
A Case Study of the Reproducibility Issues in EigenExa

Roman Iakymchuk
CST/PDC, CSC, KTH Royal

Institute of Technology
11428 Stockholm, Sweden

riakymch@kth.se

Imamura Toshiyuki
RIKEN Advanced Institute for

Computational Science
Kobe, 650-0047, Japan

imamura.toshiyuki@riken.jp

Stef Graillat
Sorbonne Universités, UPMC

Univ Paris 06, UMR 7606,
LIP6, 75005 Paris, France
stef.graillat@lip6.fre

Stefano Markidis
CST/PDC, CSC, KTH Royal

Institute of Technology
11428 Stockholm, Sweden

markidis@kth.se

Erwin Laure
CST/PDC, CSC, KTH Royal

Institute of Technology
11428 Stockholm, Sweden

erwinl@pdc.kth.se

ABSTRACT
In this article, we study the accuracy and reproducibility is-
sues in EigenExa due to the non-associative of floating-point
operations, rounding-off errors, dynamic thread scheduling,
and different reduction trees, etc. By investigating the EigenExa’s
algorithmic structure and the corresponding implementa-
tion, we find the origins of the non-reproducibility and demon-
strate it on the numerical results. As a solution, we, at first,
propose to apply the accurate and reproducible parallel re-
duction from the ExBLAS library. Moreover, we outline
possible extensions to ExBLAS that would enhance further
the numerical properties of EigenExa.

Keywords
EigenExa, eigenvalue solver, reproducibility, accuracy, su-
peraccumulator, error-free transformation, ExBLAS.

1. INTRODUCTION
In order to facilitate portability of numerical codes, the

IEEE-754 arithmetic standard was created in 1985 and then
revised in 2008. The standard has led to a considerable in-
crease in the reliability of numerical computations by rigor-
ously specifying the properties of floating-point arithmetic.
The standard requires correctly rounded results for the ba-
sic arithmetic operations (+,−,×, /,√). It means that the
operations are performed as if the result was first computed
with an infinite precision and then rounded to the floating-
point format.

Although the standard ensures different rounding modes,
the round-to-nearest is often used, it does not keep track of
the truncated parts of numbers, meaning the floating-point
operations are commutative, but non-associative. The non-
associativity of floating-point addition occurs when perform-
ing addition of numbers with different exponents. It leads

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASC’16 April 25–29, 2016, Stockholm, Sweden
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

to cancellation phenomenon which consist in the elimination
of the lowest-order bits of the sum. The non-associativity
and the order of operations strongly impact the results of
floating-point operations [7]. For instance, the result of
summing all elements of a vector differ when the numbers
summed in descending or ascending orders. This difference
becomes even more noticeable on clusters with thousands of
processors that enable dynamic thread scheduling, resources
allocation (e.g. for the scalability purposes), various reduc-
tion trees, etc. On clusters, it is not only difficult to obtain
a result with a certain accuracy, but it is even more difficult
to obtain the bit-wise reproducible result from one run to
another of the code on the identical input data.

In this article, we investigate the accuracy and repro-
ducibility issues of EigenExa on shared- and distributed-
memory architectures. Knowing the sources of these issues,
we propose a suitable treatment through the ExBLAS li-
brary and its extension. On an example of EigenExa, we
aim to provide suitable algorithmic solutions for this type of
problems and to develop scalable implementations to guar-
antee both accuracy and reproducibility.

The paper is organized as follows. The ExBLAS library
is described in Section 2. Section 3 presents the EigenExa
library and the sources of its non-reproducibility, and intro-
duces our approach to solve this problem. Finally, Section
4 draws the conclusions and outlines the future work.

2. EXBLAS LIBRARY
ExBLAS stands for Exact (fast, accurate, and reproducible)

Basic Linear Algebra Subprograms [4]. In ExBLAS, we aim
at providing new algorithms and implementations for fun-
damental linear algebra operations – like those included in
the BLAS library. We [2] introduced a multi-level approach
to compute correctly rounded and reproducible sums. This
approach is based on floating-point expansions (FPEs) and
superaccumulators. FPEs aim at computing the error which
occurred during rounding using FP expansions in conjunc-
tion with error-free transformations (EFTs). Thanks to
EFTs, when working with the rounding-to-nearest mode,
the rounding error of addition and multiplication can be
represented as a floating-point number. FPEs represent the
result as an unevaluated sum of FP numbers, whose com-
ponents are ordered by magnitude with minimal overlap to
cover a wide range of exponents. Superaccumulators instead

 0

 2

 4

 6

 8

 10

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

ParallelFPSum

bitrep2

bitrep3

R
eproB

LA
S

D
em

m
elFast

TB
B
D

eterm
inistic

Superacc

FPE2+Superacc

FPE4+Superacc

FPE8EE+Superacc

N
o
rm

il
iz

ed
 t

im
e

to
 p

ar
al

le
l

su
m

m
at

io
n

Number of processors

Computation
Reduction

6432168421

Figure 1: Performance scaling of parallel reduction
on the 64 nodes Mesu cluster at UPMC; each node
is equipped with two 8−core Intel Xeon E5-4650L
(Sandy Bridge) @ 2.6GHz.

exploit the finite range of representable floating-point num-
bers by storing every bit of the sum. The superaccumulator
covers the range from the minimum representable FP value
to the maximum value independently of the sign. We use a
superaccumulator of 2098 (emin + emax + mantissa = 1022
+ 1023 + 53) bits for double precision FP accumulation.

We provided implementations of the multi-level approach
for parallel reduction on a range of architectures: desktop
and server CPUs, Intel Xeon Phi co-processors, and both
AMD and NVIDIA GPUs. The proposed implementations
showed that the numerical reproducibility and bit-perfect
accuracy can be achieved at no additional cost for large sums
with dynamic ranges of up to 90 orders of magnitude.

Figure 1 compare the performance scaling of the vari-
ous reduction algorithms on the Mesu cluster. We mea-
sure the computation and reduction time of the parallel non-
reproducible summation (“ParallelFPSum”), the TBB de-
terministic summation (“TBBDeterministic”), single-sweep
reductions (“bitrep2” and “bitrep3”) from bitrep [1], one-
reduction summation (“ReproBLAS”) from ReproBLAS [3],
our implementation of their two-reduction algorithm (“Dem-
melFast”), and our algorithm (“Superacc” with suparaccu-
mulators only and “FPEx+Superacc” that combine super-
accumulators and FP of size x with the early-exit technique
(EE) [2]). These algorithms compute the local sums on each
MPI process. Then, MPI Reduce() or MPI Allreduce() are
applied to calculate the final sum. We use two MPI processes
per node in our implementations and one MPI process per
core in case of ReproBLAS and bitrep.

The number of MPI process varies from 1 to 64, each
of them performing the summation of 16M double-precision
FP numbers. This dataset size ensure that we fall in the
out-of-cache case. For each process, we measure the local
summation time, which is colored red, and the MPI reduc-
tion time, which is colored green. For the whole range of
processors, the execution time of each algorithm is domi-
nated by the local summation time because of the dataset
size. In addition, due to the equal distribution of computa-

tions among MPI processes, the computation time is roughly
equivalent on the whole range of MPI processes, while the
reduction time changes according to the number of MPI pro-
cesses involved. We normalize the total runtime of each
algorithm by the total execution time of the parallel FP
summation. Since the TBB deterministic sum is roughly 68
times slower than the parallel floating-point summation on
one node, we cut this results in order to provided a better
view of the rest of the results that do not exceed the slow-
down of 10 times, The “bitrep2”, “bitrep3”, “Demmel fast”,
and “ReproBLAS” algorithms are 2.9 %, 3.1 %, 95.5 %, and
20.6 %, accordingly, slower than the conventional parallel
summation on 64 CPUs. Although “bitrep2” and “bitrep3”
show the low performance overhead, their accuracy and re-
producibility are not guaranteed, especially for the moderate
dynamic ranges. In contrast, our “FPE2 + Superacc” and
“FPE8EE + Superacc” deliver both correctly rounded and
bit-wise reproducible results with the overhead of 9.2 % and
7.8 %, respectively.

To enhance reproducibility, Intel proposed a “Conditional
Numerical Reproducibility” (CNR) in its MKL. However,
CNR does not ensure correct rounding and it induces large
performance overhead. For instance, for large arrays the
MKL’s summation with CNR is 85− 93 % slower than both
the regular MKL’s and our reproducible summation.

We extended and adapted the multi-level approach to dot
product, triangular solver, and matrix-matrix multiplica-
tion. However, these routines are only supported on GPUs.

3. TOWARDS REPRODUCIBLE EIGENEXA
EigenExa is a high-performance numerical eigenvalue sol-

ver [6, 5]. The EigenExa objective is to achieve an eigen-
value library scalable to operate on future Exascale sys-
tems. EigenExa provides functionality for computing all
eigenpairs (eigenvalues paired with their respective eigen-
vectors) for both standard and generalized eigenvalue prob-
lems. EigenExa applies both classical and advanced algo-
rithms and enhances the required computation time of its
predecessor EigenK for the diagonalization stage.

The development of EigenExa includes the utilization of
various parallel programming languages and libraries, en-
compassing MPI, OpenMP, high-performance BLAS, and
SIMD vectorized Fortran90 compiler techniques. In most
cases, the EigenExa performance exceeds that of EigenK,
ScaLAPACK, and others of the highest-level numerical com-
putation libraries. EigenExa is in operation on many HPC
platforms, including the K computer and its Fujitsu PRIMEHPC
FX10 commercial variant, various cluster computers using
Intel x86 series processors, IBM Blue/Gene Q systems, and
the NEC vector computer SX series systems.

We present below the main steps of the EigenExa solver
(eigen sx) for the direct computation of the eigenvalues and
eigenvectors of a banded pentadiagonal matrix.

1. Pentadiagonalization of the input matrix by block ver-
sion of Householder transformations: QTAQ→ B

2. Computation of the eigenvalues and eigenvectors of
a pentadiagonal matrix by the divide- and-conquer
method: Byi = γiyi

3. Back transformation of the eigenvectors: Qyi → xi

Since the reproducibility problem comes from the penta-
diagonalization step, here we focus on it only. Suppose we

have two vectors a1 and a2, then we calculate the two con-
secutive Householder transformations as follows

H1 = I − b1u1u
T
1 ,

H1a1 = −t1e1,
H2a2 = c2,

d2 = [0; c2(2 : n)],

H2 = I − b2u2u
T
2

where

u1 = t1e1 + a1,

t1 = sign(norm2(a1), a1[0]),

b1 = 2/norm2(u1),

u2 = t2e2 + c2,

t2 = sign(norm2(c2), d2[1]),

b2 = 2/norm2(u2).

Then, we construct matrices U = [u1, u2] and C, where C
holds H2H1 = I − UCU .

In this process, if [a1, a2] are very close or almost linearly
dependant, d2 equals zero in the exact calculation. But,
numerically d2 is polluted by the round-off errors and the
approximated result of d2 is not the zero vector.

This situation depends on any possible hardware and soft-
ware differences, such as the number of threads used and
their scheduling, compiler optimization, MPI implementa-
tion, reduction trees, etc. If d2 is not zero, then H2 is not
identical and, therefore, the other matrices Hi(N/2 − 1 ≤
i > 1) are not correctly computed. Thus, the computed
result is drastically different.

In order to provide the evidence of these accuracy and
reproducibility problems in EigenExa, we gather the log
files on the EigenExa execution. These log files contain the
pentadiagonal matrix represented by three arrays [D,E, F].
We expect that these three arrays will be relatively close to
each other with respect to the accumulated round-off errors.
However, we observe that some elements of F are completely
different: one is positive while the other is negative. Below
we demonstrate this difference on the highlighted elements
of the arrays F1 and F4 computed with 1 and 4 processes,
accordingly.

F1 =

 0.0000E + 0 0.0000E + 0 1.2398123
−1.3029823 −1.5637168 −1.3334236E− 015
1.4429192 1.5458365 −1.0235326


F4 =

 0.0000E + 0 0.0000E + 0 −1.8012368
1.1340358 1.6641588 1.2585248E− 015
1.4429192 1.5458365 −1.0235326


This result shows that there is a need to replace the dot

product and, especially, the parallel reduction operations
in the the block-version Householder transformation by the
corresponding routines from ExBLAS. This will provide us
with the control over the rounding errors and will guaran-
tee the correctly rounded and reproducible results indepen-
dently of the number of threads and processes, the threads
scheduling policies, etc.

4. CONCLUSIONS AND FUTURE WORK
In this paper we studied the accuracy and reproducibil-

ity problems of EigenExa. We indicated that these prob-
lems originated by the non-associativity of floating-point

operations, accumulated round-off errors, dynamic thread
scheduling, etc. The sources of these problems are in the
collective operations such as MPI reduction and the linear
algebra operations provided by the BLAS library. We draw a
strategy to ensure the reproducibility and correct rounding
of the EigenExa results by plugging in the ExBLAS rou-
tines, which already guarantee exact computations and low
performance overhead for memory-bound operations such as
parallel reduction.

We plan to conduct numerical experiments with EigenExa
using the ExBLAS parallel reduction in the near future.
Moreover, we foresee to extend the functionality of the ExBLAS
library to support more routines as well as large scale com-
putations. This would enable rebasing the major part of the
EigenExa computations on top of ExBLAS.

5. REFERENCES
[1] A. Arteaga, O. Fuhrer, and T. Hoefler. Designing

bit-reproducible portable high-performance
applications. In Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing
Symposium, IPDPS ’14, pages 1235–1244, Washington,
DC, USA, 2014. IEEE Computer Society.

[2] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk.
Numerical Reproducibility for the Parallel Reduction
on Multi- and Many-Core Architectures. Parallel
Computing, 49:83–97, 2015.

[3] J. Demmel and H. D. Nguyen. Parallel Reproducible
Summation. IEEE Transactions on Computers,
64(7):2060–2070, 2015.

[4] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat.
ExBLAS: Reproducible and Accurate BLAS Library. In
Proceedings of the Numerical Reproducibility at
Exascale (NRE2015) workshop held as part of the
Supercomputing Conference (SC15). Austin, TX, USA,
November 15-20, 2015, Oct. 2015.

[5] T. Imamura, Y. Hirota, T. Fukaya, S. Yamada, and
M. Machida. EigenExa: high per- formance dense
eigensolver, present and future. In Proceedings of the
8th International Workshop on Parallel Matrix
Algorithms and Applications (PMAA14), Lugano,
Switzerland, July 2-4, 2014.

[6] T. Imamura, S. Yamada, and M. Machida.
Development of a High Performance Eigensolver on the
Peta-Scale Next Generation Supercomputer System.
Progress in Nuclear Science and Technology, the
Atomic Energy Society of Japan, 2:643–650, 2011.

[7] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P.
Jeannerod, V. Lefèvre, G. Melquiond, N. Revol,
D. Stehlé, and S. Torres. Handbook of Floating-Point
Arithmetic. Birkhäuser, 2010.

