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a b s t r a c t

In this paper, we present a new parallel accurate algorithm called PAccSumK for
computing summation of floating-point numbers. It is based on AccSumK algorithm.
In the experiment, for the summation problems with large condition numbers, our
algorithm outperforms the PSumK algorithm in terms of accuracy and computing time.
The reason is that our algorithm is based on a more accurate algorithm called AccSumK
algorithm compared to the SumL algorithm used in PSumK. The proposed parallel
algorithm in this paper is designed to compute a result as if computed internally in
K -fold the working precision. Numerical results are presented showing the performance
and the accuracy of our new parallel algorithm for calculating summation.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In this paper, we present a new parallel algorithm to compute a sum of floating-point numbers with high accuracy.
ince summation is one of the most basic tasks in numerical analysis, getting fast and accurate algorithms is an important
roblem. Moreover, computing accurate summation has numerous applications in numerical analysis and scientific
omputing.
The authors (Rump, Ogita and Oishi) presented an accurate sum algorithm called AccSumK [1,2] using so-called

‘error-free transformations’’. Given a vector of floating-point numbers with exact sum s, their algorithm calculates a
-fold faithful rounding of s. The algorithm is fast for mildly conditioned sums with slowly increasing computing time
roportional to the logarithm of the condition number. The algorithm is fast, not only in terms of the number of floating-
oint operations but also in terms of measured computing time on a serial computer. But it is not a parallel algorithm.
he authors (Yamanaka, Ogita, Rump and Oishi) presented a parallel algorithm PSumK [3]. The PSumK algorithm is based
n the SumL [3] and SumK [4] algorithms. However, the accuracy of SumL depends on the condition number of the sum
hereas the accuracy of AccSumK is independent of the condition number. For ill-conditioned problems, the AccSumK
lgorithm is more accurate than the SumL algorithm.
Based on the above observations on AccSumK and PSumK, we develop a parallelizing method to used AccSumK into a

ew parallel algorithm called PAccSumK.
The rest of the paper is organized as follows: In Section 2, we briefly review the error-free transformations and the

lgorithm AccSumK for accurate summation proposed in [1,2]. In Section 3, we develop parallel algorithm PAccSumK,
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which is based on AccSumK algorithm. We propose an analysis of the error bounds of the proposed algorithm. This makes
it possible to confirm that the proposed parallel algorithm achieves a result as if computed in K -fold the working precision.
In Section 4, we present results of numerical experiments showing the performance and the accuracy of the proposed
algorithm PAccSumK. Finally, we conclude the paper and propose some future work.

Throughout the paper, floating-point addition, subtraction and multiplication are counted as one floating-point
operation (flop). Moreover, we use MATLAB-style notation for describing algorithms.

2. Accurate summation algorithm AccSumK

In this section, we use the same notation as in [2,3] and we recall some results and algorithms described in [1–4]. The
set of floating-point numbers is denoted by F, and U denotes the set of subnormal floating-point numbers together with
zero and the two normalized floating-point numbers of smallest nonzero magnitude. Throughout this paper, we assume
floating-point arithmetic adhering to IEEE standard 754 [5]. Let p = (pi) ∈ Fn and let fl(·) be the result of floating-point
operations, where all operations inside parentheses are executed by ordinary floating-point arithmetic in rounding-to-
nearest. We denote by u the machine epsilon, and the underflow unit by η, that is the smallest positive (denormalized)
loating-point number. In IEEE standard 754 double precision u = 2−53 and η = 2−1074.

Let us denote s and S by

s :=

n∑
i=1

pi, S :=

n∑
i=1

|pi|.

The condition number of the summation of the vector p is defined by

cond(
n∑

i=1

pi) :=
S
|s|

, s ̸= 0.

A computed result Res of the summation of p = (pi) is said to be computed in K -fold precision if it satisfies [4]

|Res −

n∑
i=1

pi| ≤ u|s| + (ϕu)K
n∑

i=1

|pi|, (1)

with a moderate constant ϕ. The second term on the right-hand side of (1) reflects computation K -fold precision, and the
first one rounding back into working precision.

Because ‘‘unit in the last place’’ (ulp) depends on the floating-point format and needs extra care in the underflow range.
It is useful to use the ‘‘unit in the first place’’ (ufp) defined in [2] by

0 ̸= r ∈ R ⇒ ufp(r) := 2⌊log2 |r|⌋, (2)

where ufp(0) := 0.
In order to explain faithful rounding, the definition of floating-point predecessor and successor is required.
pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : f < r}.

efinition 1 ([2]). A floating-point number f ∈ F is called a faithful rounding of a real number r ∈ R if

pred(f ) < r < succ(f ). (3)

e denote this by f ∈ □(r). For r ∈ F this implies f = r .

efinition 2 ([2]). A sequence f1, . . . , fk ∈ F is called a (K -fold) faithful rounding of s ∈ R if

fi ∈ □(s −

i−1∑
ν=1

fν) for 1 ≤ i ≤ k. (4)

Following [6], we define γn as

γn :=
nu

1 − nu
, n ∈ N.

When using γn, we implicitly assume that nu < 1.
Let p = (p1, . . . , pn)T ∈ Fn. Then it holds that [6]

s̃ := fl(
n∑

i=1

pi) ⇒ |s̃ −

n∑
i=1

pi| ≤ γn−1

n∑
i=1

|pi|. (5)

Note that (5) is valid for any order of addition in the summation. Recently, it was shown that γn can be replaced by nu,
nd the restriction on n can be removed [7–10].
2
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The algorithm AccSumK is based on the error-free transformations of addition and/or multiplication of two floating-
oint numbers.
We first recall a fast algorithm for adding two floating-point numbers. It requires only 3 flops. When |a| ≥ |b|,

lgorithm 2.1 is an error-free transformation that satisfies x + y = a + b with x = fl(a + b), |y| ≤ u · ufp(x).

Algorithm 2.1 ([11]). Compensated summation of two floating-point numbers.
function [x, y] = FastTwoSum(a, b)

x = fl(a + b)
q = fl(x − a)
y = fl(b − q)

Choose a split to extract a vector into a sum of higher order parts and a vector of lower order parts.

Algorithm 2.2 ([2]). Error-free vector transformation extracting high order part.
function [τ , p

′

] = ExtractVector(σ , p)
τ=0
for i = 1:n

qi = fl((σ + pi) − σ )
p

′

i = fl(pi − qi)
τ = fl(τ + qi)

end for

Algorithm 2.3 ([2]). Computation of 2⌈log2|p|⌉ for p ̸= 0.
function L = NextPowerTwo(p)

q = u−1p
L = fl(|(q + p) − q|)
if L == 0

L = |p|
end if

heorem 1 ([2]). Let L be the result of Algorithm 2.3 (NextPowerTwo) applied to a nonzero floating-point number p. If no
verflow occurs, then L = 2⌈log2|p|⌉.

emark 1 ([2]). L = 2⌈log2|p|⌉ is satisfied in the presence of underflow, and use Algorithm 2.3 (NextPowerTwo) so that
nly basic floating-point operations are necessary.

We let the input vector p be p(0) and the output vector p be p(m). The main part of the summation algorithm is
lgorithm 2.4. It transforms the input vector p(0) into two floating-point numbers τ1, τ2 representing the high order part
f the sum and a vector p(m) of low order parts. The transformation is error-free, i.e., s :=

∑
p(0)i = τ1 + τ2 +

∑
p(m)
i .

oreover, fl(τ1 + τ2 +
∑

p(m)
i ) is a faithfully rounded result of s (see [1]).

lgorithm 2.4 ([2]). Transformation of vector p plus ϱ with check for zero.
function [τ1, τ2, p, σ ] = Transform(p, ϱ)

µ = max(|pi|)
if µ = 0, τ1 = ϱ, τ2 = 0, return, end if
M = NextPowerTwo(length(p0)+2)
σ

′

= 2MNextPowerTwo(µ)
t
′

= ϱ
repeat

t = t
′

; σ = σ
′

[τ , p] = ExtractVector(σ , p)
t
′

= fl(t + τ )
if t

′

= 0, [τ1, τ2, p] = Transform(p, 0); return; end if
σ

′

= fl(2Muσ )
until σ ≤

1
2u

−1η or |t
′

| ≥ fl(22M+1uσ )
[τ1, τ2] = FastTwoSum(t, τ )

The following Algorithm 2.5 establishes an approximation of K -fold accuracy.

Algorithm 2.5 ([2]). Error-free vector transformation including faithful rounding.
function [res, R, p

′

] = TransformK(p, ϱ)
[τ , τ , p

′

, σ ] = Transform(p, ϱ)
1 2

3
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Fig. 1. Outline of AccSumK for K = 3.

res = fl(τ1 + (τ2+(
∑n

i=1 p
′

i)))
R = fl(τ2 − (res − τ1))

Algorithm 2.6 computes a result of K -fold accuracy, stored in a non-overlapping result vector Res of length K .

lgorithm 2.6 ([2]). Accurate summation with faithful rounding and result of K -fold accuracy.
function Res = AccSumK(p, K )

p(0) = p, R0 = 0
for k = 1 : K

[Resk, Rk, p(k)] = TransformK(p(k−1), Rk−1)
if Resk ∈ U, Resk+1...K = 0, return; end if

end for

Fig. 1 illustrates an outline of AccSumK for K = 3.

heorem 2 ([2]). Let p be a vector of n floating-point numbers. Define M := ⌈log2(n + 2)⌉, and assume 22Mu ≤ 1. Let
≤ K ∈ N be given, and let Res be the results vector of Algorithm 2.6 (AccSumK) applied to p and K .
Then, Res1, . . . , ResK is a faithful rounding of s. Furthermore,

s =

k∑
ν=1

Resν + Rk +

n∑
i=1

p(k)i for1 ≤ k ≤ K , (6)

bbreviate ˆRes :=
∑K

k=1 Resk. Then Resk ∈ U for some 1 < k < K implies ˆRes = s, and Resk ̸∈ U implies

|s − ˆRes| < 2uKufp(s) ≤ 2uK
|s|, (7)

and

|s − ˆRes| < 2uKufp(Res1) ≤ 2uK
|Res1|. (8)

Remark 2 ([2]). AccSumK needs (4m + 5K + 3)n + O(m + K ) flops if the ‘‘repeat-until’’ loop in the first extraction
ransformK is executed m times.

Next, we briefly review some algorithms used in the SumK and SumL algorithms. The following Algorithm 2.7 is
roposed by Knuth. It needs 6 flops.

lgorithm 2.7 ([12]). Error-free transformation of the sum of two floating-point numbers.
function [x, y] = TwoSum(a, b)

x = fl(a + b)
q = fl(x − a)
y = fl(((a − (x − q)) + (b − q)))

Using the TwoSum algorithm, it can be extended to the error-free transformation of vector summation.

lgorithm 2.8 ([4]). Error-free vector transformation with respect to the summation.
function q = VecSum(p)

q1 = p1
for i = 2 : n

[qi, qi−1] = TwoSum(pi, qi−1)

end for

4
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In [4], the authors (Ogita, Rump and Oishi) developed an algorithm SumK, which calculates the summation using
VecSum iteratively.

Algorithm 2.9 ([4]). Summation
∑n

i=1 pi for p ∈ Fn as in K -fold precision by (K −1)-fold error-free vector transformation.
function res = SumK(p, K )

for i = 1 : K − 1
p = VecSum(p)

end for
res = fl(

∑n
i=1 pi)

The error bounds of the result res by SumK are given as follows [4]:

Theorem 3 ([4]). Let res be the result obtained by SumK, then

|res − s| ≤ (u + 3γ 2
n−1)|s| + γ K

2(n−1)S. (9)

Moreover, if s ̸= 0, then

|
res − s

s
| ≤ u + 3γ 2

n−1 + γ K
2(n−1)cond(

∑
pi). (10)

In [3], the authors developed a summation algorithm SumL whose result is represented by an array of L floating-point
numbers.

Algorithm 2.10 ([3]). Summation
∑n

i=1 pi for p ∈ Fn as in L-fold precision whose result is represented by a sum of L
floating-point numbers.

function q = SumL(p, L)
for k = 1 : L − 1

p(1 : n − k + 1) = VecSum(p(1 : n − k + 1))
qk = pn−k+1

end for
qL = fl(

∑n−L+1
i=1 pi)

For later use, we present an error bound and inequality for SumL.

Theorem 4 ([3]). Let q be the result obtained by Algorithm 2.10 (SumL), abbreviate q̂ :=
∑L

k=1 qk, then

|q̂ − s| ≤ γ L
n−1S, (11)

Moreover, if s ̸= 0, then

|
q̂ − s
s

| ≤ γ L
n−1cond(

∑
pi). (12)

lgorithm 2.10 also satisfies the following inequality:
L∑

k=1

|qk| ≤ (1 + γ2(n−1))S. (13)

emark 3. Let L = K , divide the right term of (11) by the right term of (7), we can get

γ K
n−1S

2uK |s|
≈

(n − 1)K

2
cond(

∑
pi). (14)

rom (14) we know that the error bounds of AccSumK are smaller than that of SumL.

3. Parallel algorithm

In this section, we will develop parallel algorithm for calculating sum internally in K -fold working precision. It is based
on the AccSumK algorithm, which is named PAccSumK.

Suppose the number of CPUs to be P ≥ 2 on a distributed memory system. Then the CPUs can be numbered id from
1 to P , so 1 ≤ id ≤ P .

PAccSumK is the same algorithm as PSumK [3], but the difference is that we use the AccSumK algorithm instead of
SumL and SumK.

Next, we present here the concrete algorithm of PAccSumK.
5
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Algorithm 3.1 (PAccSumK). A parallel algorithm based on the AccSumK algorithm.
function Res = PAccSumK(p, K , P)

c = ⌈n/P⌉, c1 = n − c(P − 1)
% parallel private (index1, index2)
if id == 1

index1 = 1 : c1
else

index1 = c1 + c(id − 2) + 1 : c1 + c(id − 1)
end
index2 = K (id−1)+1 : K · id
q(index2) = AccSumK(p(index1),K )
% end parallel
Res = AccSumK(q, K )

Remark 4. When the AccSumK algorithm in the parallel part of Algorithm 3.1 is replaced with the SumL algorithm,
and the AccSumK algorithm in the serial part is replaced with the SumK algorithm, it is the PSumK algorithm. In PSumK,
computational cost for the parallelized part is (6K − 5)c flops and the rest requires (6K − 5)(PK − 1) flops [3]. When the
AccSumK algorithm in Algorithm 3.1 is replaced with the SumL algorithm, we call it PSumL. In PSumL, computational cost
for the parallelized part is (6K − 5)c flops and the rest requires (6K − 5)PK flops. This is a unified framework, the parallel
part and the serial part can use different summation algorithms, we focus on the PAccSumK algorithm.

In PAccSumK, computational cost for the parallelized part is (4m + 5K + 3)c + O(m + K ) flops and the rest requires
(4m+ 5K + 3)(PK )+O(m + K ) flops. Therefore, the theoretical parallel efficiency in terms of the flops count becomes as
follows:

r1 =
(4m + 5K + 3)c + O(m + K )

(4m + 5K + 3)c + O(m + K ) + (4m + 5K + 3)(PK ) + O(m + K )

≈
1

1 +
PK
c

.

If c ≫ PK , then r1 approaches to one.
We present the following theorem for PAccSumK.

Theorem 5. Let Res be the result obtained by Algorithm 3.1 (PAccSumK), abbreviate ˆRes :=
∑K

k=1 Resk. Define c := ⌈
n
P ⌉,

′
:= ⌈log2(c + 2)⌉, and assume 22M ′

u≤ 1. Let 1 ≤ K ∈ N be given. Then the following inequality holds:

| ˆRes − s| < 2uK
|s| + (1 + 2uK )2uK S. (15)

oreover, if s ̸= 0, then

|
ˆRes − s
s

| < 2uK
+ (1 + 2uK )2uK cond(

∑
pi). (16)

Fig. 2 illustrates an outline of PAccSumK for K = 3 and P = 3.

Proof. From the definition of vectors p, p(id), q and q(id), we collect the following relations:
n∑

i=1

pi =

P∑
id=1

cid∑
i=1

p(id)i = s, (17)

n∑
i=1

|pi| =

P∑
id=1

cid∑
i=1

|p(id)i | = S, (18)

PK∑
j=1

qj =

P∑
id=1

K∑
k=1

q(id)k , (19)

PK∑
j=1

|qj| =

P∑
id=1

K∑
k=1

|q(id)k |. (20)

hen

| ˆRes − s| = | ˆRes −

PK∑
qj +

PK∑
qj − s| ≤ | ˆRes −

PK∑
qj| + |

PK∑
qj − s|. (21)
j=1 j=1 j=1 j=1

6
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Fig. 2. Outline of PAccSumK for K = 3 and P = 3.

ere, using Res=AccSumK(q, K ) and (7) yields

| ˆRes −

PK∑
j=1

qj| < 2uK
|

PK∑
i=1

qi| ≤ 2uK (|
PK∑
i=1

qi − s| + |s|), (22)

nserting (22) into (21), we have

| ˆRes − s| < 2uK
|s| + (1 + 2uK )|

PK∑
i=1

qi − s|. (23)

It follows by (17) and (19) that

|

PK∑
j=1

qj − s| = |

P∑
id=1

K∑
k=1

q(id)k −

P∑
id=1

cid∑
i=1

p(id)i | ≤

P∑
id=1

|

K∑
k=1

q(id)k −

cid∑
i=1

p(id)i |. (24)

Here, recalling that q(id)=AccSumK(p(id), K ) and using (7), we have

|

PK∑
j=1

qj − s| <

P∑
id=1

(2uK
|

cid∑
i=1

p(id)i |) ≤ 2uK S. (25)

Inserting (25) into (23), we finally have

| ˆRes − s| < 2uK
|s| + (1 + 2uK )2uK S,

which proves (15) and divided by |s| also proves (16). □

Theorem 5 and (1) mean the result Res is obtained by PAccSumK as if computed internally in K -fold working precision.
In fact, we can construct p such that the right-hand side equation of (25) holds.

Remark 5. The PAccSumK algorithm does not share the same accuracy as AccSumK. Indeed, the accuracy of PAccSumK
depends on the condition number of the problem and so is not a K -fold faithful rounding. Because Res is the K -fold
faithful rounding of q, which will produce an error, q(id) is the K -fold faithful rounding of p(id), and each process will also
produce an error, Res is not the K -fold faithful rounding of p.

In order to compare PAccSumK and PSumK, we quote the following theorem for PSumK.

Theorem 6 ([3]). Let res be the result obtained by PSumK. Define c := ⌈
n
P ⌉. Suppose

max{c, PK }u < 1. Then the following inequality holds:

|res − s| ≤ (u + 3γ 2
PK−1)|s| + φ1S, (26)

here φ := (1 + u + 3γ 2 )γ K
+ (1 + γ )γ K .
1 PK−1 c−1 2(c−1) 2(PK−1)

7
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Moreover, if s ̸= 0, then

|
res − s

s
| ≤ u + 3γ 2

PK−1 + φ1cond(
∑

pi). (27)

The second term at the right end (15) is smaller than the second term at the right end (26), therefore, when K is the
ame, PAccSumK can solve problems with larger condition numbers than PSumK. The first term at the right end (15) is
lso smaller than the first term at the right end (26). The error of the algorithm is dominated by the second term.
In order to compare PAccSumK and PSumL, we present the following theorem for PSumL.

heorem 7. Let Res be the result obtained by PSumL, abbreviate ˆRes :=
∑L

k=1 Resk. Define c := ⌈
n
P ⌉. Suppose

max{c, PK }u < 1. Then the following inequality holds:

| ˆRes − s| ≤ {γ L
c−1 + (1 + γ2(c−1))γ L

n−1}S. (28)

oreover, if s ̸= 0, then

|
ˆRes − s
s

| ≤ {γ L
c−1 + (1 + γ2(c−1))γ L

n−1}cond(
∑

pi). (29)

roof. We have

| ˆRes − s| = | ˆRes −

PL∑
j=1

qj +
PL∑
j=1

qj − s| ≤ | ˆRes −

PL∑
j=1

qj| + |

PL∑
j=1

qj − s|. (30)

ere, using Res=SumL(q, L) and (11) yields

| ˆRes −

PL∑
j=1

qj| ≤ γ L
n−1

PL∑
i=1

|qi|, (31)

Inserting (31) into (30), we have

| ˆRes − s| ≤ |

PL∑
i=1

qi − s| + γ L
n−1

PL∑
i=1

|qi|. (32)

It follows by (17) and (19) that

|

PL∑
j=1

qj − s| = |

P∑
id=1

L∑
k=1

q(id)k −

P∑
id=1

cid∑
i=1

p(id)i | ≤

P∑
id=1

|

L∑
k=1

q(id)k −

cid∑
i=1

p(id)i |. (33)

ere, recalling that q(id)=SumL(p(id), L) and using (11), we have

|

PL∑
j=1

qj − s| ≤

P∑
id=1

(γ L
cid−1

cid∑
i=1

|p(id)i |) ≤ γ L
c−1S. (34)

urthermore, applying (13) to the right-hand side of (20) and using (18) yield
PL∑
j=1

|qj| =

P∑
id=1

(
L∑

j=1

|q(id)j |) ≤

P∑
id=1

((1 + γ2(cid−1))
cid∑
i=1

|p(id)i |) ≤ (1 + γ2(c−1))S. (35)

Inserting (35) and (34) into (32), we finally have

| ˆRes − s| ≤ {γ L
c−1 + (1 + γ2(c−1))γ L

n−1}S,

which proves (28) and divided by |s| also proves (29). □

Let L = K , divide the right term in (29) by the second term on the right in (16).

γ K
c−1 + (1 + γ2(c−1))γ K

n−1

(1 + 2uK )2uK ≈
(c − 1)K + (n − 1)K

2
. (36)

From (36) we know that the error bounds of PAccSumK are smaller than that of PSumL. The error bounds of PAccSumK
are less than PSumL because the error bounds of AccSumK are less than SumL. We can also see that the error bounds of
AccSumK have nothing to do with the number of sums n, while the error bounds of PSumL are related to n. In example
of our numerical results section, we take n = 2002, K = 7, P = 6, therefore, the second term in the error bounds of

PAccSumK is approximately 6.42 × 1022 times smaller than the error bounds of PSumL.
8
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Fig. 3. Relative error image of serial algorithm.

. Numerical results

The following parallel experiment is performed on Sugon HPC cluster with 424 compute nodes, consisting of two 14-
ore Intel(R) Xeon(R) Gold 6162 2.60 GHz processors each (28 cores per node). Nodes are connected by Intel Omni-Path
igh-speed computing network. The peak performance of the whole system is 980 Tflops/s, and the memory is 96 GB.
he OS used by the cluster is Redhat7.2. The MPI library used for this experiment is Intel MPI. Accuracy is evaluated by
elative error e = |res − s|/|s|, where res is an estimate of s. For PAccSumK, the terms Resk are non-overlapping, then
es is equal to the sum of the array elements calculated by the ordinary summation algorithm. For PSumL, we sort Resk
y magnitude and sum in decreasing order [13]. If the output of the algorithm is a floating-point number, then res is
qual to the output of the algorithm, s is the exact value calculated by the MPFR library [14] or known. When not stated
eparately, PAccSumK always takes K = 3.

.1. Example 1

We use Algorithm 4.2 in [3] to generate arbitrarily ill-conditioned sum data. First generating ill-conditioned dot product
ata, the ill-conditioned sum data length is 2n generated from the dot product data of length n, and then the algorithm
woProduct is used to convert the ill-conditioned dot product data of length n to the ill-conditioned sum data of length
n through error-free transformation. Finally, randomly disturbing 2n summation data can generate ill-conditioned sum
ata with different condition numbers. Fig. 3 is the relative error image of AccSumK and SumK. SumK is the serial version
f PSumK. In this example, we use K = 2 to complete on the MATLAB plateform. From Fig. 3 we can see that the AccSumK

algorithm is more accurate than SumK algorithm.

4.2. Example 2

We use Algorithm 6.1 in [4] to generate arbitrarily ill-conditioned sum data. Convert the ill-conditioned dot product
data into ill-conditioned sum data in the same way as in Example 1.

The following are some experimental results and analysis of experimental results.
Fig. 4 is the relative error image of different condition numbers when 4 processes and 10 processes are used, and

the summation scale is 200 and 2000 respectively. PSum is the result of parallel recursive summation algorithm [3]. The
test results show that PAccSumK has higher accuracy than PSum. For using different processes, the relative error results
of PAccSumK are almost equal so that the images overlap, and PSum is quite different for the results of using different
rocesses.
Fig. 5 is the CPU time image of the algorithm under different condition numbers when using 4 processes and 10

rocesses, and the summation scale is 200 and 2000 respectively. The PAccSumK algorithm uses more CPU time than the
Sum algorithm.
Taking the PSum algorithm as a comparison benchmark, the calculation time of the algorithm is averaged, and then

he ratio is calculated. The calculation time ratio of the PAccSumK is shown in Table 1.
9
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Fig. 4. Relative error images (left n = 200) (right n = 2000).

Fig. 5. CPU time (left n = 200) (right n = 2000).

Table 1
4 processes calculation time ratio.
Algorithm n = 200 n = 2000

PSum PAccSumK PSum PAccSumK

Time ratio 1 2.222 1 2.298

4.3. Example 3

We use the same data generation method as the ReproBLAS library [15], i.e. pi = sin(2.0∗π ∗ (i/n−0.5)), compare the
relative error and CPU time of different processes, and compare the relative error and CPU time in different input data
sizes.

Fig. 6(a) uses the process number of 2, 4, 8, 10, 16 and 20 to calculate the relative error when n = 1×10i, i = 3, . . . , 7,
the purpose is to compare the relative errors when using different number of processes. It can be seen from the image
that the PAccSumK algorithm uses different processes to obtain almost the same summation result on the same set of
summation data, so the relative error curve overlap. PSum got inaccurate results, PAccSumK obtains high-precision results.
Fig. 6(b) and (c) use process numbers of 4, 8, 10, and 20 when n = 2 × 10i, i = 3, . . . , 7 and n = 3 × 10i, i = 3, . . . , 7
calculate relative error, the purpose is to compare the relative error of the same process number on different n, the same
process number has slightly different curves on the sum data of different n. PSum got inaccurate results, PAccSumK obtains
high-precision results.

In terms of CPU time, from Fig. 7 we can observe PAccSumK algorithm takes more time than the PSum algorithm.
Taking the PSum algorithm as a comparison benchmark, the calculation time of the algorithm is averaged, and then

the ratio is calculated. The calculation time ratio of the PAccSumK is shown in Table 2.
10
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Fig. 6. Relative error image (a) n = 1 × 10i, i = 3, . . . , 7, (b) n = 2 × 10i, i = 3, . . . , 7 and (c) n = 3 × 10i, i = 3, . . . , 7.

Fig. 7. CPU time (left n = 1 × 10i, i = 3, . . . , 7) (right n = 2 × 10i, i = 3, . . . , 7).
11
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Table 2
4 processes’ calculation time ratio.
Algorithm n = 1 × 10i, i = 3, . . . , 7 n = 2 × 10i, i = 3, . . . , 7

PSum PAccSumK PSum PAccSumK

Time ratio 1 21.834 1 21.352

Table 3
Calculation time ratio.
PAccSumK n = 1 × 10i, i = 3, . . . , 7 n = 2 × 10i, i = 3, . . . , 7

p = 2 1 –
p = 4 0.510 1
p = 8 0.256 0.518
p = 10 0.207 0.403
p = 16 0.146 –
p = 20 0.130 0.254

Fig. 8. Relative error image (a) P = 4, (b) P = 6.

Table 3 shows the calculation speed of PAccSumK using different processes on n = 1 × 10i, i = 3, . . . , 7 and
n = 2 × 10i, i = 3, . . . , 7 scale sum data, n = 1 × 10i, i = 3, . . . , 7 sum data is based on the number of processes as 2,
n = 2 × 10i, i = 3, . . . , 7 sum data is based on the number of processes 4 as a benchmark to calculate the acceleration
when using other processes.

It can be seen from Table 3 that the CPU time used by the PAccSumK algorithm is approximately inversely proportional
to the number of processes used.

4.4. Example 4

We use the same ill-conditioned sum data as in Example 1
The speed-up ratio R1 and the parallel efficiency R are defined by
R1 :=

T1
TP

and R :=
R1
P .

where TP means the elapsed time in case of using P CPUs. From R1, we can see the scalability of the algorithms. If the
loating-point operations are perfectly parallelized, then it holds that

TP := C +
T1
TP
,

here C denotes the elapsed time for the parallelization overhead.
The following are some experimental results and analysis of experimental results.
Fig. 8(a) is the relative error image under different condition numbers when using 4 processes and K = 7, Fig. 8(b) is

he relative error image under different condition numbers when using 6 processes and K = 7. This experiment uses the
pi_intelmpi−2017.4.239. The test results show that PAccSumK is more accurate than the other three parallel summation
lgorithms.
Fig. 9(a) and (b) are the relative error images of PSumKwhen using mpi_mpich2−gnu−1.5 and mpi_mpich−gnu−3.3.1,

respectively. Using mpi_openmpi − gnu − 2.0.4 will get a result similar to Fig. 9(a).
Fig. 10 is the CPU time image when n = 106, P = 4, and K = 7. PAccSumK algorithm is 1.7574 times slower than

PSum algorithm. PAccSumK algorithm is 1.4140 times faster than PSumK algorithm. PAccSumK algorithm is 1.4263 times
faster than PSumL algorithm.
12
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Fig. 9. Relative error image (a) mpi_mpich2 − gnu − 1.5, (b) mpi_mpich − gnu − 3.3.1.

Fig. 10. CPU time image.

Next, we evaluate how tight the error bound for PAccSumK in Theorem 5 is in practice. To do this, we set n = 2002
and vary the condition number cond from 1 to 10140 in Algorithm 4.2 [3], the exact result of sum is equal to cond−1.
The error bounds (16) and true relative errors of the results obtained by PAccSumK for K = 2, 4, 8 in case of P = 6 are
displayed in Fig. 11. In Fig. 11, the lines labeled ‘exp.’ for each K denote the experimental error corresponding to K , the
lines labeled ‘est.’ for each K denote the error bounds (16) corresponding to K .

Finally, we evaluate the elapsed time and parallel efficiency of PAccSumK for n = 106 and n = 107. For both cases
e set cond = 1 · 10100 in Algorithm 4.2 and vary K = 7, 8, 9 in PAccSumK. The general rule to choose K is based on
16) if the condition number and the expected accuracy are known. Here, we give an example to choose K . Suppose we
alculate in double precision, we need the relative error between the approximate solution and the exact solution to meet
he machine accuracy, in this example, cond = 1 ·10100, we can calculate K ≈ 7.29. Therefore, in this example, we choose
K = 7. The elapsed times of PAccSumK for both cases are displayed in Table 4. Moreover, Figs. 12 and 13 illustrate the
scalability and the parallel efficiency of PAccSumK compared with AccSumK for n = 106 and n = 107, respectively.

From Table 4, Figs. 12 and 13, we can observe the following facts:

• As the number of processes increases, the speed-up ratio increases approximately linearly, indicating that the
PAccSumK algorithm has better scalability;

• In both scales, K = 7 has the highest speed-up ratio and parallel efficiency. Under the premise that the results can
be obtained with high accuracy, it is best to take K = 7 in this example;

5. Conclusions and future work

In this paper, we proposed the parallel algorithm for accurate sum. We proved that our proposed algorithm achieved a
result as if computed with K -fold the working precision. By the numerical experiments, we confirmed that the proposed
13
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Table 4
Elapsed time (s) of PAccSumK for n = 106 and n = 107 .
P n = 106 n = 107

K = 7 K = 8 K = 9 K = 7 K = 8 K = 9

1 0.110874 0.111125 0.110715 1.205098 1.204358 1.205449
2 0.099828 0.114573 0.123293 1.012866 1.156458 1.241574
3 0.069137 0.078671 0.084988 0.662176 0.785140 0.813300
4 0.053373 0.061192 0.065804 0.511626 0.572070 0.613447
5 0.044033 0.049782 0.053883 0.402653 0.460468 0.494046
6 0.038121 0.043568 0.045704 0.339094 0.386915 0.421356
7 0.032498 0.037115 0.040046 0.290361 0.333394 0.356951
8 0.028750 0.032369 0.034621 0.258213 0.293973 0.315831

Fig. 11. Error bounds and true relative errors of the results by PAccSumK for K = 2, 4, 8 (n = 2002, P = 6).

Fig. 12. Scalability (left) and parallel efficiency (right) of PAccSumK for n = 106 .

arallel algorithm works effectively on our computer environment. For the summation problem with large condition
umber, PAccSumK performs better than PSumK and PSumL in terms of accuracy and time. In practical applications,
arge condition number sequences often appear in the case of massive cancellation, for example, in computational
eometry [16]. In practice, the proposed algorithm frequently gives more accurate results than the theoretical error
ounds.
In the future, we plan to replace the ordinary summation and dot product of linear equations solver with high-precision

ummation and dot product in order to obtain a high-precision linear equations solver. We also plan to use AccSumK
lgorithm to obtain a parallel high-precision reproducible summation algorithm.
14
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Fig. 13. Scalability (left) and parallel efficiency (right) of PAccSumK for n = 107 .
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