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Abstract

A polynomial is stable if all its roots have negative real part, and unstable otherwise. For a stable
polynomial, the distance to the nearest unstable polynomial is an important parameter in control
theory for example. In this paper, we focus on this distance called the stability radius of polynomial
p. We propose to modify the level contour function of the pseudozero set to derive a bisection
algorithm that computes an arbitrary accurate approximation of this stability radius. Numerical
simulations and comparisons with pseudozero graphics are here after presented.
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1 Introduction

In control theory, a classical transfer function is written as H(p) = N(p)/D(p) where N and D are
polynomials and p a parameter of the system. The system described with the function H is stable if all
the zeros of D have negative real part, that is if the polynomial D is stable. Since uncertainty in the
coefficients of the polynomial are unavoidable in most real problem (data uncertainty, rounding error),
it is useful for a stable system to measure the distance to the nearest unstable system i.e. the distance
to the nearest unstable polynomial from D.

Using companion matrix, this polynomial problem could be reformulated as a matrix problem. A
matrix A ∈ Cn×n is stable if all its eigenvalues have negative real part, and unstable otherwise. When
A is stable, the computation of the distance (with respect to a matrix norm ‖ · ‖) from A to the nearest
unstable matrix,

β(A) = min{‖E‖ : A + E ∈ Cn×n is unstable}.

has been intensively studied in numerical linear algebra [2, 4, 5].
To ensure that this minimum distance is the associated polynomial radius, the perturbed matrix

A+E has to conserve the companion structure of A. Up to our knowledge, no existing matrix algorithm
guarantees this property.

In this paper, we propose a way to compute the minimum distance to an unstable polynomial staying
in the field of polynomials. The key tool to succeed is the polynomial pseudozero set introduced by
Mosier (see [7]).

Let Pn be the linear space of polynomials of degree at most n with complex coefficients and Mn the
subset of monic polynomials of degree n. Let p ∈Mn given by

p(z) =
n∑

i=0

piz
i, pn = 1. (1)

Representing p by the vector (p0, . . . , pn−1) of its coefficients, we identify the norm ‖ · ‖ on Mn to the
2-norm on Cn of the corresponding vector.

An ε-neighborhood of p is the set of all polynomials of Mn, close enough to p, that is,

Nε(p) = {p̂ ∈Mn : ‖p− p̂‖ ≤ ε} . (2)
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Then the ε-pseudozero set of p is defined to include all the zeros of the ε-neighborhood of p. A non
constructive definition of this set is

Zε(p) = {z ∈ C : p̂(z) = 0 for p̂ ∈ Nε(p)} . (3)

In the two first sections, we recall the notion of pseudozero set and we give some definitions about
polynomials. In the third section, we propose a bisection algorithm to compute the stability radius. In
the last section, we present some numerical simulations.

2 Pseudozero set and stability radius

Following Proposition 1 provides a computable counterpart of this definition.

Proposition 1. The ε-pseudozero set of p verifies

Zε(p) =
{

z ∈ C : g(z) :=
|p(z)|
‖z‖

≤ ε

}
, (4)

where z = (1, z, . . . , zn−1).

This proposition was proved in [10] for the 2-norm and in [3, 9] for a general norm.

Considered polynomials have been chosen to be monic polynomials to ensure the ε-pseudozero set is
bounded.

Proposition 2. The ε-pseudozero set is a compact set contained in the ball of center O and radius
1 + ‖p‖+ ε.

We introduce the function hp,ε : R2 → R defined by

hp,ε(x, y) = |p(x + iy)|2 − ε2
n−1∑
j=0

(x2 + y2)j . (5)

It is clear that for fixed x0, the function hp,ε(x0, y) is a polynomial of degree 2n. In the same way, for
fixed y0, the function hp,ε(x, y0) is also a polynomial of degree 2n. From Proposition 1, the pseudozero
set Zε(p) verifies

Zε(p) = {(x, y) ∈ R2 : hp,ε(x, y) ≤ 0}.
and we have the following proposition.

Proposition 3. We have hp,ε(x, y) = 0 if and only if there exists q ∈ Mn such that q(x + iy) = 0 and
‖p− q‖ = ε.

3 Abscissa mapping and stability radius

We present three important notions and some relations between them.
The first one is the abscissa mapping for a polynomial p ∈Mn defined by

a(p) = max{Re(z) : p(z) = 0}.

Hence, a stable polynomial satisfies a(p) < 0. The abscissa mapping

a : Pn → R

defined by a(p) = max{Re(z) : p(z) = 0} is continuous on Mn. It is clear that a is not continuous on Pn

as it is shown in [1]. Indeed, let us consider the polynomial qt(z) = (1− tz)p(z) where p is a polynomial
of degree at most n− 1. We have qt → p when t → 0, whereas a(qt) = 1/t.

To prove the continuity of a on Mn, we will use the following result known as “the continuous
dependence of the zeros of a polynomial on its coefficients”. The proof can be found in [6, 8].

We can now prove the continuity of a on Mn.
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Proposition 4. The abscissa mapping
a : Pn → R

defined by a(p) = max{Re(z) : p(z) = 0} is continuous on Mn.

A natural extension of the abscissa mapping when polynomials are perturbed is the pseudozero
abscissa mapping defined by

aε(p) = max{Re(z) : z ∈ Zε(p)}.

Instead of computing the real part of the zeros of p, we are interesting in the real part of the ε-pseudozeros
of p.

The third parameter is the distance of a given polynomial from the set of unstable polynomials. Such
a stability radius is defined by

β(p) = min{‖p− q‖ : q ∈Mn and a(q) ≥ 0}.

Since the set of polynomials which are unstable is closed (due to the continuity of a onMn), the minimum
is attained. We can know reformulate the stability radius β(p) in term of pseudozeros. The stability
radius is the largest ε for which the pseudozero set Zε(p) lies in the left half-plane.

These notions are linked with the following relation

aε(p) ≥ 0 ⇐⇒ β(p) ≤ ε.

Indeed if aε(p) ≥ 0 then there exists q ∈ Mn such that ‖p − q‖ ≤ ε and z ∈ C that satisfy Re(z) ≥ 0
and q(z) = 0. By definition of β, we can write that β(p) ≤ ε. Conversely, if β(p) ≤ ε then there exists
q ∈Mn such that a(q) ≥ 0, ‖p− q‖ ≤ ε and q has at least a root z ∈ C with Re(z) ≥ 0. It follows that
aε(p) ≥ 0.

We can state the following result.

Proposition 5. If p ∈ Mn is not stable, we have β(p) = 0. Otherwise, when p is stable, we have
aβ(p)(p) = 0.

In the sequel, we consider that polynomial p is stable. We have the following proposition.

Proposition 6. The stability radius β(p) satisfies

β(p) = min{‖p− q‖ : q ∈Mn and a(q) = 0}.

The proposed algorithm that computes the stability radius of a given polynomial relies on the following
theorem.

Theorem 1. The equation hp,ε(0, y) = 0, y ∈ R, has a solution if and only if β(p) ≤ ε.

Proof. If the equation hp,ε(0, y) = 0, y ∈ R, has a solution u, it means by Proposition 3 that there exists
a polynomial p̂ such that p̂(iu) = 0 and ‖p− p̂‖ = ε. By definition of β(p), it implies that β(p) ≤ ε.

If now β(p) ≤ ε, there exists a polynomial q such that ‖q − p‖ ≤ ε and a(q) ≥ 0. Therefore, at least
one root of q has a positive real part. Let us define the polynomial pt(z) = (1− t)p(z) + tq(z), t ∈ [0, 1].
We clearly have pt ∈ Mn, p0(z) = p(z) and p1(z) = q(z). Besides, ‖pt − p‖ = t‖p − q‖ = tε ≤ ε for
all t ∈ [0, 1] so that pt ∈ Nε(p). Let ϕ : [0, 1] → R be the function t 7→ a(pt). By continuity of a on
Mn (see Proposition 4), the function ϕ is continuous. As a(p) = ϕ(0) < 0 and a(q) = ϕ(1) ≥ 0, there
is t ∈ [0, 1] such that a(pt) = 0. There exists y ∈ R such that pt(iy) = 0. As the pseudozero set Zε(p)
is compact and contains an iy, y ∈ R, we can take the intersection between the vertical line through iy
and the pseudozero set. Let iy′ be a point on the boundary of this intersection. It verifies hp,ε(0, y′) = 0.
This complete the proof.
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Algorithm 1 Computation of stability radius by bisection
Require: a stable polynomial p and a tolerance τ
Ensure: a number α such that |α− β(p)| ≤ τ
1: γ := 0, δ := ‖p− zn‖
2: while |γ − δ| > τ do
3: ε := γ+δ

2
4: if the equation hp,ε(0, y) = 0 has a real solution then
5: δ := ε
6: else
7: γ := ε
8: end if
9: end while

10: return α = γ+δ
2

4 An algorithm to compute the stability radius

We still assume that polynomial p is stable. As polynomial zn is stable, it is clear that 0 ≤ β(p) ≤ ‖p−zn‖.
We propose to apply a bisection algorithm to compute β(p). The real γ and δ are respectively a lower and
an upper bound for β(p). As a consequence, we always have γ ≤ β(p) ≤ δ. Because of the condition in
the loop, we get α such that |α−β(p)| ≤ τ at the end of the algorithm. The parameter τ is an arbitrary
tolerance that measures the accuracy of the stability radius β(p). Indeed, we have |α−β(p)| ≤ |δ−γ| ≤ τ .

The difficult step of the algorithm is to test if the polynomial P (y) = hp,ε(0, y) has real roots. The
polynomial P has complex coefficients. Let us define the polynomial Q = PP , where P is the complex
conjugate polynomial of P . We easily see that Q is a polynomial with real coefficients and that P has a
real root if and only if Q has also a real root. We can apply the Euclids’ algorithm to Q and Q′. Let Q0 =
Q and Q1 = Q′ and define Qi+1 = − rem(Qi−1, Qi). Let m be the smallest integer such that Qm+1 = 0.
Let be vQ(−∞) the number of sign changes in the leading coefficients of Q0(−X), . . . , Qm(−X) and let
vQ(+∞) be the number of sign changes in the leading coefficients of Q0(X), . . . , Qm(X). So we have
defined what is called a Sturm sequence and Q has exactly vQ(−∞) − vQ(+∞) distinct real roots. In
particular hε(0, y) has a real root if and only if vQ(−∞) 6= vQ(+∞). Let us remark that using Sturm
sequences suffices to answer line 4 of Algorithm 1 without having to compute all the roots of hε(0, y).

5 Numerical simulations

Algorithm 1 is implemented using the Maple software. This choice is motivated by the fact that we
need some formal manipulations of polynomials.

For drawing pseudozero set, we used the Matlab software to implement following Algorithm 2.

Algorithm 2 Computation of ε-pseudozero set
Require: polynomial p and precision ε
Ensure: pseudozero set layout in the complex plane
1: We grid a square containing the whole roots of p with the Matlab command meshgrid.
2: We compute g(z) for the whole points z on the grid.
3: We draw the level line |g(z)| = ε with the Matlab command contour.

A first natural example is p(z) = z + 1. Of course, the nearest unstable polynomial of p is q(z) = z
and then β(p) = 1. Algorithm 1 yields β = 0.999996 with a tolerance equals to 0.00001. We can draw
the 0.999996-pseudozero set (see Fig 1) and we verify that the pseudozero set is included in the left
half-plane and is tangent to the imaginary axis. This confirms the intuitive aspect of the algorithm.

Now we consider p(z) = (z − 1)(z − 1/2) = z2 + z + 1/2. Algorithm 1 yields β = 0.485868 with the
tolerance 0.00001. We can draw the 0.485868-pseudozero set (see Fig 2).

If we choose for example the polynomial p(z) = z3+4z2+6z+4, we get β = 2.610226 with a tolerance
0.00001. We can draw the 2.610226-pseudozero set (see Fig 3).
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Figure 1: ε-pseudozero set for p(z) = z + 1 with ε = 0.999996 ≈ β(p)
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Figure 2: ε-pseudozero set for p(z) = z2 + z + 1/2 with ε = 0.485868 ≈ β(p)
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Figure 3: ε-pseudozero set for p(z) = z3 + 4z2 + 6z + 4 with ε = 2.610226 ≈ β(p)

5



6 Conclusion

In this paper, we have shown the usefulness of the ε-pseudozero set introduced by Mosier [7]. The
theory used in this concept is the basis of our algorithm. Indeed, we used the level contour function of
the pseudozero set to derive a bisection algorithm that computes the stability radius of a polynomial.
Moreover, the visualization of the ε-pseudozero set gives us significant informations about the stability
of a polynomial. These informations are both quantitative (the result of the bisection algorithm) and
qualitative (the drawing). Although it seems that pseudozero set is not popular in applied mathematics,
we hope that we have demonstrated the power of this numerical tool.

The case where the polynomial have real coefficients seems to be more difficult. Indeed, it seems
there is no explicit formula to compute the ε-pseudozero set in the case of real perturbations.
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