
Special Issue Paper

The International Journal of High
Performance Computing Applications
2024, Vol. 38(1) 17–33
© The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420231207642
journals.sagepub.com/home/hpc

General framework for re-assuring
numerical reliability in parallel Krylov
solvers: A case of bi-conjugate gradient
stabilized methods

Roman Iakymchuk1,2, Stef Graillat3 and José I. Aliaga4

Abstract
Parallel implementations of Krylov subspace methods often help to accelerate the procedure of finding an approximate
solution of a linear system. However, such parallelization coupled with asynchronous and out-of-order execution often
makes more visible the non-associativity impact in floating-point operations. These problems are even amplified when
communication-hiding pipelined algorithms are used to improve the parallelization of Krylov subspace methods. Intro-
ducing reproducibility in the implementations avoids these problems by getting more robust and correct solutions. This
paper proposes a general framework for deriving reproducible and accurate variants of Krylov subspace methods. The
proposed algorithmic strategies are reinforced by programmability suggestions to assure deterministic and accurate
executions. The framework is illustrated on the preconditioned BiCGStab method and its pipelined modification, which in
fact is a distinctive method from the Krylov subspace family, for the solution of non-symmetric linear systems with message-
passing. Finally, we verify the numerical behavior of the two reproducible variants of BiCGStab on a set of matrices from the
SuiteSparse Matrix Collection and a 3D Poisson’s equation.

Keywords
Numerical reliability, reproducibility, accuracy, ExBLAS, PBiCGStab, pipelined PBiCGStab, HPC

1. Introduction

Solving large and sparse linear systems of equations appears
in many scientific applications spanning from circuit and
device simulation, quantum physics, large-scale eigenvalue
computations, and up to all sorts of applications that include
the discretization of partial differential equations (PDEs) as
described by Barrett and et al. (1994). In this case, Krylov
subspace methods fulfill the roles of standard linear algebra
solvers (Saad, 2003). The Conjugate Gradient (CG) method
can be considered as a pioneer of such iterative solvers
operating on symmetric and positive definite (SPD) sys-
tems. Other Krylov subspace methods have been proposed
to find the solution of more general classes of non-
symmetric and indefinite linear systems. These include
the Generalized Minimal Residual method (GMRES) by
Saad and Schultz (1986), the Bi-Conjugate Gradient (BiCG)
method by Fletcher (1976), the Conjugate Gradient Squared
(CGS) method by Sonneveld (1989), and the widely used
BiCG stabilized (BiCGStab) method by Van der Vorst
(1992) as a smoother converging version of the above
two. Moreover, preconditioning is usually incorporated in

real implementations of these methods in order to accelerate
the convergence of the methods and improve their nu-
merical features.

One would expect that the results of the sequential and
parallel implementations of Krylov subspace methods to be
identical, for instance, in the number of iterations, the in-
termediate and final residuals, as well as the sought-after
solution vector. However, in practice, this is not often the
case due to different reduction trees – the Message Passing
Interface (MPI) libraries offer up to 14 different im-
plementations for reduction, data alignment, instructions
used, etc. Each of these factors impacts the order of floating-
point operations, which are commutative but not associative,

1Umeå University, Umeå, Sweden
2Uppsala University, Uppsala, Sweden
3Sorbonne Université, CNRS, LIP6, Paris, France
4Universitat Jaime I, Castellón de la Plana, Spain

Corresponding author:
Roman Iakymchuk, Umeå University, MIT-Huset, 901 87 Umeå, Sweden.
Email: riakymch@cs.umu.se

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420231207642
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0003-2414-700X
https://orcid.org/0000-0001-8469-764X
mailto:riakymch@cs.umu.se
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420231207642&domain=pdf&date_stamp=2023-10-25

and, therefore, violates reproducibility. We aim to ensure
identical and accurate outputs of computations, including the
residuals/errors, as in our view this is a way to ensure ro-
bustness and correctness of iterative methods. In this case, the
robustness and correctness have a threefold goal: reproduc-
ibility1 of the results with the accuracy guarantee as well as
sustainable (energy-efficient) algorithmic solutions.

The implementation of Krylov subspace methods on mas-
sively parallel systems reveals their scalability problems.
Mainly, because the synchronization of global communications,
especially the reductions, delays parallel executions. The most
common solution has been the developments of
communication-avoiding and communication-hiding methods
and, also, the use of new MPI functions to hide the commu-
nications, overlapping their execution with the computation of
iterative methods. In Cools and Vanroose (2017), the authors
propose a general framework for deriving pipelined Krylov
subspace methods, in which the recurrences are reformulated to
make the parallelization easier. Again, these changes impact on
the robustness and correctness of the iterative methods.

In general, Krylov subsbpace methods are built from
three components: sparse-matrix vector multiplication Ax
(SPMV), DOT product between two vectors (x, y), and scaling
a vector by a scalar with the following addition of two
vectors ydαx + y (AXPY). If a block data distribution is
used, only AXPY is performed locally, while SPMV needs to
get some elements from the other processes, using point-to-
point or the MPI_Alltoallw() collective MPI operations,
before completing the computation, and DOT products requires
communication and computation, for example, via the
MPI_Allreduce() collective, among MPI processes.
Although SpMV has the highest amount of floating-point
operations (flops), at large scale DOT products become the
most time-consuming component of Krylov subspacemethods
due to the required global communication. This justifies the
use of pipelined versions of Krylov subspace methods.

In this paper, we aim to re-ensure reproducibility of
Krylov subspace methods in parallel environments. Our
contributions are the following:

· We propose a general framework for deriving repro-
ducible Krylov subspacemethods.We follow the bottom-
up approach and ensure reproducibility of Krylov sub-
space methods via reproducibility of their components,
including the global communication. We build our re-
producible solutions on the ExBLAS (Collange and
et al., 2015) approach and its lighter version.

· Even when applying our reproducible solutions, we
particularly stress the importance of arranging com-
putations carefully to be executed deterministically, for
example, avoid possibly replacements by compilers of
a*b + c in the favor of fused multiply-add (fma)
operation or postponing divisions in case of data ini-
tialization (i.e. divide before use). For instance, we

provide customized AXPY(-like) operations using fma,
which reduces round-offs to one or two per AXPY(-like)
operation. Furthermore, we refer to the 30-year-old but
still up-to-date guide ‘What every computer scientist
should know about floating-point arithmetic’ by
Goldberg (1991).

· We optimize the SPMV implementation by reducing the
number of elements received in each process, changing
the use of MPI_Allgatherv() to the combination of
MPI_Alltoallw(). In the reproducible versions of
dot product, we rely upon only one collective operation,
namely MPI_Allreduce(), instead of MPI_R-
educe() plus MPI_Bcast() using ExBLAS data.

· We verify the applicability and performance of the
proposed methodology on the preconditioned
BiCGStab (PBiCGStab) and the pipelined PBiCG-
Stab method. We derive two reproducible variants of
each method and test them on a set of large Sui-
teSparse matrices and a 3D Poisson’s equation.

This journal article extends our previous conference
paper (Iakymchuk et al., 2022). In particular, we include the
pipelined preconditioned BiCGStab as another test case,
optimize SpMVand reduce the number of global collectives
in reproducible versions, as well as validate the im-
plementations on larger matrices. Other information is also
added to make the paper self-contained.

This paper is structured as follows. Section 2 reviews
several aspects of computer arithmetic as well as the Ex-
BLAS approach. Section 3 proposes a general framework
for constructing reproducible Krylov subspace methods.
Section 4 introduces the PBiCGStab and the pipelined
PBiCGStab methods, describing their MPI implementation
in detail. Later, we evaluate the two reproducible im-
plementations of PBiCGStab and pipelined PBiCGStab in
Section 5. Finally, Section 6 reviews related work, while
Section 7 draws conclusions and outlines future directions.

2. Background

At first, we briefly introduce the floating-point arithmetic
that consists in approximating real numbers by numbers that
have a finite, fixed-precision representation. These are
composed of a significand, an exponent, and a sign:

x ¼ ±x0:x1…xM�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mantissa

× be, 0 ≤ xi ≤ b� 1, x0 ≠ 0,

where b is the basis (2 in our case),M is the precision, and e
stands for the exponent that is bounded (emin ≤ e ≤ emax).

The IEEE 754 standard (IEEE Computer Society
(2008)), created in 1985 and then revised in 2008 and in
2019, has led to a considerable enhancement in the reli-
ability of numerical computations by rigorously specifying

18 The International Journal of High Performance Computing Applications 38(1)

the properties of floating-point arithmetic. This standard is
now adopted by most processors, thus leading to a much
better portability of numerical applications. The standard
specifies floating-point formats, which are often associated
with precisions like binary16, binary32, and binary64, see
Table 1. Floating-point representation allows numbers to
cover a wide dynamic range that is defined as the absolute
ratio between the number with the largest magnitude and the
number with the smallest non-zero magnitude in a set. For
instance, binary64 (double-precision) can represent positive
numbers from 4.9 × 10�324 to 1.8 × 10308, so it covers a
dynamic range of 3.7 × 10631.

The IEEE 754 standard requires correctly rounded re-
sults for the basic arithmetic operations (þ, � , × , =, √,
fma). It means that they are performed as if the result was
first computed with an infinite precision and then rounded to
the floating-point format. The correct rounding criterion
guarantees a unique, well-defined answer, ensuring bit-wise
reproducibility for a single operation; but correct rounding
alone is not necessary to achieve reproducibility. Emerging
attention to reproducibility strives to draw more careful
attention to the problem by the computer arithmetic com-
munity. It has led to the inclusion of error-free transfor-
mations (EFTs) for addition and multiplication – to return
the exact outcome as the result and the error – to assure
numerical reproducibility of floating-point operations, into
the revised version of the 754 standard in 2019. These
mechanisms, once implemented in hardware, will simplify
our reproducible algorithms – like the ones used in the
ExBLAS by Iakymchuk et al. (2015), ReproBLAS by
Demmel and Nguyen (2015), OzBLAS by Mukunoki et al.
(2019) libraries – and boost their performance.

There are two approaches that enable the addition of
floating-point numbers without incurring round-off errors or
with reducing their impact. The main idea is to keep track of
both the result and the error during the course of compu-
tations. The first approach uses EFT to compute both the
result and the rounding error, storing them in a floating-
point expansion (FPE). This is an unevaluated sum of
p floating-point numbers, whose components are ordered in
magnitude with minimal overlap to cover the whole range of
exponents. Typically, FPE relies upon the use of the tra-
ditional EFT for addition that is twosum (Knuth, 1969) and
for multiplication that is twoprod (Ogita et al., 2005). The
code of these two operations are, respectively, shown in

Algorithm 1 and Algorithm 2. The second approach projects
the finite range of exponents of floating-point numbers into
a long vector so called a long (fixed-point) accumulator and
stores every bit there. For instance, Kulisch and Snyder
(2011) proposed to use a 4288-bit long accumulator for the
exact DOT product of two vectors composed of
binary64 numbers; such a large long accumulator is
designed to cover all the severe cases without overflows in
its highest digit.

Algorithm 1: Error-free transformation for the summation
of two floating-point numbers.

Algorithm 2: Error-free transformation for the product of
two floating-point numbers.

The ExBLAS project (Iakymchuk et al., 2015) is an attempt to
derive a fast, accurate, and reproducible BLAS library by
constructing amulti-level approach for these operations that are
tailored for various modern architectures with their complex
multi-level memory structures. On one side, this approach is
aimed to be fast to ensure similar performance compared to the
non-deterministic parallel versions. On the other side, the
approach is aimed to preserve every bit of information before
the final rounding to the desired format to assure correct-
rounding and, therefore, reproducibility. Hence, ExBLAS
combines together long accumulator and FPE into algorithmic
solutions as well as efficiently tunes and implements them on
various architectures, including conventional CPUs, Nvidia
and AMDGPUs, and Intel Xeon Phi co-processors (for details
we refer to Collange et al., 2015). Thus, ExBLAS assures
reproducibility through assuring correct-rounding.

The corner stone of ExBLAS is the reproducible parallel
reduction, which is at the core of many BLAS routines. The
ExBLAS parallel reduction relies upon FPEs with the
twosum EFT and long accumulators, so it is correctly

Table 1. Parameters for three IEEE arithmetic precisions.

Type Size (bits) Significand (bits) Exponent (bits) Rounding unit Range

Half 16 11 5 u = 2�11 ≈ 4.88 × 10�4
≈10±5

Single 32 24 8 u = 2�24 ≈ 5.96 × 10�8
≈10±38

Double 64 53 11 u = 2�53 ≈ 1.11 × 10�16
≈10±308

Iakymchuk et al. 19

rounded and reproducible. In practice, the latter is invoked
only once per overall summation that results in the little
overhead (less than 8%) on accumulating large vectors. Our
interest in this paper is the DOT product of two vectors,
which is a crucial fundamental BLAS operation. The EXDOT

algorithm is based on the reproducible parallel reduction
and the twoprod EFT: the algorithm accumulates the
result and the error of twoprod EFT to same FPEs and
then follows the reduction scheme. We derive its distributed
version with two FPEs underneath (one for the result and the
other for the error) that are merged at the end of compu-
tations. These and the other routines – such as matrix-vector
product, triangular solve and matrix–matrix
multiplication – are distributed in the ExBLAS library2.

3. General framework for reproducible
Krylov solvers

This section provides the outline of a general framework for
deriving a reproducible version of any traditional Krylov
subspace method. The framework is based on two main
concepts: 1) identifying the issues caused by parallelization
and, hence, the non-associativity of floating-point compu-
tations and 2) carefully mitigating these issues primarily
with the help of computer arithmetic techniques as well as
programming guidelines. The framework was implicitly
used for the derivation of the reproducible variants of the
Preconditioned Conjugate Gradient (PCG) method in
Iakymchuk et al. (2020a, 2020b).

The framework considers the parallel platform to consist
of K processes (or MPI ranks), denoted as P1, P2,…, PK. In
this framework, the coefficient matrix A is partitioned into K
blocks of rows (A1, A2, …, Ak), where each Pk stores one
row-block with the k-th distribution block Ak 2R

pk×n, and

n ¼ PK
k¼1pk . Additionally, vectors are partitioned and

distributed in the same way as A. For example, the residual
vector r is partitioned as r1, r2, …, rK and rk is stored in Pk.
Besides, scalars are replicated on all K processes.

3.1. Identifying sources of non-reproducibility

The first step is to identify sources of non-associativity and,
thus, non-reproducibility of the Krylov subspace methods in
parallel environments. As it can be verified in Figure 1, there
are four common operations as well as message-passing
communication patterns associated with them: sparse
matrix-vector product (SPMV) which requires some com-
munications, via Alltoallw collective, so that each process
has the needed elements to compute the computation, DOT

product with the Allreduce collective, scaling a vector with
the following addition of two vectors (AXPY and AXPY-like),
and the application of the preconditioner. Hence, we in-
vestigate each of them.

In general, associativity and reproducibility are not
guaranteed when there is perturbation of floating-point
operations in parallel execution. For instance, invoking
the MPI_Allreduce() collective operation cannot en-
sure the same result (its execution path) as it depends on the
data, the network topology, and the underlying algorithmic
implementation. Under these assumptions, AXPY(-like) and
SPMV are associativity-safe as they are performed locally on
local slices of data. The application of preconditioner can
also be considered safe, for example, the Jacobi pre-
conditioner, until all operations are reduction-free; more
complex preconditioners will certainly raise an issue. Thus,
the main issue of non-determinism emerges from parallel
reductions (steps S2, S6, and S7 in Figure 1).

3.2. Re-assuring reproducibility

We construct our approach for reassuring reproducibility by
primarily targeting DOT products and parallel reductions.
Note that the non-deterministic implementation of the
Krylov subspace method utilizes the DOT routine from a
BLAS library like Intel MKL followed by MPI_Allre-
duce(). Thus, we propose to refine this procedure into
three steps:

· exploit the ExBLAS and its lighter FPE-based ver-
sions to build reproducible and correctly rounded DOT

products;
· extend the ExBLAS- and FPE-based DOT products to

distributed memory by employing MPI_Allre-
duce(). This collective acts on either long accu-
mulators or FPEs. For the ExBLAS approach, we
apply regular reduction, since the long accumulator is
an array of long integers. Note that we may need to
carry an extra intermediate normalization after the
reduction of 2*2K�1 long accumulators, where K =
64� 52 = 12 is the number of carry-safe bits per each
digit of the long accumulator. For the FPE approach,
we define the MPI operation that is based on the
twosum EFT. Thus, at this point, the choice of the
reduction algorithm underneath MPI_Allre-
duce() does not have an impact on the computa-
tions as every bit of information is stored;

· rounding to double: for long accumulators, we use the
ExBLAS-native Round() routine. To guarantee
correctly rounded results of the FPE-based compu-
tations, we employ the NearSum algorithm from
Rump et al. (2008). It is worth mentioning that the
rounding operation is performed locally and does not
require any communication. In the previous versions
of the code as in Iakymchuk et al. (2022), we split the
reduction into three steps: MPI_Reduce(),
rounding, and MPI_Bcast(). However, this is
negligible as we re-assure control of the reduction

20 The International Journal of High Performance Computing Applications 38(1)

operation and, hence, eliminate the performance
penalty of using two collectives with one extra
synchronization.

It is evident that the results provided by ExBLAS DOT

are both correctly rounded and reproducible. With the
lightweight DOT, we aim also to be generic and, hence, we
provide the implementation that relies on FPEs of size
eight with the early-exit technique. This way the working
precision of the computations using FPEs is increased up
to 8*52 bits as mentioned in Hida et al. (2001) for the
double-double arithmetic. Additionally, we add a check
for the FPE-based implementations to cover a case
when the condition number and/or the dynamic range
are too large and we cannot keep every bit of information.
Then, the warning is thrown, containing also a suggestion
to switch to the ExBLAS-based implementation. But,
note that these lightweight implementations are designed
for moderately conditioned problems or with moderate
dynamic range in order be accurate, reproducible, but
also high performing, since the ExBLAS version can be
very resource demanding, especially on the small core
count. To sum up, if the information about the problem is
known in advance, it is worth pursuing the lightweight
approach.

3.3. Programmability effort

It is important to note that compiler optimization and es-
pecially the usage of the fused-multiply-and-add (fma)
instruction, which performs a*b + c with the extended
precision and the single rounding at the end, may lead to
some non-deterministic results. For instance, in the SPMV

computation, each MPI rank computes its dedicated part dk
of the vector d by multiplying a block of rows Ak by the
vector p. Since the computations are carried locally and
sequentially, they are deterministic and, thus, reproducible.
However, some parts of the code like a*b + c*d*e and a + =

b*c – present in the original implementation of
PBiCGStab – may not always yield to the same result
(Wiesenberger et al., 2019). This is due to the fact that, for
performance reasons, the C++ language standard allows
compilers to change the execution order of this type of
operation. It also allows merging multiplications and
summations with fused multiply-add (fma) instructions.
Hence, a compiler might translate a*b + c*d to two mul-
tiplications t1 = a*b and t2 = c*d, and a subsequent
summation t1 + t2; it might generate a single multiplication
t = c*dwith a subsequent fma(a, b, t), which gives a slightly
different result; or it may even compute t = a*b first and then
use the fma(c, d, t). Thus, we advise to instruct compilers to
use fma explicitly via std::fma in C++ 11, assuming the
underlying architecture supports fma.

Another important observation is to carefully perform
divisions and initialization of data. For instance, the choice
of b in the Krylov solvers is the value b = Ad, with

d ¼ 1=
ffiffiffiffi
N

p ð1,…, 1ÞT . In this case, we suggest to compute

b = Ad for d = (1,…,1)T first and then scale b by 1=
ffiffiffiffi
N

p
, as we

observed a slightly faster convergence (up to 7%) for the
Krylov solver.

4. Reproducible BiCGStab

The classic Biconjugate Gradient Stabilized method
(BiCGStab) by Van der Vorst (1992) was proposed as a fast
and smoothly converging variant of the BiCG (Fletcher,
1976) and CGS (Sonneveld, 1989) methods. We present
here the preconditioned BiCGStab (PBiCGStab) and the
pipelined preconditioned BiCGStab (p-PBiCGStab), their
design and implementation with Message Passing Interface
(MPI).

For both methods, we consider a linear system Ax = b,
where the coefficient matrix A2R

n×n is sparse with nz
nonzero entries; b2R

n is the right-hand side vector; and
x2R

n is the sought-after solution vector.

Figure 1. Preconditioned conjugate gradient method with annotated BLAS kernels and message-passing communication.

Iakymchuk et al. 21

Additionally, and for simplicity, we integrate the Jacobi
preconditioner (Saad (2003)) in our implementations, which
is composed of the diagonal elements of the matrix (M =
diag(A)). In consequence, the application of the precondi-
tioner is conducted on a vector and requires an element-wise
multiplication of two vectors.

4.1. Message-passing parallel PBiCGStab
implementation

The algorithmic description of the classical iterative
PBiCGStab is presented in Figure 2. The loop body consists
of two SPMV (S2 and S6), two preconditioner applications
(S1 and S5), five DOT products (S3, S7, S10, and S11), six
AXPY(-like) operations (S4, S8, S9, and S12), and a few
scalar operations (Barrett and et al. (1994)).

As described in Section 3, the framework includes a
reproducible implementation of the most common opera-
tions in a parallel implementation of a Krylov subspace
method. Therefore, we next perform a communication and
computation analysis of a message-passing implementation
of the PBiCGStab solver. From there, we derive the re-
producible version by following the guide from Section 3.

For clarity, hereafter we will drop the superindices that
denote the iteration count in the variable names. Thus, for
example, xj becomes x, where the latter stands for the
storage space employed to keep the sequence of approxi-
mations x0, x1, x2,… computed during the iterative process.
Taking into account these previous considerations, we
analyze the different computational kernels (S1–S12) that

compose the loop body of a single PBiCGStab iteration in
Figure 2.

4.1.1. Sparse matrix-vector product (S2, S6). This kernel
needs as input operands: the coefficient matrix A, which is
distributed by blocks of rows, and the corresponding vector
(bp or bq), which is partitioned and distributed using the same
partitioning as A. For simplicity, we just explain below how
S2 is computed.

In theory, prior to computing this kernel, we would
need to obtain a replicated copy of the distributed vector bp
in all processes using MPI_Allgatherv(), denoted as
bp→ e, so that vector e would be the only array that is
replicated in all processes. But not all elements of e are
required in all processes to compute the local SPMV, only
those column indexes which are in the Ak and are not in
bpk , denoted as ek. Therefore, the communication pattern is
defined by the matrix pattern and the matrix distribution,
whereas the gathering of ek can be done using
MPI_Alltoallw(). As the matrix pattern and distri-
bution are not changed within the loop, the communi-
cation structures can be defined before the loop,
simplifying the communication step.

The computation can then proceed in parallel, yielding
the vector result s in the expected distributed state with no
further communication involved. At the end, each MPI
process owns the corresponding piece of the computed
vector. To ensure the reproducibility of this computation,
the local DOT products between the sparse rows of bAk and ek
are based on fma as outlined in 3.3.

Figure 2. Formulation of the PBiCGStab solver annotated with computational kernels and communication. The threshold τmax is an
upper bound on the relative residual for the computed approximation to the solution. In the notation, h�, �i computes the DOT (inner)
product of its vector arguments.

22 The International Journal of High Performance Computing Applications 38(1)

4.1.2. DOT products (S3, S7, S10, S11). The next kernel in the
loop body is the DOT product in the step S3 between the
distributed vectors r0 and s. Here, each process can compute
concurrently a partial result Pk : ρk ¼ hr0k , ski and when all
processes have finished this partial computation, these in-
termediate values have to be reduced into a globally-
replicated scalar αdσ/(ρ1 + ρ2 + / + ρK). We can apply
the same idea to the DOT products in the steps S7, S10, and
S11, yielding a total of five process synchronizations (inMPI,
via MPI_Allreduce()) since all scalars are globally-
replicated. But, the number of synchronization can be re-
duced to four, considering that communications in S10 and
S11 can be merged in a single MPI_Allreduce().

The easiest solution to compute ρk is to call to the DOT routine
from the Intel MKL or similar libraries, however this will not
guarantee reproducibility even when fma are used internally.
Thus, we enforce reproducibility by applying our twoExBLAS-
based strategies, following the guideline as in Section 3.2.

AXPY(-like) vector updates (S4, S8, S9, S12): The next
kernel is the AXPY-like kernel in the step S4, which involves
the distributed vectors q, r, s and the globally-replicated
scalar α. The operations in the steps S8, S9, and S12 follow
the same idea because all scalars are globally-replicated. In
this type of kernels, all processes can perform their local
parts of the computation to obtain the result without any
communication: Pk: qk = rk � α sk.

While AXPY(y = αx + y) can directly rely on the MKL
library routine, AXPY-like (z = αy + x) requires, at least, two
routines in order to be implemented (SCAL/COPY + AXPY).
Looking for a robust and correct solution, the use of MKL
routines is a bad alternative since each one introduces a
rounding error. Additionally, this alternative is more ex-
pensive because some vector must be traversed more than
once. Instead, we propose to rely on fma that computes
each element of the solution of both axpy and axpy-like with
a single rounding and only one pass through the vectors.
Therefore, in the reproducible versions, we provide our own
implementations for SPMV, AXPY, and AXPY-like (do not rely
on any external BLAS libraries) and, hence, have the overall
control of computations, assuring their correct rounding and
reproducibility.

4.1.3. Application of the preconditioner (S1, S5). The kernel in
the step S1 consists of applying the Jacobi preconditioner
M, scaling the vector p by the diagonal of the matrix.
Therefore, it can be executed in parallel by all processes
because each of them stores a different set of the diagonal
elements (those related with the piece of the matrix that it
stores) and the corresponding set of the vector elements:
Pk :bpk ¼ M�1

k pk . The same procedure can be applied on the
step S5 to scale the vector q, resulting in bq.

There is no routine in the MKL library to implement the
element-wise product of two vector, therefore, an ad hoc

implementation has to be done. Reproducibility is ensured if
this code is based on fma and the order of operations is
deterministic as mentioned in Section 3.3.

4.2. Message-passing parallel p-PBiCGStab
implementation

Cools and Vanroose (2017) propose two main steps for
deriving the pipelined version of a Krylov subspace method:

· Communication-avoiding: In which the number of
global communications is reduced, rearranging the
original recurrences. Usually more terms appear in
the new recurrences and, therefore, there are more
vector operations.

· Hiding communications: Since global communica-
tions are the most time-consuming component of
Krylov subspace methods at large scale, the alter-
native to reduce their impact on the performance of
parallel implementations is their simultaneous exe-
cution (overlapping) with SPMV. This technique is
implemented using non-blocking collectives, such as
MPI_Iallreduce(), which require the use of
MPI_Wait() to check when the communication is
complete.

The algorithmic description of the pipelined precondi-
tioned BiCGStab (p-PBiCGStab) is presented in Figure 3.
The loop body consists of two SPMV (S10 and S18), two
preconditioner applications (S9 and S17), six DOT products
(S8 [S11 and S16 [S19), 18 AXPY/AXPY-like operations
(S1-S7 and S12-S15), and a few scalar operations (Cools and
Vanroose (2017)). It is worth mentioning that the pipelined
PBiCGStab may show different convergence behavior
compared to the standard PBiCGStab due to the different
way floating-point operations are performed and, thus, the
round off errors are propagated and accumulated differently.

The analysis of the computational kernels of the algo-
rithm is very similar to the described above for the paral-
lelization of PBiCGStab in Section 4.1. The only difference
is how the DOT products are implemented.

4.2.1. DOT products (S8 [S11, S16 [S19). Although, there
are six DOT in Figure 3, only two global synchronizations are
required because more than one reduction is complete in
each step. Therefore, before the synchronization is initiated,
the partial result related to the corresponding reductions has
to be computed locally in each process. Then, obtained
values are stored in local vectors which are used to compute
the global values using collectives. The overlapping re-
quires the use of non-blocking collectives which decompose
each reduction in two steps: the first step (S8 and S16)
properly executes MPI_Iallreduce() starting the

Iakymchuk et al. 23

global communication, which continues while other steps
are performed, for example, S9 and S10. When the global
values have to be used, the second step has to be done,
calling MPI_Wait(), since execution can only continue if
the global communication is completed. We follow here the
‘golden rule’ of the non-blocking communication – start as
soon as the data are available and wait right before they are
needed.

5. Experimental results

In this section, we report a variety of numerical experiments
to examine the convergence, scalability, accuracy, and re-
producibility of the original and two reproducible versions
of PBiCGStab and p-PBiCGStab. In our experiments, we
employed IEEE754 double-precision arithmetic and con-
ducted them on the dual Intel Xeon Gold 6240R CPU
@2.4GHz nodes with 48 cores and 384GB of memory each
at Fraunhofer ITWM. Nodes are connected with the HDR
Infiniband.

5.1. Evaluation on the suitesparse matrices

We carried out tests on a range of different linear systems
from the SuiteSparse matrix collection on a single node
using 2, 8, 16, 32, and 48 (full) cores. Table 2 lists a set of
tested matrices with the number of rows/columns N and the
number of nonzeros nnz. We aim to show the reproduc-
ibility, accuracy, and performance of our algorithmic im-
plementations on matrices with various loads, that is,
number of nonzeros, as well as complexities. The right-hand
side vector b in the iterative solvers was always initialized to
the product Ad, d ¼ 1=

ffiffiffiffi
N

p ð1,…, 1ÞT , where N is the
number of rows/columns of A. However, in both ExBLAS-
and FPE-based versions, marked as ReproPBiCGStab in the
table, we computed b = Ad, d = (1,…,1)T and then scaled b

by 1=
ffiffiffiffi
N

p
. In all implementations, iterations were started

with the initial guess x0 = 0. The parameter that controls the
convergence of the iterative process is krjk2/kr0k2 ≤ 10�6.
We want to specify that krjk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðrj, rjÞjp
since some

works use krjk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðr0, rjÞjp

.

Figure 3. Formulation of the pipelined PBiCGStab solver annotated with computational kernels and communication. The threshold
τmax is an upper bound on the relative residual for the computed approximation to the solution. In the notation, h�, �i computes the Dot
(inner) product of its vector arguments.

24 The International Journal of High Performance Computing Applications 38(1)

Table 2 reports the number of required iterations to reach
the stopping criterion as well the final true residual for
PBiCGStab and ReproPBiCGStab; the latter marks both
ExBLAS- and FPE-based variants as they report identical
results independently from the number of cores/MPI pro-
cesses used. We also report the initial residual (kr0k2) which
can serve as an indicator in combination with the final true
residual of how the convergence unfolds. For the original
version, we display the number of iterations on one (iter1)
and 32 cores (iter32) as they differ. In fact, there is a
variability of the results between the other core counts too.
Notably, the two reproducible variants show a tendency to
deliver more reliable accuracy of the approximate result (the
final true residual) and/or converge faster. For instance, the
reproducible variants require significantly less iterations for
the vas_stokes_2M, orsreg_1, rdb3200L, Transport,
tmt_unsym matrices. The reproducible variants are slightly
slower for only two matrices, namely ML_Geer and at-
mosmodj. For the other matrices, mostly symmetric ma-
trices, the results are comparable between reproducible and

non-reproducible versions in terms of the number of iter-
ations; however, there is a fluctuation in the final true re-
sidual for the original non-deterministic version.

The table also reports the overhead of the reproducible
versions against the original non-deterministic version as
the normalized mean time on 48 MPI processes. The two
reproducible versions perform well with the overhead under
3x for the majority of the test matrices. The FPE version
generally shows better performance than the ExBLAS
version: one third of the test matrices show the overhead
under 2x.

Table 3 shows similar results for the non-deterministic
pipelined PBiCGStab and its reproducible variants. The
tendency of reproducible variants to converge faster and to
deliver more reliable accuracy is preserved. For instance,
the reproducible variants require a lower number of itera-
tions for five matrices: atmosmodl, atmosmodm, atmos-
modd, orsreg_1, tmt_unsym, and ML_Geer. The
reproducible variants require more iterations for four ma-
trices. It is not unusual for rounding errors to cancel in stable

Table 2. Convergence of the PBiCGStab and its reproducible versions (ReproPBiCGStab, identical results reported for both) on
a set of the SuiteSparse matrices. The initial guess is x0 = 0. The number of iterations required to reach the tolerance of 10�6 on the scaled
residual, i.e. krjk2/kr0k2, is reported along with the corresponding true residual kb� Axjk2. iterX stands for runs on X MPI processes. The
last two columns show the overhead of the reproducible versions with 48 cores/MPI processes, for example, 1.09x for the add32 matrix.

Matrix Prec N nnz kr0k2

PBiCGStab ReproPBiCGStab

iter1 iter32 kb � Axjk2 iter kb � Axjk2 FPE ExBLAS

af_shell10 Jac 1,508,065 52,259,885 1.48e+05 9 9 2.18e-02 9 2.18e-02 2.71 3.30
atmosmodd Jac 1,270,432 8,814,880 3.75e+03 221 230 2.68e-03 222 9.55e-04 3.48 4.06
atmosmodj Jac 1,270,432 8,814,880 3.75e+03 220 227 3.46e-03 229 3.25e-03 3.64 4.34
atmosmodl Jac 1,489,752 10,319,760 1.85e+04 133 130 1.80e-02 132 1.68e-02 2.69 3.07
atmosmodm Jac 1,489,752 10,319,760 3.50e+05 77 77 2.43e-01 75 2.41e-01 3.15 3.62
audikw_1 Jac 943,695 77,651,847 1.58e+07 11 11 8.14e+00 11 8.04e+00 1.63 1.89
bone010 Jac 986,703 47,851,783 8.55e+03 12 12 5.91e-03 12 5.91e-03 2.34 2.36
boneS10 Jac 914,898 40,878,708 7.17e+03 12 12 3.92e-03 12 3.92e-03 2.39 2.20
Bump_2911 Jac 2,911,419 127,729,899 1.91e+14 12 12 1.82e+08 12 1.82e+08 2.97 3.13
cage14 Jac 1,505,785 27,130,349 1.00e+00 5 5 1.55e-07 5 1.55e-07 1.88 2.01
cage15 Jac 5,154,859 99,199,551 1.00e+00 6 6 1.12e-07 6 1.12e-07 1.82 2.06
circuit5M_dc Jac 3,523,317 14,865,409 1.02e+04 5 5 6.52e-03 5 6.52e-03 3.27 3.45
CurlCurl_3 Jac 1,219,574 13,544,618 2.42e+10 17 17 2.14e+04 17 2.14e+04 2.56 3.09
CurlCurl_4 Jac 2,380,515 26,515,867 2.10e+10 19 19 1.18e+04 19 1.18e+04 3.12 3.60
ecology1 Jac 1,000,000 4,996,000 1.96e+01 8 8 8.77e-06 8 9.66e-06 3.04 3.64
ecology2 Jac 999,999 4,995,991 1.96e+01 8 9 7.38e-06 8 9.67e-06 2.60 2.84
Hardesty1 Jac 938,905 12,143,314 9.99e+00 17 19 9.28e-06 19 4.60e-06 4.02 4.82
ML_Geer Jac 1,504,002 110,686,677 4.89e+02 2886 2889 2.83e-04 3060 1.19e-04 2.71 2.69
orsreg_1 Jac 2,205 14,133 4.83e+00 225 231 4.26e-06 210 4.68e-06 1.01 0.82
Queen_4147 Jac 4,147,110 316,548,962 1.94e+14 52 51 6.81e+07 51 7.80e+07 2.12 2.43
rdb3200L Jac 3,200 18,880 9.96e+00 641 610 9.90e-06 583 3.17e-06 0.92 0.83
s3dkq4m2 Jac 90,449 4,427,725 6.08e+02 23 23 7.27e-05 23 7.27e-05 1.66 1.84
tmt_Unsym Jac 917,825 4,584,801 6.45e-06 6489 5969 9.34e-12 5388 1.20e-11 3.29 4.63
Transport Jac 1,602,111 23,487,281 2.45e-02 561 592 2.35e-08 557 1.74e-08 2.65 3.08
vas_Stokes_2M Jac 2,146,677 65,129,037 4.19e-01 6411 7352 3.34e-07 6664 3.49e-07 1.60 3.09

Iakymchuk et al. 25

algorithms (see Higham (2002), e.g. page 19) yielding faster
convergence of the method. As a consequence, it may
happen that a computation with more precision takes more
time to converge than a one with less precision. With the
pipelined PBiCGStab, we were able to converge to the
approximate solution of vas_stokes_2M under the tolerance
of 10�6. When the required tolerance is increased to, for
example, 10�8 or higher, the pipelined methods may not
converge for vas_stokes_2M, ML_Geer, and tmt_unsym.
We leave this as a future work and foresee to investigate this
correlation between the requested accuracy and the abilities
of the solvers, potentially employing some healing tech-
niques like residual replacement as well as more advanced
preconditioners.

In addition, the table exhibits the overhead of the re-
producible pipelined BiCGStab variants against the original
version on 48 MPI processes. The two reproducible ver-
sions show the overhead of 3x for most of the tested
SuiteSparse matrices. As for the standard BiCGStab

method, the FPE version generally shows better perfor-
mance than the ExBLAS: three quarters of the cases exhibit
the overhead under 3x; for the rest, the overhead never
exceeds 4x.

Figure 4 presents the convergence history in terms of the
residual computed at every iteration of both the standard and
pipelined PBiCGStab methods. The depicted two matrices,
namely orsreg_1 and tmt_unsym, represent the beneficial
scenarios for the reproducible variants, when they reach the
approximate solution in significantly less iterations than
their non-deterministic variants. In fact, these results
demonstrate a sort of desired scenario when the repro-
ducible variants converge to the solution faster despite
yielding more costly computations per each iteration. In the
case of these two matrices, which may not be generic, the
standard and pipelined PBiCGStab non-deterministic var-
iants require more iterations on various MPI processes.
Moreover, the number of iterations to reach the approxi-
mation of the solution fluctuates significantly among runs of

Table 3. Convergence of the pipelined PBiCGStab and its reproducible versions (p-ReproPBiCGStab, identical results reported
for both) on a set of the SuiteSparse matrices. The initial guess is x0 = 0. The number of iterations required to reach the tolerance of 10�6

on the scaled residual, that is, krjk2/kr0k2 is reported along with the corresponding true residual kb� Axjk2. iterX stands for runs on XMPI
processes. The last two columns show the overhead of the reproducible versions with 48 cores/MPI processes, for example, 1.07x for
the add32 matrix.

Matrix Prec N nnz kr0k2

p-PBiCGStab p-ReproPBiCGStab

iter1 iter32 kb � Axjk2 iter kb � Axjk2 FPE ExBLAS

af_shell10 Jac 1,508,065 52,259,885 1.48e+05 9 9 2.18e-02 9 2.18e-02 2.38 2.81
atmosmodd Jac 1,270,432 8,814,880 3.75e+03 222 223 2.95e-03 222 9.56e-04 3.22 3.88
atmosmodj Jac 1,270,432 8,814,880 3.75e+03 220 227 3.36e-03 229 3.03e-03 3.22 3.96
atmosmodl Jac 1,489,752 10,319,760 1.85e+04 140 138 1.76e-02 134 1.82e-02 3.15 3.73
atmosmodm Jac 1,489,752 10,319,760 3.50e+05 77 78 2.08e-01 77 2.25e-01 2.85 3.38
audikw_1 Jac 943,695 77,651,847 1.58e+07 11 11 8.10e+00 11 8.05e+00 1.95 2.15
bone010 Jac 986,703 47,851,783 8.55e+03 12 12 5.91e-03 12 5.91e-03 2.23 2.51
boneS10 Jac 914,898 40,878,708 7.17e+03 12 12 3.92e-03 12 3.92e-03 2.70 2.47
Bump_2911 Jac 2,911,419 127,729,899 1.91e+14 12 12 1.82e+08 12 1.82e+08 3.09 3.38
cage14 Jac 1,505,785 27,130,349 1.00e+00 5 5 1.55e-07 5 1.55e-07 2.13 2.51
cage15 Jac 5,154,859 99,199,551 1.00e+00 6 6 1.12e-07 6 1.12e-07 1.82 2.09
circuit5M_dc Jac 3,523,317 14,865,409 1.02e+04 5 5 6.52e-03 5 6.52e-03 2.77 3.28
CurlCurl_3 Jac 1,219,574 13,544,618 2.42e+10 17 17 2.14e+04 17 2.14e+04 2.65 3.06
CurlCurl_4 Jac 2,380,515 26,515,867 2.10e+10 19 19 1.18e+04 19 1.18e+04 3.07 3.63
ecology1 Jac 1,000,000 4,996,000 1.96e+01 9 8 9.90e-06 8 9.56e-06 3.08 3.52
ecology2 Jac 999,999 4,995,991 1.96e+01 8 8 1.08e-05 9 1.07e-05 3.75 4.60
Hardesty1 Jac 938,905 12,143,314 9.99e+00 17 18 5.13e-06 19 6.11e-06 2.72 3.38
ML_Geer Jac 1,504,002 110,686,677 4.89e+02 2426 3707 5.64e-02 2903 5.91e-02 1.34 1.55
orsreg_1 Jac 2,205 14,133 4.83e+00 239 249 4.80e-06 176 4.17e-06 1.29 1.20
Queen_4147 Jac 4,147,110 316,548,962 1.94e+14 52 51 1.08e+08 50 1.38e+08 2.18 2.44
rdb3200L Jac 3,200 18,880 9.96e+00 671 634 4.53e-06 660 8.81e-06 1.20 1.30
s3dkq4m2 Jac 90,449 4,427,725 6.08e+02 23 23 7.33e-05 23 7.27e-05 1.84 1.98
tmt_Unsym Jac 917,825 4,584,801 6.45e-06 6641 6794 9.76e-06 5148 1.48e-09 3.40 4.12
Transport Jac 1,602,111 23,487,281 2.45e-02 580 582 2.45e-08 587 2.31e-08 2.67 3.15
vas_Stokes_2M Jac 2,146,677 65,129,037 4.19e-01 6880 6408 2.77e-07 6503 4.23e-07 2.03 2.21

26 The International Journal of High Performance Computing Applications 38(1)

the same non-deterministic variant on a different process
count.

Figure 5 demonstrates the strong scalability results –

when the problem is fixed but the number of allocated
resources varies – for the original and both ExBLAS- and
FPE-based standard and pipelined PBiCGStab variants on
the Queen_4147 matrix. The figures in the left column
report the mean execution time for the entire loop of the
solver among five samples, while the figures in the right
column show the performance overhead of the reproducible
versions. We select the Queen_4147 due to the large number
of nonzero elements, 316 millions. As we observed, the
smaller number of nonzeros leads to the worse scalability,
especially on the large core count, and higher overhead for
reproducible variants, but never more than 8x. For small
matrices like orsreg_1, a lower number of cores is a pref-
erable option to reach an approximation to the solution with
the sustainable resource utilization. In these experiments,
MPI communication is performed within a node, most likely

being exposed to intra-node communication via shared
memory. All variants show good scalability results for
Queen_4147 with 28x (24x), 29x (29x), and 31x (31x)
speed up on 48 MPI processes, when compared to the one
process runs, for the original, FPE, and ExBLAS variants of
the standard PBiCGStab (pipelined PBiCGStab), respec-
tively. The reproducible variants demonstrate higher/better
speedup due to extra floating-point operations. The over-
head of the ExBLAS and FPE variants compared to the
standard variant is reduced to nearly 2.5x and 2.3x, ac-
cordingly, on 48 MPI processes; the pipelined versions
exhibit slightly higher overhead on the small core count.
The scalability on the other matrices from Tables 2 and 3
shows variable patterns and overhead.

Note that the average execution time per loop for many
matrices from Tables 2 and 3 is not sufficient for distributed
memory computations. This is due to the fact that the
potential performance gain from extra nodes is demolished
by communication.

Figure 4. Residual history of the standard PBiCGStab and its reproducible variants (first row), and the pipelined PBiCGStab and its
reproducible variants (second row); orsreg_1 results are shown in the first column, while tmt_unsym in the second column, see
Table 2 for details on matrices. Note that the last iteration is not shown.

Iakymchuk et al. 27

5.2. Scalability

We leverage a sparse SPD coefficient matrix arising from
the finite-difference method of a 3D Poisson’s equation with
27 stencil points. We perturb the matrix with the values
1.0 � 0.0001 below the central point to create the un-
symmetric 27-point stencil aka the e-type model (Cools and
Vanroose, 2017). Given that the theoretical cost of
PBiCGStab is tc ≈ 4nnz + 26n floating-point arithmetic
operations, where nnz denotes the number of nonzeros of
the original matrix and its size n, the execution time of the
method is usually dominated by that of the SPMV kernel.
Therefore, in order to analyze the weak scalability of the
method, we maintain the number of nonzero entries per
node. For this purpose, we modified the original matrix,
transforming it into a band matrix, where the lower and
upper bandwidths (bandL and bandU, respectively) depend
on the number of nodes employed in the experiment as
follows:

bandL ¼ bandU ¼ 100 ×#nodes →

nnz ¼ ðbandLþ bandU þ 1Þ× n:
With 32 nodes, the bandwidth ranges between 100 and
3200. With this approach we can then maintain the number
of rows/columns of the matrix equal to n=4M (4,019,679),
while increasing its bandwidth and, therefore, the compu-
tational workload proportionally to the hardware resources,
as required in a weak scaling experiment.

The right-hand side vector b in the iterative solvers was
always initialized to the product of A with a vector con-
taining ones only; and the PBiCGStab iteration was started
with the initial guess x0 = 0. The parameter that controls the
convergence of the iterative process was set to 10�6.

Figure 6 reports the results of both strong and weak
scaling for the reproducible variants against the original
version. For the strong scaling, we fix the problem to 64M
nonzeros and vary the number of nodes/cores used, while

Figure 5. Strong scaling results of the standard PBiCGStab and its reproducible variants (first row), and the pipelined PBiCGStab and its
reproducible variants (second row) for the Queen_4147 matrix, see Table 2; plots in the first column report the measure time, while
plots in the second show the overhead.

28 The International Journal of High Performance Computing Applications 38(1)

for the weak scaling the work load per node is kept constant
as 4M nonzeros by varying the bandwidth with respect to
the number of nodes involved; presumably, there is enough
load to hide the impact of communication. We select median
time among five runs to limit the impact of the outliers. We
run the tests within a single allocation for 32 nodes to make
sure that there is no additional unnecessary perturbations to
the measured time. For the strong scaling tests, the standard
and pipelined PBiCGStab variants show a similar conver-
gence behavior. However, for the standard variants the
global reductions are not overlapped with computations and
may show higher overhead in case of the FPE reproducible
version due to a more complex reduction operation. For the
standard reproducible versions, the overhead on 32 nodes is
37.8% and 40.2% for the FPE and ExBLAS versions, ac-
cordingly. For the pipelined reproducible versions, the
performance penalties are similar with 38.0% for the FPE
version and 35.9% for the ExBLAS. The weak scalability
experiments show expected behavior with the slightly de-
clining line of the execution time and the overheads
around 35%.

5.3. Accuracy and reproducibility

In addition, we derive a sequential version of the
PBiCGStab as in Figure 2 that relies on the GNU Multiple
Precision Floating-Point Reliably (MPFR) library (Fousse
and et al. (2007)) – a C library for multiple (arbitrary)
precision floating-point computations on CPUs – as a highly
accurate reference implementation. This implementation
uses 2048 bits of accuracy for computing DOT products,
192 bits for internal element-wise product, and performs
correct rounding of the computed result to double precision.

Table 4 reports the intermediate and final (except from
the original version that takes longer) scaled residual on
each iteration of the PBiCGStab solvers for the
orsreg_1 matrix, as in Table 2, under the tolerance of 10�6

on eight MPI processes. We also add the results of the
original code on one core/process to highlight the repro-
ducibility issue. The results are presented with all digits
using hexadecimal representation. We report only few it-
erations, however the difference is present on all iterations.
The sequential MPFR version of PBiCGStab confirms the

Figure 6. Strong (top row) and weak (bottom row) scalability of the reproducible PBiCGStab variants; the standard PBiCGStab results
are shown in the left column of plots, while the pipelined PBiCGStab results in the right column.

Iakymchuk et al. 29

accuracy and reproducibility of parallel ExBLAS and FPE
variants by reporting identical number of iterations, interme-
diate residuals, and both the final true and initial scaled re-
siduals. However, the MPFR variant of PBiCGStab converges
to the approximate solution in 4.04e-01 s, while the ExBLAS
and FPE variants take 3.94e-02 and 3.33e-02 s (10.24x and
12.14x faster), accordingly, on eight MPI processes; the
overhead of MPFR is 2.14x and 2.68x for ExBLAS and FPE
using one MPI process. The original version of PBiCGStab
shows the discrepancy from few digits on the initial iteration
and up to almost the entire number on the final iterations; the
count of required iterations also differs from the reproducible
and MPFR variants.

We extend our study of accuracy and reproducibility to
provide more details on the execution time of the MPFR
version of PBiCGStab by comparing it against the two
reproducible versions, namely, FPE and ExBLAS. Table 5
reports the execution time of the MPFR version and its
overhead against the FPE and ExBLAS version on a set of
SuiteSparse matrices. On a single process, the MPFR
version generally requires 2x more time. This gap grows
with the number of parallel resources used. For instance, on
16 cores/MPI processes, the MPFR overhead can be as large
as 40x compared to the FPE version with the identical
accuracy of both. However, the reproducible versions are
not only the faster way for accurate and reproducible
computations (e.g. for numerical verification), but also they
are as accurate as the MPFR implementation of PBiCGStab.

6. Related work

To enhance reproducibility, Intel proposed the ‘Conditional
Numerical Reproducibility’ (CNR) option in its Math
Kernel Library (MKL). Although CNR guarantees repro-
ducibility, it does not ensure correct rounding, meaning the
accuracy is arguable. Additionally, the cost of obtaining
reproducible results with CNR is high. For instance, for

large arrays the MKL’s summation with CNRwas almost 2x
slower than the regular MKL’s summation on the Mesu
cluster hosted at the Sorbonne University (Collange and
et al., 2015).

Demmel and Nguyen (2013, 2015) implemented a
family of algorithms – that originate from the works by
Rump et al. (2010, 2008) – for reproducible summation in
floating-point arithmetic. These algorithms always return
the same answer. They first compute an absolute bound of
the sum and then round all numbers to a fraction of this
bound. In consequence, the addition of the rounded
quantities is exact; however, the computed sum using their
implementations with two or three bins is not correctly
rounded. Their results yielded roughly 20% overhead on
1024 processors (CPUs only) compared to the Intel MKL
dasum(), but it shows 3.4 times slowdown on 32 pro-
cessors (one node). Ahrens, Nguyen, and Demmel extended
their concept to few other reproducible BLAS routines,
distributed as the ReproBLAS library (http://bebop.cs.
berkeley.edu/reproblas/), but only with parallel reproduc-
ible reduction. Furthermore, the ReproBLAS effort was
extended to reproducible tall-skinny QR (Nguyen and
Demmel (2015)).

The other approach to ensure reproducibility is called
ExBLAS, which is initially proposed by Collange et al.
(2015). ExBLAS is based on combining long accumulators
and floating-point expansions in conjunction with error-free
transformations. This approach is presented in Section 2.
Collange et al. (2015) showed that their algorithms for
reproducible and accurate summation have 8% overhead on
512 cores (32 nodes) and less than 2% overhead on 16 cores
(one node). While ExSUM covers wide range of architectures
as well as distributed-memory clusters, the other routines
primarily target GPUs. Exploiting the modular and hierar-
chical structure of linear algebra algorithms, the ExBLAS
approach was applied to construct reproducible LU factor-
izations with partial pivoting (Iakymchuk et al., 2019).

Table 4. Accuracy and reproducibility of the intermediate and final residual against the Multiple Precision Floating-Point Reliably (MPFR)
library for the orsreg_1 matrix, see Table 2.

Iteration

Residual

MPFR Original 1 proc Original 8 procs ExBLAS & FPE

0 0x1.3566ea57eaf3fp+2 0x1.3566ea57eab49p+2 0x1.3566ea57eab49p+2 0x1.3566ea57eaf3fp+2
1 0x1.146d37f18fbd9p+0 0x1.146d37f18faafp+0 0x1.146d37f18fabp+0 0x1.146d37f18fbd9p+0
… … … … …

99 0x1.cedf0ff322158p-13 0x1.88008701ba87p-12 0x1.04e23203fa6fcp-12 0x1.cedf0ff322158p-13
100 0x1.be3698f1968cdp-13 0x1.55418acf1af27p-12 0x1.fbf5d3a5d1e49p-13 0x1.be3698f1968cdp-13
… … … … …

208 0x1.355b0f18f5ac1p-20 0x1.19edf2c932ab8p-18 0x1.b051edae310c7p-20 0x1.355b0f18f5ac1p-20
209 0x1.114dc7c9b6d38p-20 0x1.19b74e383f74ep-18 0x1.a18fc929018d4p-20 0x1.114dc7c9b6d38p-20
210 0x1.03b1920a49a7ap-20 0x1.19c846848f361p-18 0x1.c7eb5bbc198b1p-20 0x1.03b1920a49a7ap-20

30 The International Journal of High Performance Computing Applications 38(1)

http://bebop.cs.berkeley.edu/reproblas/
http://bebop.cs.berkeley.edu/reproblas/

Mukunoki and Ogita presented their approach to im-
plement reproducible BLAS, called OzBLAS (Mukunoki
et al., 2019), with tunable accuracy. This approach is dif-
ferent from both ReproBLAS and ExBLAS as it does not
require to implement every BLAS routine from scratch but
relies on high-performance (vendor) implementations.
Hence, OzBLAS implements the Ozaki scheme (Ozaki
et al., 2012) that follows the fork-join approach: the ma-
trix and vector are split (each element is sliced) into sub-
matrices and sub-vectors for secure products without
overflows; then, the high-performance BLAS is called on
each of these splits; finally, the results are merged back
using, for instance, the NearSum algorithm. Currently, the
OzBLAS library includes dot products, matrix-vector
product (gemv), and matrix-matrix multiplication
(gemm). These algorithmic variants and their im-
plementations on GPUs and CPUs (only dot) reassure re-
producibility of the BLAS kernels as well as make the
accuracy tunable up-to correctly rounded results.

The proposed framework was implicitly used to derive
the reproducible preconditioned Conjugate Gradient (PCG)
variants with the flat MPI (Iakymchuk et al., 2020b) and

hybrid MPI plus OpenMP tasks (Iakymchuk et al. 2020a).
The reproducible PCG variants were primarily verified on
the 3D Poisson’s equation with 27 stencil points showing
the good scalability and low performance overhead (under
30% for both the ExBLAS and lightweight variants) on up
to 768 cores of the MareNostrum4 cluster.

7. Conclusions

Parallel Krylov subspace methods may exhibit the lack of
reproducibility when implemented in parallel environments
as the results in Tables 2–4 confirm. Such numerical reli-
ability is needed for debugging and validation & verifica-
tion. In this work, we proposed a general framework for re-
constructing reproducibility and re-assuring accuracy in any
Krylov subspace method. Our framework is based on two
steps: analysis of the underlying algorithm for numerical
abnormalities; addressing them via algorithmic solutions
and programmability hints. The algorithmic solutions are
build around the ExBLAS project, namely: ExBLAS that
effectively combines long accumulator and FPEs; FPEs for
the lightweight version. The programmability effort was

Table 5. Execution time of the sequential MPFR version of PBiCGStab under the tolerance of 10�6 and its comparison against the FPE
and ExBLAS reproducible versions on a set of the SuiteSparse matrices, see Table 2; iterX stands for runs on X MPI processes and the
values in iterX columns show how many times FPE/ExBLAS is faster.

Matrix

MPFR FPE gain ExBLAS gain

(secs) iter1 iter8 iter16 iter1 iter8 iter16

af_shell10 12.516 2.3 17.6 35.1 2.0 15.0 29.9
atmosmodd 236.325 2.7 20.1 39.7 2.2 16.5 32.6
atmosmodj 246.302 2.7 20.2 39.9 2.2 16.5 32.7
atmosmodl 159.122 2.6 19.4 38.0 2.1 15.6 30.9
atmosmodm 84.019 2.5 18.2 35.8 2.0 14.8 29.2
audikw_1 11.754 2.1 14.1 27.2 1.8 12.7 24.5
bone010 12.830 2.1 15.9 31.1 1.9 14.0 27.5
boneS10 11.671 2.3 16.7 32.9 2.0 14.7 28.9
Bump_2911 34.846 2.3 17.0 32.4 2.0 14.5 27.6
cage14 7.062 2.4 15.6 28.8 2.0 13.7 25.3
cage15 29.513 2.4 15.8 29.3 2.0 13.8 25.6
circuit5M_dc 13.443 2.2 15.1 28.8 1.7 12.1 23.3
CurlCurl_3 17.701 2.8 21.0 41.1 2.3 17.1 34.0
CurlCurl_4 38.168 2.8 20.7 40.5 2.2 17.0 33.3
ecology1 5.916 2.4 18.2 36.8 1.9 14.5 29.4
ecology2 6.255 2.5 19.4 38.8 2.0 15.3 31.0
Hardesty1 13.692 2.2 17.1 33.9 1.8 13.7 27.6
ML_Geer 6156.862 1.8 13.6 26.9 1.4 12.4 24.7
orsreg_1 0.404 2.7 12.2 13.0 2.1 10.0 11.7
Queen_4147 241.308 2.0 14.9 29.6 1.7 12.8 25.6
rdb3200L 1.764 2.9 17.9 23.3 2.3 14.4 19.9
s3dkq4m2 2.060 2.1 16.1 30.0 1.8 13.9 26.1
Transport 779.205 2.4 17.8 35.0 2.0 15.0 29.4
vas_Stokes_2M 14666.959 2.1 10.3 19.7 1.8 9.4 18.1

Iakymchuk et al. 31

focused on: explicitly invoking fma instructions to avoid
replacements by compilers; customized and fma-based
axpy and axpy-like operations instead of MKL or similar
BLAS libraries; as well as to postpone the division to the
moment where it is required.

As test cases, we used the preconditioned standard and
pipelined BiCGStab methods and derived two reproducible
algorithmic variants for each of them. It is worth mentioning
that the two BiCGStab methods are in fact different algorithms
with different set of operations yielding non-identical com-
putation path and the divergent way rounding errors are
propagate; this difference can be witnessed by the convergence
history in Figure 4 even when using the reproducible variants.
The reproducible variants deliver identical results of the
standard and also pipelined PBiCGStab, which are confirmed
by its MPFR version, to ensure reproducibility in the number
of iterations, the intermediate and final residuals, as well as the
sought-after solution vector. We verified our implementations
on a set of the SuiteSparse matrices, showing the performance
overhead of nearly 2.0x for the ExBLAS and FPE-based
versions, with a noticeably lower overhead for the latter.
Tests with the 27-point stencil on 32 nodes show a low
performance overhead of 35%–40%. The code is available at
https://github.com/riakymch/ReproPBiCGStab.

With this study we want to promote reproducibility by
design through the proper choice of the underlying libraries as
well as the careful programmability effort. For instance, a brief
guidancewould be 1) for fundamental numerical computations
use reproducible underlying libraries such as ExBLAS, Re-
proBLAS, or OzBLAS and 2) analyze the algorithm andmake
it reproducible by eliminating any uncertainties and non-
deterministic order of computations that may violate asso-
ciativity such as reductions and use/non-use of fma and
postponing divisions until actually needed. Additionally, we
try to argue the need for the bit-wise reproducible and correctly
rounded results for iterative solvers as they will anyway be
enhanced on next iterations as we do not reach the desired
tolerance and, thus, do not exploit the full obtained bit-wise
results. This becomes more evident with the mixed-precision
approaches, which we foresee to pursue.

Our future work is to investigate the residual replacement
strategy in the pipelined Krylov subspace solvers such as the
pipelined PBiCGStab (p-PBiCGStab) (Cools and Vanroose
(2017)) and to study if such strategy can be mitigated by the
higher precision provided by long accumulator and FPEs.
We believe that there is a potential of using higher precision
provided by long accumulator and FPEs in order to mitigate
the different way rounding errors are propagate as well as to
cope with the attainable precision loss in p-PBiCGStab.

Acknowledgments

We acknowledge the usage of computing resources kindly pro-
vided by Fraunhofer ITWM.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the Department of Computing Science at
Umeå University; the EU H2020 MSCA-IF Robust project (No.
842528); the French ANR InterFLOP project (No. ANR-20-CE46-
0009). The research from Universitat Jaume I was funded by the
project PID2020-113656RB-C21 via MCIN/AEI/10.13039/
501100011033 and project UJI-B2021-58.

ORCID iDs

Roman Iakymchuk https://orcid.org/0000-0003-2414-700X
Jose I. Aliaga https://orcid.org/0000-0001-8469-764X

Notes

1. Reproducibility is the ability to obtain a bit-wise identical and
accurate result for multiple executions on the same data in
various parallel environments.

2. ExBLAS repository: https://github.com/riakymch/exblas

References

Barrett R (1994) Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. 2nd edition. Phila-
delphia, PA: SIAM.

Collange C, Defour D, Graillat S, et al. (2015) Numerical re-
producibility for the parallel reduction on multi- and many-
core architectures. Parallel Computing 49: 83–97.

Cools S and Vanroose W (2017) The communication-hiding
pipelined BiCGstab method for the parallel solution of
large unsymmetric linear systems. Parallel Computing 65:
1–20. DOI: 10.1016/j.parco.2017.04.005.

Demmel J and Nguyen HD (2013) Fast reproducible floating-point
summation. Proceedings of ARITH- 21: 163–172.

Demmel J and Nguyen HD (2015) Parallel reproducible sum-
mation. IEEE Transactions on Computers 64(7): 2060–2070.

Fletcher R (1976) Conjugate gradient methods for indefinite
systems. In: Watson GA (ed). Numerical Analysis. Berlin,
Heidelberg: Springer, 73–89.

Fousse L, Hanrot G, Lefèvre V, et al. (2007) MPFR: a multiple-
precision binary floating-point library with correct rounding.
ACM Transactions on Mathematical Software 33(2): 13.
DOI: 10.1145/1236463.1236468.

Goldberg D (1991) What every computer scientist should know
about floating-point arithmetic. ACM Computing Surveys
23(1): 5–48. DOI: 10.1145/103162.103163.

Hida Y, Li XS and Bailey DH (2001) Algorithms for quad-double
precision floating point arithmetic. Proceedings 15th IEEE

32 The International Journal of High Performance Computing Applications 38(1)

https://github.com/riakymch/ReproPBiCGStab
https://orcid.org/0000-0003-2414-700X
https://orcid.org/0000-0003-2414-700X
https://orcid.org/0000-0001-8469-764X
https://orcid.org/0000-0001-8469-764X
https://github.com/riakymch/exblas
https://doi.org/10.1016/j.parco.2017.04.005
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/103162.103163

Symposium on Computer Arithmetic. ARITH-15 2001 15:
155–162. DOI: 10.1109/ARITH.2001.930115.

Higham NJ (2002) Accuracy and Stability of Numerical Algo-
rithms. 2nd edition. Philadelphia, PA: SIAM. DOI: 10.1137/
1.9780898718027.

Iakymchuk R, Collange S, Defour D, et al. (2015) ExBLAS:
reproducible and accurate BLAS library. In: Proceedings of
the NRE2015 Workshop Held as Part of SC15, Austin, TX,
USA, 15–20 November 2015. pp. 1–4.

Iakymchuk R, Graillat S, Defour D, et al. (2019) Hierarchical
approach for deriving a reproducible LU factorization.
IJHPCA 1: 1–13. To Appear HAL preprint: hal-01419813.

Iakymchuk R, Graillat S and José A (2022) General framework for
deriving reproducible krylov subspace algorithms: a bicgstab
case study, In: Proc. Of PPAM 2022, Gdansk, Poland,
September 11-14, 202216. Springer LNCS, pp. –29. DOI: 10.
1007/978-3-031-30442-2_2.

Iakymchuk R, Vayá MB, Graillat S, et al. (2020a) Reproducibility
of parallel preconditioned conjugate gradient in hybrid pro-
gramming environments. The International Journal of High
Performance Computing Applications 34(5): 502–518. DOI:
10.1177/1094342020932650.

Iakymchuk R, Barreda M, Wiesenberger M, et al. (2020b) Re-
producibility strategies for parallel preconditioned conjugate
gradient. Journal of Computational and Applied Mathematics
371: 112697. DOI: 10.1016/j.cam.2019.112697.

Knuth DE (1969) The Art of Computer Programming: Semi-
numerical Algorithms. Reading: Addison-Wesley, 2.

Kulisch U and Snyder V (2011) The exact dot product as basic tool
for long interval arithmetic. Computing 91(3): 307–313.

Mukunoki D, Ogita T and Ozaki K (2019) Accurate and repro-
ducible blas routines with ozaki scheme for many-core ar-
chitectures. In: Proc. Of PPAM 2019, Bialystok, Poland,
September 8-11, 2019. Springer LNCS, pp. 516–527. DOI:
10.1007/978-3-030-43229-4_44

Nguyen HD and Demmel J (2015) Reproducible tall-skinny QR.
2015 IEEE 22nd Symposium on Computer Arithmetic 22:
152–159. DOI: 10.1109/ARITH.2015.28.

Ogita T, Rump SM andOishi S (2005) Accurate sum and dot product.
SIAM Journal on Scientific Computing 26: 1955–1988.

Ozaki K, Ogita T, Oishi S, et al. (2012) Error-free transformations of
matrix multiplication by using fast routines of matrix multipli-
cation and its applications. Numerical Algorithms 59(1): 95–118.

Rump SM, Ogita T and Oishi S (2009) Accurate floating-point
summation part II: sign, K-fold faithful and rounding to near-
est. SIAM Journal on Scientific Computing 31(2): 1269–1302.

Rump SM, Ogita T and Oishi S (2010) Fast high precision
summation. Nonlinear Theory and Its Applications, IEICE
1(1): 2–24.

Saad Y (2003) Iterative Methods for Sparse Linear Systems. 2nd
edition. Philadelphia, PA, USA: SIAM.

Saad Y and Schultz MH (1986) GMRES: a generalized minimal re-
sidual algorithm for solving nonsymmetric linear systems. SIAM
Journal on Scientific and Statistical Computing 7: 856–869.

Sonneveld P (1989) CGS, A fast Lanczos-type solver for non-
symmetric linear systems. SIAM Journal on Scientific and
Statistical Computing 10(1): 36–52.

van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly
converging variant of Bi-CG for the solution of nonsym-
metric linear systems. SIAM Journal on Scientific and Sta-
tistical Computing 13(2): 631–644. DOI: 10.1137/0913035.

Wiesenberger M, Einkemmer L, Held M, et al. (2019) Repro-
ducibility, accuracy and performance of the Feltor code and
library on parallel computer architectures. Computer Physics
Communications 238: 145–156.

IEEE Computer Society (2008) IEEE Standard for Floating-Point
Arithmetic. IEEE Standard 754-2008. pp 1-70, 2008. https://
ieeexplore.ieee.org/document/4610935

Author biographies

Roman Iakymchuk is Associate Professor at the Division of
Scientific Computing, Department of Information Tech-
nology, Uppsala University (UU), Sweden. He is also
Associate Professor at the Department of Computing Sci-
ence at Umeå University (UmU), Sweden. At UmU, he is a
co-Principal Investigator of EuroHPC JU Center of Ex-
cellence in Exascale CFD (CEEC) and leads the work
package on Exascale Algorithms. Roman develops the
Exact BLAS (ExBLAS) library for fast, accurate, and nu-
merically reproducible computations. He extended this idea
to Krylov type solvers in hybrid parallel environments. He
conducts his research on numerical linear algebra, accuracy
and precision of computations, parallel programming
models as well as enabling sustainable computations.

Stef Graillat received his PhD degree in 2005 from Uni-
versité de Perpignan, France. He is Professor in Computer
Science at Sorbonne Université and a deputy director of
LIP6 laboratory. His research interests are in computer
arithmetic, floating-point arithmetic, and validated
computing.

José I. Aliaga is Professor in the department of Computer
Science and Engineering in the University Jaume I (UJI),
Castellón. His main research interests include the appli-
cation of high-performance computing on sparse numerical
linear algebra and Krylov subspace methods, improving
both the performance and the energy efficiency of the
parallel implementations in hardware accelerators, shared-
memory multiprocessors and clusters. Nowadays, all these
techniques are being applied in the field of machine
learning, particularly in medical image processing. José has
published more than 75 papers in journals and conferences,
and has also participated in over 40 research projects funded
by both national and private organizations (in Spain or
within the EU), leading 10 of these projects. He was also
involved in five technology transfer contracts (three in
Spain and two within the EU), leading four of them.

Iakymchuk et al. 33

https://doi.org/10.1109/ARITH.2001.930115
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1007/978-3-031-30442-2_2
https://doi.org/10.1007/978-3-031-30442-2_2
https://doi.org/10.1177/1094342020932650
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1109/ARITH.2015.28
https://doi.org/10.1137/0913035
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

	General framework for re ...
	1. Introduction
	2. Background
	3. General framework for reproducible Krylov solvers
	3.1. Identifying sources of non
	3.2. Re-assuring reproducibility
	3.3. Programmability effort

	4. Reproducible BiCGStab
	4.1. Message
	4.1.1. Sparse matrix
	4.1.2. Dot products (S3, S7, S10, S11)
	4.1.3. Application of the preconditioner (S1, S5)

	4.2. Message
	4.2.1. Dot products (S8 ∪ S11, S16 ∪ S19)

	5. Experimental results
	5.1. Evaluation on the suitesparse matrices  
	5.2. Scalability
	5.3. Accuracy and reproducibility

	6. Related work
	7. Conclusions
	Acknowledgments
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Notes
	References
	Author biographies

