
Applied Mathematics and Computation 337 (2018) 494–503

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

An accurate algorithm for evaluating rational functions

Stef Graillat

Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75005 Paris, France

a r t i c l e i n f o

MSC:

15-04

65G99

65-04

Keywords:

floating-point

Error-free transformation

Rational function

Horner scheme

Accuracy

Rounding errors

a b s t r a c t

Several different techniques intend to improve the accuracy of results computed in

floating-point precision. Here, we focus on a method to improve the accuracy of the evalu-

ation of rational functions. We present a compensated algorithm to evaluate rational func-

tions. This algorithm is accurate and fast. The accuracy of the computed result is similar

to the one given by the classical algorithm computed in twice the working precision and

then rounded to the current working precision. This algorithm runs much more faster than

existing implementation producing the same output accuracy.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Evaluating a polynomial or a rational function is ubiquitous in computational sciences and their applications. For

example, in signal processing, transfer functions are very often rational functions. Moreover, real functions are often

approximated by polynomials or rational functions.

In this paper, we present fast and accurate algorithms to compute the evaluation of a rational function. Our aim is to

increase the accuracy at a fixed precision. We show that the results have the same error estimates as if computed in twice

the working precision and then rounded to working precision. This paper was motivated by papers [6,7,14] , where similar

approaches are used to compute summation, dot product, and polynomial evaluation.

This outline of this article is as follows. In Section 2 , we quickly recall some information on floating-point arithmetic and

we give some definitions and notations used in the sequel. In Section 3 , we recall the compensated Horner scheme [6,7] .

This algorithm makes it possible to evaluate a polynomial whose accuracy of the computed result is similar to the one given

by the classical algorithm computed in twice the working precision and then rounded to the current working precision.

Section 4 is devoted to the study of the accuracy of the classic algorithm to evaluate a rational function with Horner scheme.

We also define and compute a closed formula for the condition number of rational function evaluation. A compensated

algorithm for evaluating rational functions is presented in Section 5 . This algorithm evaluates a fractional function and

gives an accuracy of the computed result that is similar to the one given by the classical algorithm computed in twice the

working precision and then rounded to the current working precision. Finally, numerical experiments showing the accuracy

and the performance of our new compensated algorithm to evaluate fractional functions are presented in Section 6 .
E-mail addresses: stef.graillat@sorbonne-universite.fr , stef.graillat@lip6.fr

URL: http://lip6.fr/Stef.Graillat

https://doi.org/10.1016/j.amc.2018.05.039

0 096-30 03/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.amc.2018.05.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.05.039&domain=pdf
mailto:stef.graillat@sorbonne-universite.fr
mailto:stef.graillat@lip6.fr
http://lip6.fr/Stef.Graillat
https://doi.org/10.1016/j.amc.2018.05.039

S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503 495

2. Floating-point arithmetic

Throughout the paper, we assume to work with a floating-point arithmetic adhering to IEEE 754 floating-point stan-

dard [9] . We assume that no overflow nor underflow occur. The set of floating-point numbers is denoted by F , the relative

rounding error by u . For IEEE 754 double precision, we have u = 2 −53 and for single precision u = 2 −24 .

We denote by fl(·) the result of a floating-point computation, where all operations inside parentheses are done in

floating-point working precision. Floating-point operations in IEEE 754 satisfy [8]

fl(a ◦ b) = (a ◦ b)(1 + ε 1) = (a ◦ b) / (1 + ε 2) for ◦ = { + , −, ·, / } and | ε ν | ≤ u .

This implies that

| a ◦ b − fl(a ◦ b) | ≤ u | a ◦ b| and | a ◦ b − fl(a ◦ b) | ≤ u | fl(a ◦ b) | for ◦ = { + , −, ·, / } . (2.1)

We use standard notation for error estimations. The quantities γ n are defined as usual [8] by

γn :=

n u

1 − n u

for n ∈ N ,

where we implicitly assume that n u ≤ 1.

Following [8] , we also use the following classic properties in error analysis (we always assume that n u < 1): γk < γk +1

and (1 + u) γk ≤ γk +1 .

One can notice that a ◦ b ∈ R and a � b := fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F . It is known that for

the basic operations + , −, ×, the rounding error of a floating-point operation is still a floating-point number (see for

example [3]):

x = a � b ⇒ a + b = x + y with y ∈ F ,

x = a � b ⇒ a − b = x + y with y ∈ F ,

x = a � b ⇒ a × b = x + y with y ∈ F . (2.2)

These are error-free transformations of the pair (a , b) into the pair (x , y).

Fortunately, the quantities x and y in (2.2) can be computed exactly in floating-point arithmetic. For the algorithms, we

use Matlab-like notations. For addition, we can use the following algorithm by Knuth [12, Thm B. p. 236] .

Algorithm 2.1. (Knuth [12]) Error-free transformation of the sum of two floating-point numbers

function [x, y] = TwoSum (a, b)

x = a � b

z = x � a

y = (a � (x � z)) � (b � z)

Another algorithm to compute an error-free transformation is the following algorithm from Dekker [3] . The drawback of

this algorithm is that we have x + y = a + b provided that | a | ≥ | b |.

Algorithm 2.2. (Dekker [3]) Error-free transformation of the sum of two floating-point numbers.

function [x, y] = FastTwoSum (a, b)

x = a � b

y = (a � x) � b

For the error-free transformation of a product, we first need to split the input argument into two parts. Let p be given by

u = 2 −p and define s = � p/ 2 � . For example, if the working precision is IEEE 754 double precision, then p = 53 and s = 27 .

The following algorithm by Dekker [3] splits a floating-point number a ∈ F into two parts x and y such that

a = x + y and x and y nonoverlapping with | y | ≤ | x | .
Algorithm 2.3. (Dekker [3]) Error-free split of a floating-point number into two parts

function [x, y] = Split (a)

factor = 2 s + 1

c = factor � a

x = c � (c � a)

y = a � x

With this function, an algorithm from Veltkamp (see [3]) makes it possible to compute an error-free transformation for

the product of two floating-point numbers. This algorithm returns two floating point numbers x and y such that

a × b = x + y with x = a � b.

Algorithm 2.4. (Veltkamp [3]) Error-free transformation of the product of two floating-point numbers

496 S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503

function [x, y] = TwoProduct (a, b)

x = a � b

[a 1 , a 2] = Split (a)

[b 1 , b 2] = Split (b)

y = a 2 � b 2 � (((x � a 1 � b 1) � a 2 � b 1) � a 1 � b 2)

The TwoProduct algorithm can be re-written in a very simple way if a Fused-Multiply-and-Add (FMA) operator

is available on the targeted architecture [2,13] . This means that for a, b, c ∈ F , the result of FMA (a, b, c) is the nearest

floating-point number of a · b + c ∈ R . The FMA satisfies

FMA (a, b, c) = (a · b + c)(1 + ε 1) = (a · b + c) / (1 + ε 2) with | ε ν | ≤ u .

Algorithm 2.5. (Ogita et al. [14]) Error-free transformation of the product of two floating-point numbers using an FMA .

function [x, y] = TwoProductFMA (a, b)

x = a � b

y = FMA (a, b, −x)

3. Compensated Horner scheme

We recall hereafter the compensated algorithm for Horner scheme. One can find a more detailed description of the

algorithm in [6,7] . We first recall the classic algorithm for Horner scheme and give an error bound. We then present the

compensated Horner scheme together with an error bound.

The classical method for evaluating a polynomial

p(x) =

n ∑

i =0

a i x
i

is the Horner scheme which consists in the following algorithm.

Algorithm 3.1. Polynomial evaluation with Horner’s scheme

function res = Horner (p, x)

s n = a n
for i = n − 1 : −1 : 0

s i = s i +1 � x � a i
end

res = s 0

A forward error bound for the result of Algorithm 3.1 is (see [8, p.95]):

| p(x) − res | ≤ γ2 n

n ∑

i =0

| a i || x | i = γ2 n ̃ p (| x |) (3.3)

where ˜ p (x) =

∑ n
i =0 | a i | x i . It is very interesting to express and interpret this result in terms of the condition number of the

polynomial evaluation defined by

cond (p, x) := lim

ε→ 0
sup

{ | p(x) − ̂ p (x) |
ε| p(x) | : | a i − ̂ a i | ≤ ε| a i | , i = 0 , . . . , n

}
.

The condition number measures the sensitivity of the solution to perturbation in the data. In our case, the condition

number measures how the evaluation changes when we modify the coefficients of the polynomial. Such a number is very

useful to give some information about the difficulty of solving the problem of evaluation in finite precision arithmetic.

It is well-known that

cond (p, x) =

∑ n
i =0 | a i || x | i
| p(x) | =

˜ p (| x |)
| p(x) | . (3.4)

Thus we have

| p(x) − res |
| p(x) | ≤ γ2 n cond (p, x) . (3.5)

We can modify the Horner scheme to compute the rounding error at each elementary operation that are a sum and a

product. This is done in Algorithm 3.2 .

Algorithm 3.2. (Graillat et al. [6,7]) Polynomial evaluation with a compensated Horner’s scheme

S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503 497

function res = CompHorner (p, x)

s n = a n
r n = 0

for i = n − 1 : −1 : 0

[p i , πi] = TwoProduct (s i +1 , x)

[s i , σi] = TwoSum (p i , a i)

r i = r i +1 � x � (πi � σi)

end

res = s 0 � r 0

If we denote by p π and p σ the two following polynomials

p π =

n −1 ∑

i =0

πi x
i , p σ =

n −1 ∑

i =0

σi x
i ,

then one can show, thanks to error-free transformations that

p(x) = s 0 + p π (x) + p σ (x) .

If one looks at the previous algorithm closely, it is then clear that s 0 = Horner (p, x) . As a consequence, we can derive a new

error-free transformation for polynomial evaluation

p(x) = Horner (p, x) + p π (x) + p σ (x) .

The compensated Horner scheme first computes p π (x) + p σ (x) which corresponds to the rounding errors and then adds

the obtained value to the result of the classic Horner scheme Horner (p, x) .

We will show that the results computed by Algorithm 3.2 admits significantly better error-bounds than those computed

with the classical Horner scheme. We argue that Algorithm 3.2 provides results as if they were computed using twice the

working precision. This is summed up in the following theorem.

Theorem 3.1 (Graillat et al. [6,7]) . Consider a polynomial p of degree n with floating-point coefficients, and a floating-point

value x. The forward error in the compensated Horner algorithm is such that

| CompHorner (p, x) − p(x) | ≤ u | p(x) | + γ 2
2 n ̃ p (x) . (3.6)

It is interesting to interpret the previous theorem in terms of the condition number of the polynomial evaluation of p at

x . Combining the error bound (3.6) with the condition number (3.4) for polynomial evaluation gives

| CompHorner (p, x) − p(x) |
| p(x) | ≤ u + γ 2

2 n cond (p, x) . (3.7)

In other words, the bound for the relative error of the computed result is essentially γ 2
2 n

times the condition number

of the polynomial evaluation, plus the unavoidable term u for rounding the result to the working precision. In particular,

if cond (p, x) < γ −1
2 n

, then the relative accuracy of the result is bounded by a constant of the order of u . This means that

the compensated Horner algorithm computes an evaluation accurate to the last few bits as long as the condition number

is smaller than γ −1
2 n

≈ (2 n u) −1 . Besides that, (3.7) tells us that the computed result is as accurate as if computed by the

classic Horner algorithm with twice the working precision, and then rounded to the working precision.

4. Classic evaluation of rational functions

In this Section, we present a classic algorithm to evaluate a rational function. It is based on the evaluation of the

numerator and denominator (which are polynomials) with the Horner scheme. We then give a definition of the condition

number of the rational functions evaluation and give an explicit formula to compute it. We then study the numerical

stability of the algorithm in terms of the condition number.

Let p , q two polynomials of degree n (it is not complicated to deal with polynomials with different degrees but for

simplicity, we assume they both have the same degree). They are denoted by

p(x) =

n ∑

i =0

a i x
i and q (x) =

n ∑

i =0

b i x
i .

The rational fraction f (x) is f (x) = p(x) /q (x) . A classic way to compute f (x) is via the evaluation of p (x) and q (x) with Horner

scheme as explained in Algorithm 4.1 .

Algorithm 4.1. Rational function evaluation with Horner scheme

function res = RatEval (p, q, x)

res = Horner (p, x) � Horner (q, x)

The condition number of the evaluation of a rational function measures the sensitivity of the evaluation with respect to

perturbations on the coefficients of the rational function. It can be defined as follows.

498 S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503

Definition 4.1. Let f (x) = p(x) /q (x) be a rational function. The condition number of the evaluation of f in x is defined by

cond (f, x) := lim

ε→ 0 +
sup

{∣∣∣∣ (̂ p / ̂ q)(x) − (p/q)(x)

ε(p/q)(x)

∣∣∣∣ : | ̂ a i − a i | ≤ ε| a i | , | ̂ b j − b j | ≤ ε| b j | for i = 1 , . . . , n, j = 1 , . . . , m

}
.

where ̂ a i and

̂ b i are respectively the coefficients of ̂ p and ̂

 q .

It is possible to obtain an explicit expression for this condition number.

Theorem 4.1. Let f (x) = p(x) /q (x) be a rational function. The condition number of the evaluation of f at x satisfies

cond (f, x) = cond (p, x) + cond (q, x) .

Proof. It is easy to show that

(̂ p / ̂ q)(x) − (p/q)(x)

ε(p/q)(x)
=

̂ p (x)(q (x) − ̂ q (x)) − ̂ q (x)(p(x) − ̂ p (x))

εp(x) ̂ q (x)
,

=

1

ε

[̂ p (x)

p(x)
· q (x) − ̂ q (x) ̂ q (x)

− p(x) − ̂ p (x)

p(x)

]
. (4.8)

As a consequence, we have ∣∣∣∣ (̂ p / ̂ q)(x) − (p/q)(x)

ε(p/q)(x)

∣∣∣∣ ≤ 1

ε

[∣∣∣∣ ̂ p (x)

p(x)

∣∣∣∣ · | q (x) − ̂ q (x) |
| ̂ q (x) | +

| p(x) − ̂ p (x) |
| p(x) |

]
.

By definition of p and

̂ p , we have

| p(x) − ̂ p (x) | ≤ ε ̃ p (| x |) and | q (x) − ̂ q (x) | ≤ ε ̃ q (| x |) .
It follows that ∣∣∣∣ (̂ p / ̂ q)(x) − (p/q)(x)

ε(p/q)(x)

∣∣∣∣ ≤
∣∣∣∣ ̂ p (x) q (x)

p(x) ̂ q (x)

∣∣∣∣ · cond (q, x) + cond (p, x) .

By taking the supremum and the limit for ε → 0 + , we obtain

cond (f, x) ≤ cond (p, x) + cond (q, x) .

To show that we, indeed, have equality, let us define ̂ p ε (x) = p(x) + ε sign (q (x))
∑ n

i =0 sign (a i x
i) a i x

i and

̂ q ε (x) = q (x) −
ε sign (p(x))

∑ n
i =0 sign (b i x

i) b i x
i . In that case, if we use Eq. (4.8) by replacing ̂ p by ̂ p ε , ̂ q by ̂ q ε and taking the absolute value,

we obtain ∣∣∣∣ (̂ p ε / ̂ q ε)(x) − (p/q)(x)

ε(p/q)(x)

∣∣∣∣ =

∣∣∣∣ ̂ p ε (x)(q (x) − ̂ q ε (x)) − ̂ q ε (x)(p(x) − ̂ p ε (x))

εp(x) ̂ q ε (x)

∣∣∣∣,
=

| ̂ p ε (x)(q (x) − ̂ q ε (x)) − ̂ q ε (x)(p(x) − ̂ p ε (x)) |
| εp(x) ̂ q ε (x) | ,

=

| ̂ p ε (x)(q (x) − ̂ q ε (x)) + ̂

 q ε (x)(̂ p ε (x) − p(x)) |
| εp(x) ̂ q ε (x) | ,

=

1

ε

∣∣∣∣ ̂ p ε (x)(q (x) − ̂ q ε (x))

| p(x) ̂ q ε (x) | +

̂ q ε (x)(̂ p ε (x) − p(x))

| p(x) ̂ q ε (x) |
∣∣∣∣,

=

1

ε

∣∣∣∣ ̂ p ε (x)

| p(x) | ·
q (x) − ̂ q ε (x)

| ̂ q ε (x) | +

̂ q ε (x)

| ̂ q ε (x) | ·
̂ p ε (x) − p(x)

| p(x) |
∣∣∣∣,

=

1

ε

∣∣∣∣ ̂ p ε (x)

| p(x) | ·
| q (x) |
| ̂ q ε (x) | ·

q (x) − ̂ q ε (x)

| q (x) | +

̂ q ε (x)

| ̂ q ε (x) | ·
̂ p ε (x) − p(x)

| p(x) |
∣∣∣∣. (4.9)

By definition of ̂ p ε et ̂ q ε , we have

q (x) − ̂ q ε (x) = ε sign (p(x)) ̃ q (| x |) and

̂ p ε (x) − p(x) = ε sign (q (x)) ̃ p (| x |) .
and so ∣∣∣∣ (̂ p ε / ̂ q ε)(x) − (p/q)(x)

ε(p/q)(x)

∣∣∣∣ =

∣∣∣∣ ̂ p ε (x)

| p(x) | ·
| q (x) |
| ̂ q ε (x) | ·

sign (p(x)) ̃ q (| x |)
| q (x) | +

̂ q ε (x)

| ̂ q ε (x) | ·
sign (q (x)) ̃ p (| x |)

| p(x) |
∣∣∣∣. (4.10)

We can now rewrite Eq. (4.10) as for sufficiently small ε > 0, sign (p(x)) = sign (̂ p ε (x)) and sign (q (x)) = sign (̂ q ε (x)) , and sô p ε (x) · sign (p(x)) = | ̂ p ε (x) | and ̂

 q ε (x) · sign (q (x)) = | sign (q (x)) | . As a consequence, ∣∣∣∣ (̂ p ε / ̂ q ε)(x) − (p/q)(x)

ε(p/q)(x)

∣∣∣∣ =

| ̂ p ε (x) |
| p(x) | · | q (x) |

| ̂ q ε (x) | ·
˜ q (| x |)
| q (x) | +

| ̂ q ε (x) |
| ̂ q ε (x) | ·

˜ p (| x |)
| p(x) | ,

S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503 499

=

| ̂ p ε (x) |
| p(x) | · | q (x) |

| ̂ q ε (x) | ·
˜ q (| x |)
| q (x) | +

˜ p (| x |)
| p(x) | . (4.11)

Moreover, | ̂ p ε (x) | → | p(x) | and | ̂ q ε (x) | → | q (x) | when ε → 0. Taking the supremum and the limit for ε → 0 proves that it

is possible to construct a sequence of polynomials such the limit in the definition of the condition number converges to

cond (p, x) + cond (q, x) . �

It is now possible to evaluate the numerical stability of the classic algorithm. It is shown in Theorem 4.2 that this

algorithm is backward-stable.

Theorem 4.2. Let f (x) = p(x) /q (x) be a rational function with floating-point coefficients, and x be a floating-point value. Then

if no underflow occurs, and res = RatEval (p, q, x) ,

| res − f (x) |
| f (x) | ≤ u + [γ2 n + O(u

2)] cond (f, x) .

Proof. We have ∣∣∣∣fl
(

p(x)

q (x)

)
− p(x)

q (x)

∣∣∣∣ =

∣∣∣∣(1 + ε)
fl(p(x))

fl(q (x))
− p(x)

q (x)

∣∣∣∣
with | ε| ≤ u . As a consequence, ∣∣∣∣fl

(
p(x)

q (x)

)
− p(x)

q (x)

∣∣∣∣ ≤ u

∣∣∣∣fl(p(x))

fl(q (x))

∣∣∣∣ +

∣∣∣∣fl(p(x))

fl(q (x))
− p(x)

q (x)

∣∣∣∣. (4.12)

Thanks to Eq. (3.3) , we know that

fl(p(x)) ≤ p(x) + γ2 n ̃ p (| x |) and q (x) − γ2 n ̃ q (| x |) ≤ fl(q (x)) .

We can then deduce that ∣∣∣∣fl(p(x))

fl(q (x))

∣∣∣∣ ≤
∣∣∣∣ p(x) + γ2 n ̃ p (| x |)

q (x) − γ2 n ̃ q (| x |)
∣∣∣∣ = | f (x) |

∣∣∣∣1 + γ2 n cond (p, x)

1 − γ2 n cond (q, x)

∣∣∣∣,
≤ | f (x) | (1 + γ2 n cond (f, x) + O(u

2)) . (4.13)

Moreover, using Eq. (3.5) , we have ∣∣∣∣fl(p(x))

fl(q (x))
− p(x)

q (x)

∣∣∣∣ =

∣∣∣∣q (x) fl(p(x)) − p(x) fl(q (x))

q (x) fl(q (x))

∣∣∣∣,
=

∣∣∣∣ [q (x) − fl(q (x))] fl(p(x)) − [p(x) − fl(q (x))] fl(q (x))

q (x) fl(q (x))

∣∣∣∣,
≤

∣∣∣∣fl(p(x))

fl(q (x))

∣∣∣∣ ·
∣∣∣∣q (x) − fl(q (x))

q (x)

∣∣∣∣ +

∣∣∣∣ p(x)

q (x)

∣∣∣∣ ·
∣∣∣∣ p(x) − fl(p(x))

p(x)

∣∣∣∣,
≤

∣∣∣∣fl(p(x))

fl(q (x))

∣∣∣∣γ2 n cond (q, x) +

∣∣∣∣ p(x)

q (x)

∣∣∣∣γ2 n cond (p, x) | .

Now, using Eqs. (4.12) and (4.13) , we can deduce that

| fl(f (x)) − f (x) | ≤ u | f (x) | (1 + γ2 n cond (f, x) + O(u

2))

+ | f (x) | (1 + γ2 n cond (f, x) + O(u

2)) γ2 n cond (q, x) + | f (x) | γ2 n cond (p, x) ,

that can be simplified into

| fl(f (x)) − f (x) | ≤ | f (x) | · [u + (γ2 n + O(u

2)) cond (f, x)] ,

which concludes the proof. �

5. A compensated algorithm for evaluating rational functions

In this Section, we present a compensated version of the classic algorithm for evaluating rational functions. The idea

is to replace the Horner scheme used to evaluate the numerator and denominator by the compensated Horner scheme

followed by a floating-point division. This is Algorithm 5.1 .

Algorithm 5.1. Rational function evaluation with compensated Horner scheme

function res = CompRatEval (p, q, x)

res = CompHorner (p, x) � CompHorner (q, x)

500 S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503

The following Theorem shows that the error bound on the accuracy of the computed result given by the compensated

algorithm is improved compared to the one for the classic algorithm.

Theorem 5.1. Let f (x) = p(x) /q (x) be a rational function with floating-point coefficients, and x be a floating-point value. Then

if no underflow occurs, and res = CompFracEval (p, q, x) ,

| res − f (x) |
| f (x) | ≤ 3 u + O(u

2) + [2 γ 2
2 n +1 + O(u

3)] cond (f, x) . (5.14)

Proof. For better readability, we will denote CH(p , x) the computed result of CompHorner (p, x) . By definition we have

| CompRatEval (p, q, x) − f (x) | =

∣∣∣∣fl
(

CH (p, x)

CH (q, x)

)
− f (x)

∣∣∣∣ =

∣∣∣∣(1 + ε)
CH (p, x)

CH (q, x)
− f (x)

∣∣∣∣
with | ε| ≤ u . As a consequence,

| CompRatEval (p, q, x) − f (x) | ≤ u

∣∣∣∣CH (p, x)

CH (q, x)

∣∣∣∣ +

∣∣∣∣CH (p, x)

CH (q, x)
− f (x)

∣∣∣∣. (5.15)

Moreover, using Eq. (3.7) , we have

| CH (p, x) | ≤ | p(x) | (1 + u) + γ 2
2 n ̃

 p (| x |) and (1 − u) | q (x) | − γ 2
2 n ̃

 q (| x |) ≤ | CH (q, x) | .
As a consequence, we can bound ∣∣∣∣CH (p, x)

CH (q, x)

∣∣∣∣ ≤
∣∣∣∣ p(x)

q (x)

∣∣∣∣ · 1 + u + γ 2
2 n cond (p, x)

1 − u − γ 2
2 n

cond (q, x)
,

≤ | f (x) | · [1 + u + γ 2
2 n cond (p, x)] · [1 + u + γ 2

2 n cond (p, x) + O(u

3)] ,

≤ | f (x) | · [(1 + u) 2 + γ 2
2 n cond (f, x) + O(u

3)] . (5.16)

Moreover, ∣∣∣∣CH (p, x)

CH (q, x)
− f (x)

∣∣∣∣ =

∣∣∣∣CH (p, x)[q (x) − CH (q, x)] − CH (q, x)[p(x) − CH (p, x)]

q (x) CH (q, x)

∣∣∣∣,
≤

∣∣∣∣CH (p, x)

CH (q, x)

∣∣∣∣ ·
∣∣∣∣q (x) − CH (q, x)

q (x)

∣∣∣∣ +

∣∣∣∣ p(x)

q (x)

∣∣∣∣ ·
∣∣∣∣ p(x) − CH (p, x)

p(x)

∣∣∣∣,
≤

∣∣∣∣CH (p, x)

CH (q, x)

∣∣∣∣(u + γ 2
2 n cond (q, x)) + | f (x) | (u + γ 2

2 n cond (p, x)) .

Using Eq. (5.16) , we deduce that ∣∣∣∣CH (p, x)

CH (q, x)
− f (x)

∣∣∣∣ ≤ | f (x) | · [(1 + u) 2 + γ 2
2 n cond (f, x) + O(u

3)] · (u + γ 2
2 n cond (q, x))

+ | f (x) | (u + γ 2
2 n cond (p, x)) ,

which can be simplified into ∣∣∣∣CH (p, x)

CH (q, x)
− f (x)

∣∣∣∣ ≤ | f (x) | · [2 u (1 + u) + γ 2
2 n +1 cond (f, x) + O(u

3)] . (5.17)

Finally combining Eqs. (5.17) and (5.16) with Eq. (5.15) , we obtain

| CompRatEval (p, q, x) − f (x) | ≤ u | f (x) | · [(1 + u) 2 + γ 2
2 n cond (f, x) + O(u

3)]

+ | f (x) | · [2 u (1 + u) + γ 2
2 n +1 cond (f, x) + O(u

3)] .

that can be rewritten as

| CompRatEval (p, q, x) − f (x) | ≤ | f (x) | [3 u (1 + u) + (2 γ 2
2 n +1 + O(u

3)) cond (f, x)] .

and so concludes the proof. �

In other words, the bound for the relative error of the computed result is essentially 2 γ 2
2 n +1 times the condition num-

ber of the rational function evaluation, plus the term 3 u for rounding the result to the working precision. In particular, if

cond (f, x) < (2 γ2 n +1)
−1 , then the relative accuracy of the result is bounded by a constant of the order of 3 u . This means that

the compensated algorithm computes an evaluation accurate to the last few bits as long as the condition number is smaller

than (2 γ2 n +1)
−1 ≈ ((4 n + 2) u) −1 . Besides that, (5.14) tells us that the computed result is as accurate as if computed by the

classic rational function evaluation algorithm with twice the working precision, and then rounded to the working precision.

S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503 501

Fig. 1. Comparison of the accuracy of RatEval , CompRatEval and DDRatEval .

6. Numerical experiments

The numerical experiments have been done on a laptop with an Intel Core i5 processor at 2.9 GHz with 16 Gb of RAM.

We used MATLAB R2016b.

We test the rational function f n (x) = p n (x) /q n (x) where p n is a random polynomial of degree n and q n is the expand

form of the polynomial (x − 1) n . The argument x is chosen near to the unique real root 1 of q n , and with many significant

bits so that a lot of rounding errors occur during the evaluation of q n (x). We increment the degree n from 1 until a

sufficiently large range has been covered by the condition number cond(f n , x). Here we have

cond (f n , x) = cond (p n , x) +

˜ q n (| x |)
| q n (x) | = cond (p n , x) +

∣∣∣1 + x

1 − x

∣∣∣n

,

for x close to 1 and cond(f n , x) grows exponentially with respect to n . In the experiments reported on Fig. 1 , cond(f n , x) varies

from 10 2 to 10 35 (for x = fl(1 . 333) , that corresponds to the degree range n = 3 , . . . , 42). These huge condition numbers have

some meaning since here the coefficients of p n and q n and the value x are chosen to be exact floating-point numbers.

We experiment both RatEval and CompRatEval . For each rational function f n , the exact value f n (x) is approximate with a

high accuracy thanks to the Symbolic Math Toolbox of MATLAB. Fig. 1 presents the relative accuracy | y − f n (x) | / | f n (x) | of

the evaluation y computed by the two algorithms.

We observe that the compensated algorithm exhibits the expected behavior. The full precision solution is computed as

long as the condition number is smaller than u

−1 ≈ 10 16 . Then, for condition numbers between u

−1 and u

−2 ≈ 10 32 , the

relative error degrades to no accuracy at all.

We now demonstrate the practical efficiency in terms of running time comparing our algorithm and up-to-date

challenger.

Since Bailey’s double-double are usually considered as the most efficient portable library to double the IEEE-754 double

precision, we consider it as a reference in the comparisons. Double-double numbers are represented as an unevaluated sum

of a leading double and a trailing double. More precisely, a double-double number a is the pair (a h , a l) of floating-point

numbers with a = a h + a l and | a l | ≤ u | a h |.

In the sequel, we present two algorithms to compute product of two double-double or a double times a double-double.

Those algorithms are taken from [1] .

502 S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503

Table 1

Measured computing times with RatEval normalised to 1.0

n RatEval CompRatEval DDRatEval

100 1.0 2.0 10.0

500 1.0 1.6 7.9

10 0 0 1.0 1.7 8.2

10,0 0 0 1.0 1.6 8.2

10 0,0 0 0 1.0 1.6 8.5

Algorithm 6.1. Product of the double-double number (a h , a l) by the double number b

function [c h , c l] = prod _ dd _ d (a h , a l , b)

[s h , s l] = TwoProduct (a h , b)

[t h , t l] = FastTwoSum (s h , (a l � b))

[c h , c l] = FastTwoSum (t h , (t l � s l))

Algorithm 6.2. Addition of the double number b to the double-double number (a h , a l)

function [c h , c l] = add _ dd _ d (a h , a l , b)

[t h , t l] = TwoSum (a h , b)

[c h , c l] = FastTwoSum (t h , (t l � a l))

The double-double library can be used to implement an Horner scheme in quadruple precision like DDHorner .

Algorithm 6.3. Horner scheme with internal double-double computations

function res = DDHorner (p, x)

s h = a n
s l = 0

for i = n − 1 : −1 : 0

[p h , p l] = prod _ dd _ d (s h , s l , x)

[s h , s l] = add _ dd _ d (p h , p l , a i)

end

res = s h

With DDHorner , we can evaluate a rational function in quadruple precision.

Algorithm 6.4. Rational function evaluation with double-double Horner scheme

function res = DDRatEval (p, q, x)

res = DDHorner (p, x) � DDHorner (q, x)

We have tested the accuracy of DDRatEval in Fig. 1 . As one can show, the accuracy of DDRatEval is very similar to the

one of CompRatEval .

We have implemented the three algorithms RatEval , CompRatEval , and DDRatEval in a C code to measure

their overhead compared to the RatEval algorithm. We have programmed these tests straightforwardly with no other

optimization than the ones performed by the compiler.

For each algorithm, we measured the ratio of its computing time over the computing time of the classic rational function

evaluation algorithm. It turned out that our compensated algorithm CompRatEval is about 2 times slower than the classic

Horner scheme. The same slowdown factor is about 10 for algorithm DDRatEval . From a practical point of view, we can

state that our algorithm is about 5 times faster than the algorithm with double-doubles.

We compared RatEval , CompRatEval and DDRatEval in term of measured computing time. We tested with random

rational functions where the degree of numerator and denominator vary from 100 to 10 0 0 0 0. Table 1

7. Conclusion

We presented a fast algorithm for the evaluation of rational functions in floating-point arithmetic. We have proved that

the accuracy of the result computed by our compensated algorithm is similar to the one given by the classic algorithm

performed in doubled working precision. The only assumption we made is that the floating-point arithmetic available on

the computer is conformed to the IEEE-754 Standard. Its low requirement make it highly portable, and our compensated

algorithm could be easily integrated into numerical libraries. Our algorithm uses only basic floating-point operations, and

only the same working precision as the data. Finally, our compensated algorithm runs much more faster than existing

implementation producing the same output accuracy. This approach can easily be generalized to rational functions where

numerators and denominators are written in other basis and for bivariate rational functions (see [4,5,10,11] for example).

S. Graillat / Applied Mathematics and Computation 337 (2018) 494–503 503

Acknowledgment

This work was partly supported by the project FastRelax ANR-14-CE25-0018-01. We are very grateful to the anonymous

referees for the detailed and very helpful review of our paper.

References

[1] X.S. Li , J.W. Demmel , D.H. Bailey , G. Henry , Y. Hida , J. Iskandar , et al. , Design, implementation and testing of extended and mixed precision BLAS, ACM

Trans. Math. Softw. 28 (2) (2002) 152–205 .
[2] S. Boldo, J.-M. Muller, Some functions computable with a fused-mac, in: P. Montuschi, E. Schwarz (Eds.), Proceedings of the 17th Symposium on

Computer Arithmetic, Cape Cod, USA, 2005, pp. 52–58, doi: 10.1109/ARITH.2005.39 .
[3] T.J. Dekker , A floating-point technique for extending the available precision, Numer. Math. 18 (1971) 224–242 .

[4] P. Du , H. Jiang , L. Cheng , Accurate evaluation of polynomials in legendre basis, J. Appl. Math. 2014 (2014) 742538:1–742538:13 .

[5] P. Du , H. Jiang , H. Li , L. Cheng , C. Yang , Accurate evaluation of bivariate polynomials, in: Proceedings of the 17th International Conference on Parallel
and Distributed Computing, Applications and Technologies, PDCAT 2016, Guangzhou, China, December 16–18, 2016, 2016, pp. 51–56 .

[6] S. Graillat , P. Langlois , N. Louvet , Algorithms for accurate, validated and fast polynomial evaluation, Jpn J. Indust. Appl. Math. 2–3 (26) (2009) 191–214 .
Special issue on State of the Art in Self-Validating Numerical Computations.

[7] S. Graillat , N. Louvet , P. Langlois , Compensated Horner Scheme, Research Report 04, quipe de Recherche DALI, Laboratoire LP2A, Universit ̧E de Perpignan
Via Domitia, France, 52 avenue Paul Alduy, 66860 Perpignan Cedex, France, 2005 .

[8] N.J. Higham , Accuracy and stability of numerical algorithms, second, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002 .

[9] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754–2008, 2008 . Available at http://ieeexplore.ieee.org/servlet/opac?
punumber=4610933 .

[10] H. Jiang , R. Barrio , H. Li , X. Liao , L. Cheng , F. Su , Accurate evaluation of a polynomial in chebyshev form, Appl. Math. Comput. 217 (23) (2011)
9702–9716 .

[11] H. Jiang , S. Li , L. Cheng , F. Su , Accurate evaluation of a polynomial and its derivative in bernstein form, Comput. Math. Appl. 60 (3) (2010) 744–755 .
[12] D.E. Knuth , The Art of Computer Programming, 2, Seminumerical Algorithms, third, Addison-Wesley, Reading, MA, USA, 1998 .

[13] Y. Nievergelt , Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit, ACM Trans.

Math. Softw. 29 (1) (2003) 27–48 .
[14] T. Ogita , S.M. Rump , S. Oishi , Accurate sum and dot product, SIAM J. Sci. Comput. 26 (6) (2005) 1955–1988 .

http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0001a
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0001a
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0001a
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0001a
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0001a
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0001a
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0001a
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0001a
https://doi.org/10.1109/ARITH.2005.39
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0002
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0002
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0003
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0003
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0003
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0003
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0004
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0005
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0006
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0006
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0006
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0006
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0007
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0007
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0009
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0009
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0009
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0009
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0009
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0009
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0009
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0010
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0010
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0010
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0010
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0010
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0011
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0011
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0012
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0012
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0013
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0013
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0013
http://refhub.elsevier.com/S0096-3003(18)30448-X/sbref0013

	An accurate algorithm for evaluating rational functions
	1 Introduction
	2 Floating-point arithmetic
	3 Compensated Horner scheme
	4 Classic evaluation of rational functions
	5 A compensated algorithm for evaluating rational functions
	6 Numerical experiments
	7 Conclusion
	 Acknowledgment
	 References

