1,

where Mx and ex (called respectively integral significand and floating-point expo-
nent of x) are integers, and either Mx = 0, or 2p−1 ≤ |Mx| ≤ 2p − 1. We note F the 
set of the FP numbers. If t is a real number, we call floating-point predecessor (resp. 
floating-point successor) of t the largest FP number less than t (resp. the smallest FP 
number larger than t).

We assume that the rounding function is round-to-nearest, ties-to-even, noted RN, 
which is the default in IEEE 754 arithmetic. RN is a piecewise-constant, increas-
ing function. We call midpoints the real numbers where its value changes. A mid-
point is exactly halfway between two consecutive FP numbers. The unit round-off 
is u = 2−p. It is an upper bound on the relative error due to rounding. This implies 
that when an arithmetic operation x⊤y is performed (with ⊤ ∈ {+, −, ×, ÷}), the 
computed result z = RN(x⊤y) satisfies

	 (1 − u) · |(x⊤y)| ≤ |z| ≤ (1 + u) · |(x⊤y)|.� (1)

If t is a real number, we define ulp(t) (“ulp” stands for unit in the last place) as

	

{
0 if t = 0,
2⌊log2 |t|⌋−p+1 otherwise.

2 Endianness is the order in which bytes within a FP number are addressed in memory.
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If t /∈ F, ulp(t) is the distance between the two consecutive FP numbers that surround 
t.

We will say that x is a double-word3 (DW) number if it is the unevaluated4 sum 
xh + xℓ of two floating-point numbers xh and xℓ such that xh = RN(x) (so that 
|xℓ| ≤ 1

2ulp(xh + xℓ)). Some algorithms for manipulating double-word numbers are 
presented and analyzed in [14].

1.3  Structure of the article

In Sect. 2, we briefly present some classical results on floating-point arithmetic that 
are needed in the rest of the paper. More detailed presentations and proofs can be 
found in [5, 25]. Section 3 presents the first part of our contribution: preliminary 
results (test that determines whether a FP number is a power of 2 or 3 times a power 
of 2, sum of a DW number and a FP number) that will be needed to emulate the FMA 
and ADD3. Section 4 presents our algorithms that emulate ADD3 and the FMA, and 
compute the error of these operations. Section 5 is devoted to the special case of com-
puting the error of an FMA operation on systems where a fast FMA is available in 
hardware. In Sect. 6, we discuss our results and compare them to the state of the art.

2  Some classical results on floating-point arithmetic

To emulate an FMA instruction using FP multiplications and additions, it is necessary 
to perform an analysis of the errors associated with these operations. Although very 
useful, the relative error bound (1) is not the last word:

	● First, some operations are exact. A straightforward example is the case of mul-
tiplications and divisions by powers of 2. Another, less intuitive, example is the 
case of the subtraction of two numbers that are close enough to each other, as 
presented in Sect. 2.1;

	● Second, a simple analysis shows that the error of an FP addition or multiplica-
tion is an FP number.5 See for instance [2, 4]. Furthermore, these errors can be 
computed, using relatively simple algorithms, called Error-Free Transforms in 
the literature [26], presented in Sect. 2.2 (for addition) and Sect. 2.3 (for multi-
plication).

3 We frequently see the name “double-double” in the literature. We prefer “double-word” because there is 
no reason to systematically assume that the underlying format is double precision/binary64.
4 By “unevaluated sum” we mean that we keep the two values xh and xℓ: they represent the number 
xh + xℓ but no addition is performed.
5 Concerning addition, this is true only when the rounding function is round-to-nearest, which we have 
assumed here.
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2.1  Sterbenz’s theorem

Sterbenz’s theorem is extremely useful in error analysis. For instance, the proof of 
the double-word algorithms presented in [14] heavily relies on Sterbenz’s theorem.

Theorem 2.1  (Sterbenz Theorem [28]) Let a, b ∈ F. If a
2 ≤ b ≤ 2a then a − b ∈ F. 

This implies that the subtraction a − b will be performed exactly in FP arithmetic.

Theorem 2.1 seems to contradict the well-known (and wise!) rule that it is danger-
ous to subtract two close numbers because the result may be very inaccurate due to 
ill-conditioning of subtraction. There is no contradiction here: the computed subtrac-
tion s is exactly equal to a − b, but if a is an approximation to some real number â and 
b is an approximation to another number b̂, even if these approximations are excel-
lent, s can be quite far (in terms of relative error) from â − b̂. The subtraction itself is 
errorless but it somehow exposes the error on the input values.

2.2  The Fast2Sum and 2Sum algorithms

The error of a floating-point addition can be calculated using algorithms  1 and  2 
below.

Algorithm 1  Fast2Sum(a, b). The Fast2Sum algorithm [10]. Returns a pair 
(xh, xℓ) ∈ F2 such that xh is the FP number nearest a + b (i.e., the result of the FP 

addition of a and b), and, if |a| ≥ |b|, xℓ = (a + b) − xh.

If the floating-point exponents ea and eb of a and b are such that ea ≥ eb then 
the number xℓ returned by Algorithm  1 is the error of the floating-point addition 
RN(a + b) (i.e., the double-word (xh, xℓ) is exactly equal to a + b). The condition 
on the exponents may be difficult to check, but it is satisfied if |a| ≥ |b|. Note that 
when a = 0 Algorithm 1 also returns the correct result (xh = b and xℓ = 0).

Algorithm 2  2Sum(a, b). The 2Sum algorithm [16, 23]. Returns a pair (xh, xℓ) ∈ F2 
such that xh is the FP number nearest a + b (i.e., the result of the FP addition of a 

and b), and xℓ = (a + b) − xh.
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For all FP numbers a and b, the number xℓ returned by Algorithm 2 is the error of 
the floating-point addition RN(a + b), i.e., xℓ = (a + b) − xh. Roughly speaking, 
the algorithm builds two FP numbers a′ and b′ such that a′ + b′ = xh exactly, and 
such that the FP subtractions δa = RN(a − a′) and δb = RN(b − b′) are errorless 
(i.e., δa = a − a′ and δb = b − b′).

2.3  The Dekker-Veltkamp multiplication algorithm

If an FMA instruction is available, then the error of an FP multiplication is 
very easy and fast to compute: the error of the multiplication πh = RN(ab) is 
πℓ = RN(ab − πh). We will use this property in Sect. 5. However, if our goal is 
to emulate an FMA instruction, we obviously cannot assume that such an instruc-
tion is already available, so we must use a more complex algorithm, Algorithm 4 
below, by Dekker and Veltkamp [10]. In order to compute the product ab “exactly”, 
Algorithm 4 must first “split” the input operands a and b into sub-operands of preci-
sion around p/2, so that the product of two such sub-operands can be represented 
exactly in precision-p floating-point arithmetic (and is therefore obtained by a simple 
floating-point multiplication). This preliminary splitting is done by Algorithm 3. For 
a proof of these algorithms, see [25].

Algorithm 3  Split(x, s). Veltkamp’s splitting algorithm. Returns a pair (xh, xℓ) ∈ F2 
such that the significand of xh fits in p − s bits, the significand of xℓ fits in s − 1 bits, 

and xh + xℓ = x.

Algorithm 4  DekkerProd(a, b). Dekker’s product. Returns a pair (πh, πℓ) ∈ F2 such 
that πh = RN(ab) and πh + πℓ = ab.
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3  Preliminary results

Let a, b, and c ∈ F. The problem of computing RN(a + b + c) (ADD3) and the prob-
lem of computing RN(ab + c) (FMA) can be reduced to a unique problem: comput-
ing RN(xh + xℓ + c), where (xh, xℓ) is a DW number (which implies in particular 
that |xℓ| ≤ 1

2ulp(xh). To show this, it is sufficient to choose

	● (xh, xℓ) = 2Sum(a, b) (for ADD3), or
	● (xh, xℓ) = DekkerProd(a, b) (for the FMA).

Therefore, we focus first on computing the sum of a DW number and a FP number. 
The algorithm we introduce for this purpose (Algorithm 6 below) requires at some 
point the ability to determine whether a FP number is of the form 2k or 3 · 2k, with 
k ∈ Z (or, equivalently, whether its integral significand is 2p−1 or 2p−1 + 2p−2). We 
address this problem first.

3.1  Determining if the absolute value of a FP number is a power of 2 or three 
times a power of 2

We have:

Theorem 3.1  In binary, precision-p (with p ≥ 4 ), floating-point arithmetic, assum-
ing no overflow occurs, the absolute value of the nonzero FP number x is of the form 
2 k  or 3 · 2 k , with k ∈ Z, if and only if

	 RN
[
RN

((
2p−2 + 1

)
· x

)
− 2p−2x

]
= x.� (2)

	● Proof  If |x| is a power of 2, then multiplying by x is an exact operation and there-
fore (2) boils down to RN(x) = x, which obviously holds since x ∈ F.

	● If |x| = 3 · 2k, with k ∈ Z, then 
(
2p−2 + 1

)
· |x| = M · 2k, where 

M = 3 · 2p−2 + 3. As p ≥ 4 implies M ≤ 2p − 1, the number 
(
2p−2 + 1

)
· |x| 

is a FP number. Hence, 

	 RN
((

2p−2 + 1
)

· x
)

=
(
2p−2 + 1

)
· x,

 and, again, (2) boils down to RN(x) = x;

	● If |x| is not of the form 2k or 3 · 2k then there exist integers N and e such that N is 
odd, N ≥ 5, and |x| = N · 2e. Let P = 2p−2 + 1. The number P · N  is an odd 
integer of absolute value strictly larger than 2p. Therefore, 

	 P · x = P · N · 2e /∈ F.

1 3



S. Graillat, J.-M. Muller

 Hence RN (P · x) ̸= P · x. From (1), we know that 

	 x(2p−2 + 1)(1 − u) ≤ RN(P · x) ≤ x(2p−2 + 1)(1 + u).

 This gives (remember: u = 2−p): 

	
(1 + 4u)(1 − u) ≤ RN(P · x)

2p−2x
≤ (1 + 4u)(1 + u),

 so that (as p ≥ 4 implies u ≤ 1/16) 

	
1 ≤ 1 + 3u − 4u2 ≤ RN(P · x)

2p−2x
≤ 1 + 5u + 4u2 < 2.

 Therefore, we can apply Sterbenz Theorem (Theorem  2.1) to the subtraction 
RN (P · x) − 2p−2x, and deduce that that subtraction is exact. We therefore obtain 
that the left-hand part of (2) is equal to 

	 RN (P · x) − 2p−2x,

 which differs from P · x − 2p−2x = x.□
This gives the following algorithm

Algorithm 5  IsNot1or3TimesPowerOf2(x). Returns true if and only if |x| is not of 
the form 2k or 3 · 2k.

Note that the condition p ≥ 4 in Theorem 3.1 is necessary: if p = 3, for x = 6, we 
have RN

[
RN

((
2p−2 + 1

)
· x

)
− 2p−2x

]
= 4 ̸= x.

Algorithm 5 is related to other algorithms in the literature. Algorithm 3.6 (Next-
PowerTwo) in [27] computes the power of 2 immediately above |x|, where x is a FP 
number. It is based on the following property: if x ∈ F then

	
|RN (RN(2px + x) − 2px)| =

{
2⌈log2 x⌉ if x is not a power of 2,
0 otherwise.

This can easily be used to check if x is a power of two. Our algorithm is slightly dif-
ferent, as the operand x is not multiplied by the same constants. Another example of 
an algorithm in the same “family” is Veltkamp’s splitting algorithm (Algorithm 3) 
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presented above: one could use this algorithm (with the parameter s set to 2) to “split” 
x into a 2-bit number xh and a (p − 3)-bit number xℓ, and x would be of the form 
2k or 3 · 2k if and only if xℓ = 0. However, this would require more operations than 
Algorithm 5.

3.2  Correctly-rounded addition of a DW number and a FP number

Let xh, xℓ, and c be FP numbers satisfying

	
|xℓ| ≤ 1

2
ulp(xh),

and consider the following algorithm.

Algorithm 6  CR-DWPlusFP(xh, xℓ, c). Computes RN(xh + xℓ + c).

The constants 9/8 and 7/8 that appear in Algorithm 6 are exactly representable as 
soon as p ≥ 4. We want to show that:

Theorem 3.2  If p ≥ 5  and |xℓ| ≤ 1
2 ulp(xh), the number z returned by Algorithm CR-

DWPlusFP (Algorithm 6) satisfies

	 z = RN(xh + xℓ + c).

Let us first raise some remarks. In the following, we call Σ the number 
RN(xh + xℓ + c).

Remark 3.3  The 2Sum algorithm guarantees that the variables sh, vh and vℓ in Algo-
rithm 6 satisfy

	
sh + vh + vℓ = xh + xℓ + c, so that Σ = RN(sh + vh + vℓ),
|vℓ| ≤ 1

2ulp(vh).

	● Remark 3.4  If vℓ = 0 then (from Remark 3.3) sh + vh = xh + xℓ + c and there-
fore z = Σ;

	● If xh = 0 (which implies xℓ = 0), then Σ = c and one easily checks that z = c.
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Remark 3.5  If p ≥ 5, when |vh| is either a power of 2 or 3 times a power of 2, the 
terms (7/8)vh and (9/8)vh that appear in Algorithm 6 are FP numbers, and are there-
fore exactly computed: RN((7/8)vh) = (7/8)vh and RN((9/8)vh) = (9/8)vh.

The following two remarks allow us to reduce the problem of proving Theorem 3.2 
for all possible inputs xh, xℓ, and c, to the problem of proving it for input values lying 
in a smaller domain.

Remark 3.6  If the input variables xh, xℓ, and c of Algorithm  6 are multiplied by 
s · 2k, where s = ±1 and k ∈ Z, then sh, sℓ, vh, vℓ, z and Σ are multiplied by the 
same factor s · 2k.

Remark 3.7  If we interchange xh and c in Algorithm 6, the result remains unchanged 
(because 2Sum(xh, c) = 2Sum(c, xh)). Furthermore, if |c| > |xh|, the requirement 
|xℓ| ≤ 1

2ulp(xh) that appears in Theorem 3.2 still holds after having interchanged xh 
and c. It therefore suffices to prove the theorem in the case |xh| ≥ |c|.

Let us now prove Theorem 3.2.
Without loss of generality, we can assume that:

	● xh ̸= 0 (from Remark 3.4),
	● 1 ≤ xh ≤ 2 − 2u (from Remark 3.6) and therefore |xℓ| ≤ 1

2ulp(1) = u, and

	● |c| ≤ xh (from Remark 3.7).

We can immediately get rid of the case where

	
−xh ≤ c ≤ −xh

2
.

In that case, Sterbenz’s theorem (Theorem 2.1) implies that xh + c ∈ F. This in turn 
implies sℓ = 0, so that vh = xℓ and vℓ = 0. As a consequence (from Remark 3.4), 
z = Σ.

We therefore only need to focus on the case

	
−xh

2
< c ≤ xh,

which implies xh

2 < xh + c ≤ 2xh, and therefore xh

2 ≤ sh ≤ 2xh, so that

	
1
2

≤ sh ≤ 4 − 4u.

Let us divide that case into three subcases:
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	● Case A: if 1
2 ≤ sh ≤ 1 − u (so that sh is a multiple of u) then |sℓ| ≤ u

2 , which 
implies |vh| ≤ 3u

2  and |vℓ| ≤ u2;
	● Case B: if 1 ≤ sh ≤ 2 − 2u (so that sh is a multiple of 2u) then |sℓ| ≤ u, which 

implies |vh| ≤ 2u and |vℓ| ≤ u2;
	● Case C: if 2 ≤ sh ≤ 4 − 4u (so that sh is a multiple of 4u) then |sℓ| ≤ 2u, which 

implies |vh| ≤ 3u and |vℓ| ≤ 2u2.

Remark 3.8  In Case A, as |vh + vℓ| = |xℓ + sℓ| ≤ 3u
2 , if |vh| = 3u

2  then either vℓ = 0 
or the signs of vh and vℓ differ. Similarly, in Case C, as |vh + vℓ| = |xℓ + sℓ| ≤ 3u, 
if |vh| = 3u then either vℓ = 0 or the signs of vh and vℓ differ.

As we already know, from Remark 3.4, that when vℓ = 0 Algorithm 6 returns Σ, 
we assume in the following that vℓ ̸= 0.

If there is no midpoint between sh + vh and sh + vh + vℓ, then

	 RN(sh + vh + vℓ) = RN(sh + vh).

The FP number vh is a multiple of ulp(vh) (which is a power of 2 less than or equal 
to 2u2), and in the three subcases (A, B, and C), sh is a multiple of u. Therefore, 
sh + vh is a multiple of ulp(vh).

Also, as sh + vh ≥ 1
2 − 3u

2 , the midpoints near sh + vh are multiple of u
4 . As 

p ≥ 5 implies u ≤ 1
32  and therefore u

4 ≥ 2u2, the midpoints near sh + vh are mul-
tiple of ulp(vh) too.

Hence, the distance between sh + vh and a midpoint is a multiple of ulp(vh). 
As |vℓ| ≤ 1

2ulp(vh), if sh + vh is not itself a midpoint, then there is no midpoint 
between sh + vh and sh + vh + vℓ. This leads us to:

Remark 3.9  If sh + vh is not a midpoint then RN(sh + vh + vℓ) = RN(sh + vh).

Now, as sh ∈ F, there are not many possibilities for sh + vh to be a midpoint 
given the possible range of |vh|. In the domain where sh + vh can lie, the midpoints 
are the odd multiples of u

4  in [ 1
4 , 1

2 ), the odd multiples of u
2  in [ 1

2 , 1), and the odd 
multiples of u in [1, 2). Therefore, if sh + vh is a midpoint:

	● In Case A: if sh = 1
2  then vh ∈ {− 3u

4 , − u
4 , u

2 , 3u
2 }, and if 1

2 < sh ≤ 1 − u then 
vh ∈ {− 3u

2 , − u
2 , u

2 , 3u
2 };

	● In Case B: if sh = 1 then vh ∈ {− 3u
2 , − u

2 , u}, and if 1 < sh ≤ 2 − 2u then 
vh ∈ {−u, u};

	● In Case C: if sh = 2 then vh ∈ {−3u, −u, 2u} and if 2 < sh ≤ 4 − 4u then 
vh ∈ {−2u, 2u}.

In all these cases, we observe that the possible values of vh are either a power of 2, or 
3 times a power of 2. Therefore:
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Remark 3.10  If vh is not a power of 2, or 3 times a power of 2 then sh + vh is not a 
midpoint and therefore (from Remark 3.9), RN(sh + vh + vℓ) = RN(sh + vh). As a 
consequence, in this case, Algorithm 6 returns Σ.

Now, it remains to focus on the cases where vh is a power of 2, or 3 times a power 
of 2. Let us assume that this is the case and first, consider Case A. Note that when 
|vh| is a power of two, the bound |vh| ≤ 3u

2  does not allow vh to be larger than u. 
We have: 
1.	 If (sh = 1

2  and vh ∈ {− u
4 , u

2 }) or (sh > 1
2  and vh ∈ {− u

2 , u
2 }) then sh + vh is a 

midpoint. We must therefore return:

	● sh if vh and vℓ have different signs, and
	● the FP predecessor (if vh < 0) or successor (if vh > 0) of sh otherwise.

 This is what Algorithm 6 does, as 7
8 vh and 9

8 vh are exactly computed. This is illus-
trated in Fig. 1;
2.	 If |vh| is a power of two less than γ, with γ = u

4  (when sh = 1
2  and vh < 0) or 

γ = u
2  (other cases) then sh + vh is not a midpoint (hence, from Remark 3.9, 

Σ = RN(sh + vh)). One notices that, as vh is a power of 2, (9/8)vh too is less 
than γ. Hence, 

	
RN

(
sh + 7

8
vh

)
= RN

(
sh + 9

8
vh

)
= RN (sh + vh) = sh,

	  so that the value z returned by Algorithm 6 is equal to Σ;
3.	 if (sh = 1

2  and vh ∈ {− u
2 , u}) or (sh ∈ { 1

2 , 1
2 + u} and vh = − 3u

2 ) or (sh > 1
2  

and |vh| = u) then sh + vh ∈ F, hence it is not a midpoint and one easily checks 
that 

	
RN

(
sh + 7

8
vh

)
= RN

(
sh + 9

8
vh

)
= RN (sh + vh) = Σ;

	  This is illustrated in Fig. 2;
4.	 if (sh ∈ { 1

2 , 1
2 + u} and vh = 3u

2 ) or (sh ≥ 1
2 + 2u and vh = ± 3u

2 ) then, as vh 
and vℓ are necessarily of opposite signs (from Remark 3.8), Σ is equal to the FP 

Fig. 1  The subcase 1
2 < sh < 1 − u and vh = + u

2
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predecessor (if vh < 0) or the FP successor (if vh > 0) of sh. This is precisely 
what Algorithm 6 returns, as z is equal to 

	
RN

(
sh + 7

8
vh

)
= RN

(
sh + sign(vh) · 21u

16

)
,

	  which equals RN(sh + sign(vh) · u), as there is no midpoint between 
sh + sign(vh) · u and sh + sign(vh) · 21u

16 . This is illustrated in Fig. 3;
5.	 if sh = 1

2  and vh = − 3u
4  (so that sh + vh is a midpoint), one must return

	● 1
2 − u if vℓ < 0, and

	● 1
2 − u

2  otherwise.

 This is what the algorithm does, as 

	

sh + 7
8 vh = 1

2 − 21u
32 is slightly above

sh + 9
8 vh = 1

2 − 27u
32 is slightly below


 the midpoint

1
2

− 3u

4
.

	  This case is illustrated in Fig. 4.
6.	 if (sh = 1

2  and vh = 3u
4 ) or (sh > 1

2  and vh = ± 3u
4 ) then, as sh + vh is not a 

midpoint, Σ is equal to RN(sh + vh). As there is no midpoint between 

	
sh + 7

8
vh = sh + sign(vh) · 21u

32

	  and 

Fig. 3  The subcase 1
2 ≤ sh < 1 − u and vh = + 3u

2

 

Fig. 2  The subcase sh = 1
2 + u and vh = − 3u

2

 

1 3



S. Graillat, J.-M. Muller

	
sh + 9

8
vh = sh + sign(vh) · 27u

32
,

	  Algorithm 6 returns RN(sh + vh) whatever the sign of vℓ;
7.	 finally, if |vh| is three times a power of 2 and is less than or equal to 3u

8 , then 
sh + vh is not a midpoint and one easily checks that 

	
RN

(
sh + 7

8
vh

)
= RN

(
sh + 9

8
vh

)
= RN (sh + vh) = sh = Σ.

Cases B and C are processed in the same way: the reasoning is exactly the same. It 
suffices to consider the presented-above sub-cases of Case A, with the values of the 
variables sh and vh multiplied by two (for Case B) or by four (for Case C) – there are 
in fact less possible sub-cases to be considered, as the bounds on |vh| and |vℓ| in case 
B (respectively 2u and u2) are less than 2 times the bounds of Case A (respectively 
3u
2  and u2), and the bounds on the same variables in Case C (respectively 3u and 2u2) 

are less than four times the bounds of Case A.

3.3  Variant of Algorithm 6: sum of a DW number and a FP number, and error of 
that sum

Given xh, xℓ and c ∈ F such that |xℓ| ≤ 1
2ulp(xh), Algorithm  6 computes 

Σ = RN(xh + xℓ + c). Let us assume that now we also want to compute the error 
of that addition, namely

	 e = xh + xℓ + c − Σ.

One easily sees that e does not always fit in one FP number only: just consider the 
case xh = 1, xℓ = 2−p and c = 2−3p, for which e = −2−p + 2−3p needs 2p bits 
to be represented exactly. Below, we give an algorithm (Algorithm 7, derived from 
Algorithm 6) that expresses e as the unevaluated sum of 2 FP numbers. We assume 
that p ≥ 5 so that, from Theorem 3.2, Algorithm 6 can be used.

Fig. 4  The subcase sh = 1
2  and vh = − 3u

4
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Let us consider the variables sh, vh and vℓ defined by Algorithm 6. We know that 
xh + xℓ + c = sh + vh + vℓ. As in the proof of Theorem 3.2, we assume without 
loss of generality that 1 ≤ xh ≤ 2 − 2u. Define two FP numbers wh = RN(sh + vh) 
and wℓ = sh + vh − wh. They can be computed with a Fast2Sum operation:

	● when proving Theorem 3.2, we have seen that if − xh

2 < c ≤ xh then sh ≥ 1
2  and 

|vh| ≤ 3u, so that sh ≥ |vh|;
	● if −xh ≤ c ≤ − xh

2 , then xh and c (and therefore vh) are multiple of 1
2ulp(xh) 

whereas |vh| = |xℓ| ≤ 1
2ulp(xh), therefore either sh = 0 or sh ≥ |vh|. In both 

cases Fast2Sum(sh, vh) returns wh and wℓ.

An easy case for computing e is when Σ = wh: in that case e = wℓ + vℓ. We have 
seen in the proof of Theorem 3.2 that this happens:

	● when −xh ≤ c ≤ − xh

2  (as vℓ = 0),
	● when − xh

2 < c ≤ xh and sh + vh is not a midpoint (from Remark 3.9).
Let us now assume that − xh

2 < c ≤ xh and that sh + vh is a midpoint (which 
implies that vh is a power of 2, or 3 times a power of 2, from Remark  3.10). 
In that case, Σ is equal to RN(sh + RN( 9

8 vh)) = RN(sh + 9
8 vh) or to 

RN(sh + RN( 7
8 vh)) = RN(sh + 7

8 vh), depending on the respective signs of vh and 
vℓ. Let us consider the three sub-cases A, B, and C of the proof of Theorem 3.2. The 
number

	

∣∣∣∣
(

sh + 9
8

vh

)
−

(
sh + 7

8
vh

)∣∣∣∣ =
∣∣∣vh

4

∣∣∣

is

	




< u
2 in case A,

≤ u
2 in case B,

≤ u in case C,

and the distance between sh + vh and the closest midpoint is

	





u
2 if sh + vh < 1

2 (may occur in Case A),
3u
4 if sh + vh = 1

2 + u
2 (may occur in Case A),

u if 1
2 + 3u

2 ≤ sh + vh < 1 (may occur in Cases A and B),
3u
2 if sh + vh = 1 + u (may occur in Case B),

2u if 1 + 3u ≤ sh + vh < 2 (may occur in Cases B and C),
3u if sh + vh = 2 + 2u (may occur in Case C),
4u if sh + vh ≥ 2 + 6u (may occur in Case C).
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Therefore sh + vh is the only midpoint between sh + 9
8 vh and sh + 7

8 vh. Hence 
RN(sh + 9

8 vh) and RN(sh + 7
8 vh) are two adjacent FP numbers, and wh is one of 

them. It follows that

	 |Σ − wh| ∈ {0, ulp(sh + vh)} .� (3)

Let us define α = Σ − wh. Equation (3) implies that α ∈ F, so that the sub-
traction Σ − wh is exact in FP arithmetic. Also, as sh + vh is a midpoint and 
wh = RN(sh + vh), we have |wℓ| = |wh − (sh + vh)| = 1

2ulp(sh + vh). Therefore,

	
|wℓ − α| ∈

{
1
2
ulp(sh + vh), 3

2
ulp(sh + vh)

}
,

which implies that δ = wℓ − α is a power of 2 or three times a power of 2, so that 
δ ∈ F (hence it is computed exactly: RN(t − α) = wℓ − α). We finally obtain

	 e = sh + vh + vℓ − Σ = wh + wℓ − Σ + vℓ = wℓ − α + vℓ = δ + vℓ.

This expression also holds in the previously considered case Σ = wh, since in that 
case δ = wℓ.

Finally, one may observe that δ is a multiple of ulp(vh) whereas |vℓ| ≤ 1
2ulp(vh), 

so that (unless δ = 0), |δ| is larger than |vℓ|: one can use the Fast2Sum algorithm to 
add δ and vℓ if needed.

This gives Algorithm 6 and Theorem 6 below.

Algorithm 7  CR-DWPlusFP-with-error(xh, xℓ, c). Computes z = RN(xh + xℓ + c), 
and δ and vℓ such that z + δ + vℓ = xh + xℓ + c.

We have,
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Theorem 3.11  If p ≥ 5  and |xℓ| ≤ 1
2 ulp(xh), the numbers z, δ, and vℓ returned by 

Algorithm CR-DWPlusFP-with-error (Algorithm 7) satisfy

	 z = RN(xh + xℓ + c)

and

	 δ + vℓ = xh + xℓ + c − z.

The pair (δ, vℓ) that represents the error of the addition (xh, xℓ, c) → RN(xh + xℓ + c) 
is not, in general, a DW number. To “normalize” that result, the last line of Algo-
rithm 7 can be modified as follows:

	● if one just wants the FP number nearest the error of the addition, one can compute 
RN(δ + vℓ). This gives a possible replacement for the (simpler and faster, yet 
less accurate) DWPlusFP algorithm of [14];

	● if one wants a DW number that represents the error exactly, one can compute 
Fast2Sum(δ, vℓ).

4  Emulation of ADD3 and the FMA, error of these operations

We now explain how Algorithm  6 can be used to emulate the ADD3 and FMA 
operations. In the following, we assume that p ≥ 5, so that Theorem  3.2 can be 
used. First, let us assume we want to compute RN(a + b + c), where a, b, and c 
are FP numbers. The 2Sum algorithm (Algorithm  2) returns a pair (xh, xℓ) such 
that xh = RN(xh + xℓ) and xh + xℓ = a + b. From xh = RN(xh + xℓ) we deduce 
|xℓ| ≤ 1

2ulp(xh). Therefore xh, xℓ and c satisfy the condition of Theorem 3.2, hence 
Algorithm 6 can be used to compute RN(xh + xℓ + c) = RN(a + b + c). We obtain:

Algorithm 8  EmulADD3(a, b, c). Computes RN(a + b + c).

Theorem 4.1  In a binary, precision-p (with p ≥ 5 ), floating-point arithmetic with 
an unbounded exponent range, Algorithm 8 returns RN (a + b + c) for all floating-
point numbers a, b, and c.

If we assume now that we want to compute FMA(a, b, c) = RN(ab + c), we can in 
a very similar way use the Dekker-Veltkamp multiplication algorithm (Algorithm 3) to 
obtain a pair (xh, xℓ) of FP numbers such that xh = RN(xh + xℓ) and xh + xℓ = ab, 
and then use Algorithm 6 to compute RN(xh + xℓ + c) = RN(ab + c). This gives:

Algorithm 9  EmulFMA. Computes FMA(a, b, c) = RN(ab + c).
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Theorem 4.2  In a binary, precision-p (with p ≥ 5 ), floating-point arithmetic with an 
unbounded exponent range, Algorithm 9 returns RN (ab + c) for all floating-point 
numbers a, b, and c.

In Algorithms 8 and 9, if one replaces the call to CR-DWPlusFP(xh, xℓ, c) (Algo-
rithm 6) by a call to CR-DWPlusFP-with-error(xh, xℓ, c) (Algorithm 7), then one 
will obtain algorithms that compute RN(a + b + c) and the error of that addition 
(Algorithm 10), and RN(ab + c) and the error of that FMA operation (Algorithm 11).

Algorithm 10  ADD3-with-error(a, b, c). Computes z = RN(a + b + c) and δ and vℓ 
such that a + b + c = z + δ + vℓ.

Algorithm 11  FMA-with-error(a, b, c). Computes z = RN(ab + c) and δ and vℓ such 
that ab + c = z + δ + vℓ.

Algorithm 10 allows one to “normalize” triple-word (TW) numbers (i.e., it trans-
forms any unevaluated sum of three FP numbers into a TW). For that purpose, it is 
much simpler than Algorithm 6 of [11].

5  Error of the FMA when that instruction is available

Algorithm  11 computes RN(ab + c) and the error of this operation, namely 
e = ab + c − RN(ab + c). On systems where a fast FMA operation is available 
in hardware, one will not use Algorithm 11 for computing e, for two reasons: first, 
Algorithm 11 needs many operations just to compute RN(ab + c), whereas it can be 
obtained with only one FMA operation, and second, the availability of a fast FMA 
allows to express the product ab as a double-word (xh, xℓ) much faster than by using 
the Dekker-Veltkamp algorithm. In fact, Algorithm 11 can be simplified consider-
ably, and we obtain Algorithm 12 below.
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Algorithm 12  Faster-FMA-with-error(a, b, c). Computes z = RN(ab + c) and δ′ 
and vℓ such that ab + c = z + δ′ + vℓ.

Let us explain how Algorithm 12 is derived from Algorithms 7 and 11.

	● First, to obtain xh and xℓ from a and b, it is no longer necessary to use the 
Dekker-Veltkamp multiplication algorithm, since xh = RN(ab) and 
xℓ = RN(ab − xh) = ab − xh are obtained with a multiplication and an FMA;

	● second, the various tests needed to compute z in Algorithm 7 are no longer neces-
sary, since z = RN(ab + c) is obtained with an FMA;

	● finally, the computation of the variables wh and wℓ in Algorithm 7 is no longer 
necessary:

	– When zh = RN(sh + vh), the computation of α′ and δ′ (in lines 6 and 7 of 
Algorithm 12) constitutes the last two operations of Fast2Sum(sh, vh). This 
gives δ′ = sh + vh − zh and therefore δ′ + vℓ = sh + vh + vℓ − zh, which 
is the desired error of the FMA;

	– when zh ̸= RN(sh + vh), the number sh + vh is a midpoint (from 
Remark 3.9), and zh and RN(sh + vh) are the two consecutive FP numbers 
surrounding this midpoint. It follows that α′ ∈ F. It is even a power of 2, 
equal to ±ulp(sh + vh), computed exactly. Furthermore (see Cases A, B, and 
C in the proof of Theorem 3.2), 

	
vh ∈

{
±1

2
ulp(sh + vh), ±3

2
ulp(sh + vh)

}
,

 and therefore, 

	
vh − α′ ∈

{
±1

2
ulp(sh + vh), ±3

2
, ±5

2
ulp(sh + vh)

}

 is a FP number, computed exactly. Therefore 

	 δ′ + vℓ = vh − α′ + vℓ = vh + vℓ + sh − zh = ab + c − RN(ab + c).

The obtained Algorithm 12 is an alternative to the algorithm presented by Boldo and 
Muller in [7].
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6  Discussion and comparisons

The primary disadvantage of Algorithms 6, 8, 9, and 11 is the presence of tests. In the 
event that the branch prediction mechanism of the processor fails,6 tests can result 
in a significant reduction in performance. However, to emulate ADD3 and the FMA, 
tests seem to be unavoidable: the authors of [17] have shown that an algorithm using 
only rounding-to-nearest additions and subtractions (without any tests) cannot evalu-
ate RN(a + b + c) for all possible FP numbers a, b, and c. Furthermore, it is impor-
tant to note that the variable vh in Algorithm 8 is very unlikely to be a power of 2 or 
three times a power of 2. Consequently, when a large number of ADD3s or FMAs 
are computed in a program, branch prediction should work effectively (whereas of 
course if only a small number of ADD3s or FMAs are computed in a program, the 
performance loss is of minimal consequence).

We have implemented Algorithms 8, 9, 11, and 12, the FMA and ADD3 algorithms 
of Boldo and Melquiond, and the algorithm of Boldo and Muller that computes the 

6 In modern processor architectures, the arithmetic operations are pipelined. This is assembly-line work 
adapted to computer architecture: the operations are divided into several steps (typically ranging from 3 
to 10), and each step takes one cycle time of the processor. If several independent operations are required 
in a program, step A of the first operation is executed first, then step B of the first operation and step A 
of the second operation are executed in parallel, then step C of the first operation, step B of the second 
operation, and step A of the third operation are executed in parallel, and so on. The advantage is that a 
new operation can be started at each processor cycle. However, if the nature of the next operation to be 
performed depends on a test on the result of the current one (i.e., if there is a conditional branch in the 
program), we cannot start that next operation immediately, and we must wait until the current one is fin-
ished before we can “feed” the pipeline again, which results in a significant penalty. One way to avoid this 
is branch prediction [22]: the processor tries to predict what the result of the test will be (and thus which 
“branch” of the program will be executed). This generally works remarkably well (because real programs 
are not “random”, they have some regularity that can be exploited. For example, very often, one branch 
is much more likely to be taken than the other ones: after a few initial loops this will be easy to detect). 
The other side of the coin is that if the outcome of the test was wrongly predicted (this is what we call a 
branch prediction failure), the penalty can become very important: the computation must be restarted at 
the beginning of the branch.

Table 1  Time (in seconds) to perform 5 × 109 ADD3 operations in binary64 arithmetic, using the Boldo-
Melquiond algorithm and our algorithm (Algorithm 8), on different computer architectures and with dif-
ferent compilers
Architecture/system Compiler and options Boldo-Melquiond Algorithm 8
Intel Corei7 clang (v. 16.0.0) 177 153
under MacOS clang -O3 22 19
Apple M3Pro clang (v. 16.0.0) 142 144
under MacOS clang -O3 7 9
AMD Opteron 6272 gcc (v. 12.2.0) 759 659
under Linux gcc -O3 127 104

clang -O3 168 93
Intel Xeon Gold 6444Y gcc (v. 12.2.0) 95 84
under Linux gcc -O3 18 20

clang -O3 (v. 14.0.6) 18 15
Each operand is a random double of the form K × s × F , where F is uniform in [0, 1], s is−1 
or+1 (each with probability 1/2), and K ∈ {1, 220, 2−20, 240, 2−40, 260, 2−60, 280, 2−80} (each 
with probability 1/9)
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error of an FMA in the C language, in binary64 arithmetic, and compared them on 
several platforms and with two different compilers (clang and gcc, with and without 
optimization). The programs are included in the appendix of this paper. The results 
are given in Tables 1 (for the ADD3 operation), 2 (for the FMA), and 3 (for the FMA 
error). Since an FMA instruction was available on all the platforms used, Table 2 also 
shows the timings for the FMA provided by the platform.

To compare the performance of these algorithms, the protocol is as follows: each 
algorithm is called 5 × 109 times. The input values are random binary64 numbers 
of the form K × s × F , where F is uniform in [0,  1], s is −1 or +1 (each with 

Table 2  Time (in seconds) to perform 5 × 109 FMA operations in binary64 arithmetic, using the Boldo-
Melquiond (BM) algorithm, our algorithm (Algorithm 9), and the FMA provided by the environment on 
different computer architectures and with different compilers
Architecture/system Compiler and options BM Algorithm 9 Environment
Intel Corei7 clang (v. 16.0.0) 258 200 41
under MacOS clang -O3 31 25 10
Apple M3Pro clang (v. 16.0.0) 228 162 7
under MacOS clang -O3 10 9 4
AMD gcc (v. 12.2.0) 1068 856 75
Opteron 6272 gcc -O3 -lm 190 110 42
under Linux clang -O3 -lm 181 95 43
Intel Xeon gcc -lm (v. 12.2.0) 109 98 10
Gold 6444Y gcc -O3 -lm 25 24 10
under Linux clang -O3 -lm (v. 14.0.6) 25 21 10
Each operand is a random double of the form K × s × F , where F is uniform in [0, 1], s is−1 or+1 (each 
with probability 1/2), and K ∈ {1, 220, 2−20, 240, 2−40, 2−40, 260, 2−60, 280, 2−80} (each with 
probability 1/9)

Table 3  Time (in seconds) to compute 5 × 109 errors of FMA operations in binary64 arithmetic, using the 
Boldo-Muller (BM) algorithm and our algorithms (Algorithms 11 and 12), on different computer architec-
tures and with different compilers
Architecture/system Compiler and options Boldo-Muller Algorithm 11 Algorithm 12
Intel Corei7 clang (v. 16.0.0) 166 280 168
under MacOS clang -O3 30 39 33
Apple M3Pro clang (v. 16.0.0) 151 298 143
under MacOS clang -O3 7 13 7
AMD Opteron 6272 gcc (v. 12.2.0) 742 1252 736
under Linux gcc -O3 134 143 140

clang -O3 117 122 130
Intel Xeon Gold 6444Y gcc (v. 12.2.0) 89 144 87
under Linux gcc -O3 23 30 24

clang -O3 (v. 14.0.6) 22 28 22
Each operand is a random double of the form K × s × F , where F is uniform in [0, 1], s is −1 or 
+1 (each with probability 1/2), and K ∈ {1, 220, 2−20, 240, 2−40 260, 2−60, 280, 2−80} (each with 
probability 1/9)
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probability 1/2), and K ∈ {1, 220, 2−20, 240, 2−40, 260, 2−60, 280, 2−80} (each with 
probability 1/9). These random inputs are computed beforehand and stored in a table 
(otherwise we would not be able to discriminate between the various algorithms, 
since the time of a random sampling is far from negligible in front of the time of an 
FMA or ADD3 operation). The table must be large enough to ensure that all possible 
special cases do occur, but small enough to fit in cache memory: we have chosen a 
table of 1000 elements for each of the variables a, b, and c (thus, to be able to perform 
5 × 109 operations, we access the tables repeatedly in a loop).

With regard to the calculation of the FMA and ADD3 (Tables 1 and 2), the tim-
ings for Boldo and Melquiond’s algorithms and our algorithms (Algorithms 8 and 9) 
are always quite close and in general our algorithms perform slightly better (there 
are a few exceptions: ADD3 on an Apple M3Pro using the clang compiler, and on 
an Intel Xeon Gold using the gcc compiler with the -O3 option). Given the similar 
performance, on systems without a hardware FMA, the fact that Algorithms 8 and 
9 are “high-level” algorithms (they use only FP operations) is a strong argument for 
choosing them. Interestingly enough, on the platforms used in the comparisons, the 
performance gain from using the hardware FMAs is just over a factor of 2 (when the 
emulation algorithms are compiled with the -O3 option). This shows the interest of 
these emulation algorithms.

Regarding the calculation of the error of the FMA when this instruction is avail-
able, the timings for the Boldo and Muller algorithm and Algorithm  12 are very 
close. This is not surprising, since both algorithms use two FMAs, one multiplica-
tion, two 2Sum operations, and two addition/subtractions (but in a different order). 
Algorithm 11 is significantly slower7 because it does not use the available hardware 
FMA of the platform being used, and because it requires tests. If no hardware FMA is 
available on the platform being used, the only possible choice is to use Algorithm 11, 
but if a hardware FMA is available, the only advice we can give to a user is to try the 
Boldo and Muller algorithm and Algorithm 12: which of them performs best depends 
on the environment.

7  Conclusion

We have presented a novel approach to emulate the fused multiply-add (FMA) 
instruction and the ADD3 operation, and to compute the error of these operations, 
using only standard, rounding-to-nearest floating-point additions, multiplications, 
and comparisons. Our method builds on the foundation laid by previous research, but 
eliminates the need for less commonly supported rounding functions such as round-
to-odd, or the need to perform integer or logical operations on the binary representa-
tions of the FP operands, thereby increasing the practical applicability and portability 
of the algorithm across different computing architectures.

7 With one surprising exception: the AMD Operon 6270 and the clang compiler with option -O3.
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Appendix: C programs for ADD3, the FMA and their errors
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