
ACM Communications in Computer Algebra, Vol. 57, No. 2, Issue 224, June 2023

Modular matrix multiplication on GPU

for polynomial system solving

Jérémy Berthomieu, Stef Graillat, Dimitri Lesno↵, Theo Mary
Sorbonne Université, CNRS, LIP6, Paris, France

jeremy.berthomieu@lip6.fr, stef.graillat@lip6.fr
dimitri.lesnoff@lip6.fr, theo.mary@lip6.fr

Abstract

The bottleneck of the sparse-FGLM algorithm for Gröbner bases change of order is an iterative
matrix – tall and skinny matrix product over a finite prime field. Our contribution is twofold. First,
we port existing CPU-only algorithms for matrix products over prime fields to GPU architectures,
and carry out a performance analysis of our implementation that shows that we can nearly achieve
the maximum theoretical throughput of the hardware. Second, existing CPU-only algorithms could
not handle primes with more than 26 bits, other than the GMP-based implementation in FLINT; we
overcome this limitation by proposing an e�cient multiword matrix product algorithm that can deal
with primes with at most 35 bits; we benchmarked it on GPU.

1 Introduction

Motivation. Many problems from scientific domains, such as biology, chemistry, quantum mechanics,
robotics, and computing sciences, including coding theory, computer vision and cryptography, to cite a
few, can be modeled with polynomial systems. Yet, polynomial system solving is NP-hard, even when the
ground field is finite.

To circumvent reliability issues from numerical algorithms, such as the number of computed solutions
or the quality of the approximations of the solutions, we focus on solving exactly the 0-dimensional poly-
nomial input system. This comes down to providing a complete description of the solution set through
a lexicographic Gröbner basis. This Gröbner basis is computed in two steps: first, a Gröbner basis for
a total degree order is computed using Faugère’s F4 [3] algorithm, then, it is converted into a lexico-
graphic one using the seminal FGLM algorithm or its faster variant, in generic cases, sparse-FGLM [4].
We refer to [1] for a complete description and implementation of this framework in the open-source C

library msolve. Assuming the system has k solutions, sparse-FGLM relies on the Wiedemann algo-
rithm, or on its faster version block-Wiedemann [7]. Its bottleneck is the computation of 2k

n matrices
v0, v1 = Mv0, . . . , v 2k

n
�1 = Mv 2k

n
�2, where M is a k ⇥ k matrix given by the first Gröbner basis and v0 is

k ⇥ n and random. Typically, n is a small power of 2 such as, usually, 32. The matrix M has a special
structure, each column is either made of only zeroes and one 1 (like a column of the identity matrix) or is
dense. Furthermore, the asymptotics of m, the number of dense columns, has been thoroughly studied in
the generic case in [4]. These products yield a complexity O(mk2).

When these systems are over Q, the growth of the coe�cients is controlled through a multi-modular
approach. As a consequence, this abstract only deals with systems over a finite field Fp ' Z/pZ of size and
characteristic a prime number p.

The goal of this work is to develop matrix multiplication algorithms over finite fields for GPU architec-
tures. Indeed, GPUs are, by design, well-suited to process large blocks of data in parallel and thus perform

35

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3614408.3614411&domain=pdf&date_stamp=2023-08-07


Modular matrix multiplication on GPU for polynomial system solving ISSAC 2023 software presentations

linear algebra routines, more so than CPUs. However, current GPUs natively handle double-precision
floating-point number arithmetic but only simulate long integer ones through short integer arithmetic,
which comes with an overhead. For instance, Nvidia CUDA and Tensor cores, do not natively support
64-bit integer types while they do for 64-bit floating-point types. Hence, we need to do exact arithmetic over
finite fields with floating-point types. This approach has been explored in CPU-only libraries: FFLAS [5],
NTL [9], FLINT [6], Mathemagix [10].

Contributions. Our contribution is twofold. First, we have developed a GPU implementation of matrix
multiplication over finite fields with techniques borrowed from the aforementioned CPU-only libraries.
However, the multi-modular approach requires to have large primes of size at least 30 bits, yet these
existing algorithms cannot handle primes with more than 26 bits and performance drops significantly
when approaching this limit. Therefore, our second contribution is to propose a multiword algorithm
to remove this limitation and alleviate the performance drop. In the future, we aim to integrate these
advances in the msolve [1] library.

2 Algorithms

2.1 Floating-point dot product and reduction

Computing exactly with finite fields elements using floating-point types requires defining a modulo operator
similar to integer types. In this work, we use the finite field reduction algorithm described in [10, Sec. 3.3,
Function 16]. This algorithm leverages the fused multiply-add (FMA) instruction to reduce modulo p an
integer that can be stored exactly in a double precision floating-point.

These reductions are still costly. In the FFLAS [2] library, the authors lower the number of reductions

in the dot product by reducing after partial dot products of size � =
j

2`

(p�1)2

k
where ` is the mantissa

bitsize of our floating-point type (53 for double-precision arithmetic).

2.2 Block-product algorithm

Algorithm 1 relies on the aforementioned dot product to multiply A 2 Fm⇥k
p and B 2 Fk⇥n

p using only
floating-point operations. This product is equal to the sum of the submatrices products AjBj , where
Aj 2 Fm⇥�

p and Bj 2 F�⇥n
p . The product AjBj is stored in a bu↵er T (line 4) of size mn and then each

of its coe�cients is reduced with the FMA modular reduction (line 5). Finally, the bu↵er is added in the
resulting matrix C (line 6).

Additional reductions when adding the bu↵er are necessary only if (p � 1)
⌃

k
�

⌥
is larger than 2`.

Approximately, we obtain this upper bound: (p � 1)3k  22`. Extra reductions become mandatory no
matter the value of k when p is at least 35 bits.

The separation of modular reductions and floating-point operations enables the use of an e�cient routine
for the floating-point matrix multiplication, namely the cuBLAS dgemm [8]. This makes Algorithm 1
particularly attractive for GPU architectures. The floating-point matrix multiplication requires 2mkn
floating-point operations and there are only mn

⌃
k
�

⌥
reductions. We can thus hope that the performance

of the algorithm is mainly determined by the performance of the BLAS, which is in turn usually very close
to the maximum theoretical performance of the hardware.

36



J. Berthomieu, S. Graillat, D. Lesno↵, T. Mary

Algorithm 1: �-block matrix product over Fp

Input : A 2 Fm⇥k
p , B 2 Fk⇥n

p stored in double precision; such that ai, j , bi, j < 226;
p, the characteristic of Fp;
�, modular reduction delay.

Output: C = AB 2 Fm⇥n
p stored in double precision.

1 def FFMatMulSW:
2 C = 0 2 Fm⇥n

p

3 for j = 1 to d k/� e do
4 T = Aj ⇤ Bj // Submatrices of sizes m ⇥ � and �⇥ n
5 T = T mod p // Modular reduction with FMA

6 C = C + T // Reductions here only if d k/� e p � 253

7 end
8 return C mod p

Algorithm 2: Multiword matrix multiplication

Input : A 2 Fm⇥k
p , B 2 Fk⇥n

p stored in double precision;
p characteristic of Fp.

Output: C = AB 2 Fm⇥n
p stored in double precision.

1 def FFMatMulMW:
2 � = 252�t

3 (Ah, Al) = MW-Decomposition(A)
4 (Bh, Bl) = MW-Decomposition(B)
5 M1 = FFMatMulSW(Ah, Bh, p,�)
6 M2 = FFMatMulSW(Ah, Bl, p,�)
7 M3 = FFMatMulSW(Al, Bh, p,�)
8 M4 = FFMatMulSW(Al, Bl, p,�)
9 M3 = M3 + M2

10 M3 = (2
t/2 · M3) mod p

11 M1 = (2t · M1) mod p
12 return M1 + M3 + M4 mod p

2.3 Multiword algorithm

Algorithm 1 is limited to primes p not exceeding 26 bits because we need twice as many bits to store the
products of coe�cients of A and B in the double precision bu↵er T (line 4). Yet, we require a matrix
product that can handle 30-bit prime fields to solve polynomial systems. We have developed a multiword
approach described in Algorithm 2 that raises the limit to 35 bits, and potentially more at the expense of
some additional modular reductions (line 6 in algorithm 1).

Algorithm 2 uses more than one double precision machine word to represent exactly the results of the
product AB. First, it splits each matrix A and B into two matrices Ah, Al and Bh, Bl, respectively,
containing each the quotient (high part) and the remainder (low part) of the division of the initial matrix
by 2t/2 where t is the bitsize of the prime p (lines 3–4). The product AB is then expressed as C =
(2t/2Ah + Al) · (2t/2Bh + Bl) = 2tAhBl + 2t/2(AhBl + AlBh) + AlBl (lines 5–8).

Compared with the single word Algorithm 1, Algorithm 2 thus requires three extra subproducts. How-
ever, the � block size is larger for each of these products, which thus requires fewer reductions.

3 GPU benchmarks

We now present benchmarks of Algorithms 1 (block product) and 2 (multiword) for computing a matrix
product AB on a single Nvidia Ampere GPU (model A40). We use matrices of dimensions m = 15000,
k = 45000 and n = 32, which are typical dimensions for the sparse-FGLM algorithm using block-
Wiedemann.

37



Modular matrix multiplication on GPU for polynomial system solving ISSAC 2023 software presentations

12 15 18 21 24 27 30 33

Bitsize of p

0

100

200

300

400

500

600

P
er

fo
rm

an
ce

in
G

F
lo

p
s

Block Product

DGEMM
Peak Perf.

Multiword

Figure 1: Performance of block and multiword matrix
product on an A40 GPU (m = 15000, k = 45000, n = 32).

We measure the performance ⇧ of each al-
gorithm in GFLOPS (Giga floating-point oper-
ations per second) using the formula ⇧ = 2mkn

109⌧
,

where ⌧ is the runtime of the algorithm, and
where 2mkn represents the number of flops re-
quired to multiply m ⇥ k and k ⇥ n matrices
by a floating-point product. Note that we use
this formula regardless of the actual number of
flops performed by each algorithm.

Figure 1 plots the result of our performance
benchmark. The performance of Algorithm 1
is constant for p with between 12 and 18 bits
since the limiting factor is the dgemm perfor-
mance (red-dotted line), which is near the peak
performance of the hardware (584 GFLOPS).
The block size � reduces as the prime size in-
creases, which explains why the performance of Algorithm 1 drops for primes p with between 23 and 26
bits. In contrast, the � used by the multiword algorithm is larger and as a result, its performance is almost
constant, with only a slight reduction starting from 30-bit primes. The multiword algorithm is currently
more than four times slower than the single-word algorithm; this di↵erence is under investigation and we
expect to be able to improve its performance in future implementations.

References

[1] J. Berthomieu, Ch. Eder, and M. Safey El Din. Msolve: A library for solving polynomial systems. In
Proceedings of ISSAC’21, pages 51–58. ACM, 2021.

[2] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime fields: the ✏as and
↵pack packages. ACM T. Math. Software, 35(3):1–42, 2008.

[3] J.-Ch. Faugère. A New E�cient Algorithm for Computing Gröbner bases (F4). J. Pure Appl. Algebra,
139(1):61–88, 1999.

[4] J.-Ch. Faugère and Ch. Mou. Sparse FGLM algorithms. J. Symb. Comput., 80(3):538–569, 2017.

[5] The FFLAS-FFPACK group. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Package,
v2.4.1 edition, 2019. http://github.com/linbox-team/fflas-ffpack.

[6] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory, 2013. Version
2.4.0, http://flintlib.org.

[7] S. G. Hyun, V. Neiger, H. Rahkooy, and É. Schost. Block-Krylov techniques in the context of sparse-
FGLM algorithms. J. Symbolic Comput., 98:163–191, 2020.

[8] NVIDIA. cuBLAS documentation. https://docs.nvidia.com/cuda/cublas/#.

[9] V. Shoup. NTL: a library for doing numbery theory, 2021.

[10] J. van der Hoeven, G. Lecerf, and G. Quintin. Modular SIMD arithmetic in Mathemagix. ACM T.
Math. Software, 43(1):1–37, 2017.

The authors are supported by the joint ANR-FWF ANR-19-CE48-0015 ECARP and ANR-22-CE91-0007 EAGLES
projects, the ANR grants ANR-18-CE33-0011 Sesame, ANR-19-CE40-0018 De Rerum Natura and ANR-20-CE48-0014
NuSCAP projects and grant FA8665-20-1-7029 of the EOARD-AFOSR. We thank the referees for their valuable comments
on the paper.

38




