Master IMA, VISION
Optical flow estimation from a sequence of images

Dominique.Bereziat@lip6.fr
2023-2024
Sorbonne Université
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Guided regularizations

Large displacements

Illumination changes and occlusion

Alternatives approaches

Evaluation

Appendix
L₂ regularization is a smoothing process

- The regularization term (a L₂ norm on velocity gradient) is a smoothing process:

\[
E(w) = \int_{\Omega} (\nabla I \cdot w + I_t)^2 \, dx + \int_{\Omega} \alpha \| \nabla w \|^2 \, dx
\]

\(E_{\text{data}} \)
\(E_{\text{regul}} \)

Gradient: \(\nabla E(w) = 2 \nabla I (\nabla I \cdot w + I_t) - 2 \alpha \Delta w \)

- Let’s consider the family \((w_\tau)_{\tau \geq 0} \) of functions defined by:

\[
\begin{align*}
 w(x, 0) &= 0 \quad x \in \Omega \\
 \frac{\partial w_\tau(x, t)}{\partial \tau} + \alpha \Delta w_\tau(x, t) &= \nabla I (\nabla I \cdot w_\tau(x, t) + I_t) \quad (1)
\end{align*}
\]

- Stationary solutions of (1) (i.e. do not depend on \(\tau \)) are solution of \(\nabla E(w) = 0 \) (as \(\frac{\partial w_\tau}{\partial \tau} = 0 \))

- \(w_\infty = \lim_{\tau \to \infty} w_\tau \) is a stationary solution
\(L_2 \) regularization is a smoothing process (cont’d)

- Equation (1) is called *Euler-Lagrange* equation associated to the problem of minimizing \(E \) (Eq. (??))

- This is a diffusion equation (see my lecture in TADI on scales spaces) with a forcing term (right member of Eq. (1))

- Discretization of Eq. (1) leads to a Gauss-Seidel method (iterative method for matrix inversion, similar to Horn and Schunk method, Eqs. (??) and (??))

- Avoid the smoothing effect induced by diffusion: use non-linear diffusion (guided or not by the image values)
Oriented regularization: [Nagel, 1987]

- Preserved velocity map discontinuities by smoothing along edges contours
- Regularing term in Horn and Schunck cost function is rewritten as:

\[E_{\text{regul}} = \int_{\Omega} \alpha \text{tr} \left((\nabla w)^T \nabla w \right) \, dx \, dy \]

- Indeed:
 - \[\nabla w = \begin{pmatrix} \nabla u & \nabla v \end{pmatrix} = \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix} \]
 - \[\nabla w^T \nabla w = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix} = \begin{pmatrix} u_x^2 + u_y^2 & \cdots \\ \cdots & v_x^2 + v_y^2 \end{pmatrix} \]
 - \[\text{tr}(\nabla w^T \nabla w) = u_x^2 + u_y^2 + v_x^2 + v_y^2 \]
• Nagel considers the following norm:

\[E_{\text{regul}} = \int_{\Omega} \alpha \text{tr} \left((\nabla w)^T V \nabla w \right) \, dx \, dy \]

with \(V \) a \(2 \times 2 \) matrix such as:

\[
V = \frac{1}{\|\nabla I\|^2_2 + 2\delta} W
\]

\[
W = \begin{pmatrix}
I_y^2 + \delta & -I_x I_y \\
-I_x I_y & I_x^2 + \delta
\end{pmatrix}
\]

• Parameter \(\delta \) allows \(V \) to be invertible: \(\delta = 0 \Rightarrow \det(W) = 0 \)

• \(W \) is divided by a normalization term.
Nagel oriented regularization (cont’d)

- With $\delta > 0$, V is always well defined
- In the following, consider $\delta = 0$
 - W writes:
 $$W = \begin{pmatrix} -l_y \\ l_x \end{pmatrix} \begin{pmatrix} -l_y & l_x \end{pmatrix} = U^T U$$
 with $U = \begin{pmatrix} l_y & l_x \end{pmatrix}$
 - The regularization term now writes:
 $$\int_{\Omega} \text{tr} \left((U \nabla w)^T (U \nabla w) \right) \, dx$$
 and after expansion:
 $$\int_{\Omega} \text{tr} \left(\begin{pmatrix} -l_y u_x + l_x u_y \\ \cdots \\ -l_y v_x + l_x v_y \end{pmatrix}^2 \begin{pmatrix} \cdots \\ -l_y v_x + l_x v_y \end{pmatrix} \right) \, dx$$
Nagel oriented regularization (cont’d)

- Interpretation:
 - if ∇u and ∇v have the same direction than ∇I, the regularization is close to zero
 - In this case: no diffusion, no smoothing, discontinuities of w are preserved
 - Along edges no smoothing, outside velocity map is smoothed

- Alternative writing:

$$E_{\text{regul}}(w) = \int_{\Omega} \frac{\alpha}{\|\nabla I\|_2^2 + 2\delta}$$

$$[(-l_y u_x + l_x u_y)^2 + (-l_y v_x + l_x v_y)^2 + \delta(\nabla u^2 + \nabla v^2)] dx dy$$

a combination of an uniform smoothing and an oriented diffusion tuned by δ and guided by image configuration

- Two parameters drive the regularization: α and δ
Nagel oriented regularization (cont’d)

- Associated Euler-Lagrange equations:

\[
\begin{align*}
 u^{k+1} &= \eta(u^k) - l_x \frac{l_x \eta(u^k) + l_y \eta(v^k) + l_t}{\alpha + l_x^2 + l_y^2} \\
 v^{k+1} &= \eta(v^k) - l_y \frac{l_x \eta(u^k) + l_y \eta(v^k) + l_t}{\alpha + l_x^2 + l_y^2}
\end{align*}
\]

with:

\[
\begin{align*}
 \eta(f) &= \bar{f} - 2l_x l_y f_{xy} - q \nabla f \\
 q &= \frac{1}{l_x^2 + l_y^2 + 2\delta} \nabla I^T \left[\begin{pmatrix} l_{yy} & -l_{xy} \\ -l_{xy} & l_{xx} \end{pmatrix} + 2 \begin{pmatrix} l_{xx} & l_{xy} \\ l_{xy} & l_{yy} \end{pmatrix} \right]
\end{align*}
\]
Figure 1: Hamburg’s Taxi sequence, $\delta = 10, \alpha = 25$
Figure 2: Animation
Figure 3: Hamburg’s Taxi sequence, $\delta = 10, \alpha = 1$
Figure 4: Animation
Nagel oriented regularization: concluding remarks

- Allow discontinuities
- Nagel regularization is a non linear diffusion (see TADI, scales spaces)
- Another non linear diffusion schemes, guided by image configurations, are possible:
 - isotropic diffusion [Alvarez et al., 1999]:
 \[E_{\text{regul}} = \int \phi(|\nabla I|) \| \nabla w \|^2 dx, \text{ with } \phi \text{ decreasing function} \]
 - ...
- Norms can also depends only on velocity map configuration (flow-guided)...
The quadratic term strongly penalizes discontinuities.
\(L_1 \) regularization: [Cohen, 1993]

- Consider the minimization problem:

\[
E(w) = \int_{\Omega} (\nabla I \cdot w + I_t)^2 dx + \alpha \int_{\Omega} \left(\sqrt{u_x^2 + u_y^2} + \sqrt{v_x^2 + v_y^2} \right) dx
\]

- Gradient of \(L_1 \):

\[
\frac{\partial L_1}{\partial u} = - \frac{\partial}{\partial x} \left(\frac{u_x}{\sqrt{u_x^2 + u_y^2}} \right) - \frac{\partial}{\partial y} \left(\frac{u_y}{\sqrt{u_x^2 + u_y^2}} \right),
\]

\[
\frac{\partial L_1}{\partial v} = - \frac{\partial}{\partial x} \left(\frac{v_x}{\sqrt{v_x^2 + v_y^2}} \right) - \frac{\partial}{\partial y} \left(\frac{v_y}{\sqrt{v_x^2 + v_y^2}} \right),
\]
L_1 regularization

- Euler-Lagrange equations associated to Cohen’s cost function can be approximated using numerical scheme proposed in Perona and Malik [Perona and Malik, 1990], or Rudin et al. [Rudin et al., 1992]
- L_1 norm is a particular case of a norm family writing $\Psi(\|\nabla f\|)$ with Ψ a monotone increasing real function
- L_2 norm: $\Psi(s) = s^2$, L_1 norm: $\Psi(s) = |s| = \sqrt{s^2}$
- Huber L_1 norm (a smooth and derivable L_1 norm):
 \[
 \Psi(s) = \begin{cases}
 z^2/(2\mu) & \text{if } |z| \leq \mu \\
 |z| - \mu/2 & \text{otherwise}
 \end{cases}
 \]
- alternative writing: $\Psi(s) = \sqrt{s^2 + \epsilon}$
- Geman-McClure norm: $\Psi(s) = \frac{s^2}{\mu^2 + s^2}$
- Lorentz norm: $\Psi(s) = \log(1 + \frac{s^2}{\sigma^2})$
Norm robust to discontinuities

Figure 5: Geman (green), Lorentz (red), L_1 (blue)

- Geman and Lorentz norms don’t penalize discontinuities
Robust norms

- General formulation:

\[
E(w) = \int_{\Omega} \psi_1(\nabla I \cdot w + I_t)^2 dx + \alpha \int_{\Omega} \psi_2(\|\nabla w\|)^2 dx
\]

- Assume \(\psi^1\) and \(\psi^2\) derivable:

\[
\nabla E(w) = \nabla I \psi_1'(\nabla I \cdot w + I_t) - \alpha \nabla \cdot \left(\frac{\nabla w}{\|\nabla w\|} \psi_2'(\|\nabla w\|) \right)
\]

- A robust norm for the data term: allow to be robust to noise and not penalize large deviation to optical flow constraint

- Issue: introducing non linear terms lead to a non convex optimization problem
Non convex optimization: [Zach et al., 2007]

- Consider the non convex cost function:

\[E(w) = \int_{\Omega} \left(|\nabla I \cdot w + I_t| + \alpha \|
abla w\| \right) dx \quad (2) \]

- Idea: transform the non convex optimization problem into a series of convex optimization problems

- Introduce the auxiliary variable \(w' \) and the new cost function:

\[E_{\theta}(w, w') = \int_{\Omega} \left(|\nabla I \cdot w' + I_t| + \frac{1}{2\theta} \|w - w'\|^2 + \alpha \|
abla w\| \right) dx \]

- When \(\theta \) tends to zero, \(E_{\theta} \) becomes an approximation of (2) and \(w' \) tends to \(w \)

- \(E_{\theta} \) can be decoupled into two convex optimization problems
Non convex optimization: Zack et al. (cont’d)

• Minimize $E_\theta(w, w')$ w.r.t. to w and w' is equivalent to alternatively minimize the two following convex problems:

 1. w' fixed, find w minimizing:

$$\int_{\Omega} \left(\frac{1}{2\theta} \|w - w'\|^2 + \alpha \|\nabla w\| \right) dx$$ \hspace{1cm} (3)

 2. w fixed, find w' minimizing:

$$\int_{\Omega} \left(|\nabla I \cdot w' + I_t| + \frac{1}{2\theta} \|w - w'\|^2 \right) dx$$ \hspace{1cm} (4)

• Problem (3) has been studied by Rudin et al. [Rudin et al., 1992] in a context of image denoising

• Problem (4) can be solved in a direct way
Zach et al. method: results

- Numerical schemes are available in [Chambolle, 2004]
- Source code: http://www.ipol.im/pub/art/2013/26

Figure 6: Horn & Schunck, Nagel, Zach
Zach et al. method: concluding remarks

- Zack et al. deal with a non convex optimization, solved using the *split* Bregman technique
- L_1 norm on ∇w allows to reconstruct velocity map with discontinuities
- L_1 norm on data term: robust to noise and lack of contrast (black taxi velocity better estimated)
- In practical case: the convergence is fast
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Guided regularizations

Large displacements

Illumination changes and occlusion

Alternatives approaches

Evaluation

Appendix
Large displacements

- The linear optical flow constraint

\[\nabla I \cdot w + I_t = 0 \]

is an approximation of the non linear transport equation

\[I(x + w\delta t, t + \delta t) = I(x, t) \]

- In practical case, only available for small displacements \((w\delta t \leq 2)\)
- \(\delta t\) is given by experimental condition, it is not an hyper parameter
- How to deal with large displacements?
 - For instance: can we try to solve the non linear optical flow equation?
 - and is it possible in a variational framework?
Yes, it is if we can determine the gradient of

$$E_{\text{data}}(w) = \int_{\Omega} (l(x + w\delta t, t + \delta t) - l(x, t))^2 dx$$

- Gâteau derivative:

$$\lim_{\gamma \to 0} \frac{E_{\text{data}}(u + \gamma f, v) - E_{\text{data}}(u, v)}{\gamma}$$

- Previous expression contains a term in γf that tends to zero (limit): one can introduce a linear Taylor expansion without error

- Finally we can derive:

$$\frac{\partial E_{\text{data}}}{\partial w}(x) = 2\delta t \nabla l(x + w\delta t, t + \delta t) [l(x + w\delta t, t + \delta t) - l(x, t)]$$

- It is not magic: ∇l is not explicitly given and obtained by approximation
Large displacements: solving non linear optical flow equation

- $\delta t = 1$: minimize $\int_{\Omega} \left(l(x+w, t+1) - l(x, t) \right)^2 + \alpha \| \nabla w \|^2 \, dx$

- Euler-Lagrange associated equations:

$$\frac{\partial w_\tau}{\partial \tau} = \nabla l(x + w_\tau, t+1) [l(x + w_\tau, t+1) - l(x, t)] - \alpha \Delta w_\tau$$

- Approximated by an Euler scheme:

$$\frac{\partial w}{\partial \tau}(k\lambda) \approx \frac{w^{k+1} - w^k}{\lambda}$$

and a semi-implicit scheme1:

$$w^{k+1} + \lambda \Delta w^{k+1} = w^k + \alpha \lambda \nabla l(x+w^k, t+1) [l(x+w^k, t+1) - l(x, t)]$$

- Need to evaluate $l(x + w^k, t+1)$ and $\nabla l(x + w^k, t+1)$ using bilinear interpolation2

1Due to numerical considerations, see TADI lecture on scales spaces

2x + w^k do not belong to the spatial grid

• Principle of multi-resolution/multi-grid approaches:
 • from data, build a hierarchy of resolution (as a series of low-pass filter and 2×2 subsampling),
 • start from the lowest resolution, compute a first guest
 • from a coarse resolution to the next finer: compute an accurate solution

• Applied to optical flow estimation: at each resolution the hypothesis of small displacements (linear optical flow) holds:
 1. At the coarsest resolution (image of size 2×2): the linear optical flow equation is correct (at most displacement of one pixel)
 2. From a resolution to the next fine: the upsampled optical flow is refined with a 2×2 local estimation
Large displacements: building the pyramid of resolutions

- \(I(x, y, t) \) original image (level 0, finest resolution): \(I^0(x, y, t) \)
- level \(k \) to level \(k + 1 \):

\[
I^{k+1}(x, y, t) = \downarrow (I^k \ast G_\sigma)(x, y, t)
\]

- \(\downarrow \) downsampling operator (keep 1 pixel over 4)
- Anti-aliasing filter: Gaussian smoothing with standard deviation of \(\sigma = 2 \)
- \(\Omega^k \) spatial domain of level \(k \) verifying:

\[
\Omega^N \subset \cdots \subset \Omega^{k+1} \subset \Omega^k \subset \cdots \subset \Omega^0
\]

- Minimal resolution, level \(N \): an image reduced to \(2 \times 2 \) pixels
- We have \(N = \log_2 |\Omega| - 1 \).
Large displacements: building the pyramid of resolutions (cont’d)

Pyramid of resolutions (here two levels):

\[w^0 = \uparrow w^1 + dw^0 \]
Large displacements: compute velocity at level k from level $k + 1$

- Notation: w^k velocity at level k
- dw^k: increment of velocity computed at level k such that:

$$\uparrow w^{k+1} + dw^k = w^k$$

with \uparrow the upsampling operator
- Non linear optical flow constraint at level k:

$$D^k(x, t) = I^k(x + w^k dt, t + dt) - I^k(x, t)$$

$$= I^k(x + (\uparrow w^{k+1} + dw^k) dt, t + dt) - I^k(x, t)$$

$$= 0$$

- w^{k+1} is given (estimation at coarse resolution), dw^k explains velocity difference between levels $k + 1$ and k: 2×2 upsampling, so $|du^k|, |dv^k| \leq 2$, the linear optical flow is a correct approximation
Large displacements: compute velocity at level k from level $k+1$ (cont’d)

- We write:
 \[
 I^k(x + (\uparrow w^{k+1} + dw^k)dt, t + dt) = I^k((x + \uparrow w^{k+1} dt) + dw^k dt, t + dt)
 \]

- First order Taylor expansion of I^k at pixel $x + \uparrow w^k + 1dt$:
 \[
 I^k((x + \uparrow w^{k+1} dt) + dw^k dt, t + dt) \simeq I^k(x + \uparrow w^{k+1} dt, t + dt) + \nabla I(x + \uparrow w^{k+1}, t + dt)dw^k dt
 \]

- D^k becomes:
 \[
 D^k(x, t) = I^k(x + \uparrow w^{k+1} dt, t + dt) - I^k(x, t) \\
 + \nabla I^k(x + \uparrow w^{k+1} dt, t + dt)dw^k dt \\
 = 0
 \]
Large displacements: compute velocity at level k from level $k+1$ (cont’d)

• Let’s introduce the shifted image difference between level k and $k + 1$:

$$l^k_{\text{shift}}(x, w^{k+1}, t) = l^k(x + \uparrow w^{k+1} dt, t + dt) - l^k(x, t)$$

• Equation $D^k = 0$ writes:

$$\frac{1}{dt} l^k_{\text{shift}}(x, w^{k+1}, t) + \nabla l^k(x + \uparrow w^{k+1} dt, t + dt) dw^k = 0 \quad (5)$$

• Eq. (5) is called incremental optical flow equation, it is of same nature that the linear optical flow equation Eq (??) with a shifted spatial gradient and a shifted temporal gradient as data

• dw^k can be obtained with one of the optical flow methods previously studied, for instance (Horn & Schunk, Lucas & Kanade...), see:
 • global approach: [Proesmans et al., 1994]
 • local approach: [Bergen et al., 1992]
Large displacements and multiresolution approaches: algorithm

1. Build the pyramid of resolution I^k

2. Coarse level N: $w^N = \vec{0}$, estimation of dw^N

3. Level k: estimation of dw^k from w^{k+1} and I^k by solving:

$$\frac{1}{dt} l_{\text{shift}}^k(x, \uparrow w^{k+1}, t) + \nabla l_{\text{shift}}^k(x, \uparrow w^{k+1}, t) dw^k = 0$$

4. Update $w^k = w^{k+1} + dw^k$, $k = k - 1$

5. Iterate steps 3. and 4. up to $k = 0$
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Guided regularizations

Large displacements

Illumination changes and occlusion

Alternatives approaches

Evaluation

Appendix
Illumination change: [Brox et al., 2004]

- Global illumination change is a common issue
- Model: \(I(x, t + 1) = I(x + w, t) + c, \ c \) biais
- Simple remark:
 \[I(x, t + 1) = I(x + w, t) + c \Rightarrow \nabla I(x, t + 1) = \nabla I(x + w, t) \]
- Brox et al proposal: two data term in the cost function
 - one for brightness constancy
 - one for gradient brightness constancy
- Two constraints, but the problem remains ill-posed, why?
- Cost function:

\[
E(w) = \int \left[\|I(x + w, t + 1) - I(x, t)\|^2 \right] dx \\
+ \int \gamma \|\nabla I(x + w, t + 1) - \nabla I(x, t)\|^2 dx \\
+ \int \alpha \|\nabla w\|^2 dx
\]
Object occlusion

- Occlusion occurs when an object is in front of another one.
- The optical flow equation does not hold for occluded objects.
- What can we do?
 - Detect regions of occlusion: estimation of velocity will be not relevant in these regions.
 - Extrapolate, interpolate velocity map on these regions.
• A 2-stage algorithm:
 1. detection of the occlusion regions:
 • Estimation of optical flow between images 1 and 2: w_{12}
 • Estimation of retrograd optical flow, i.e. between images 2 and 1: w_{21}
 • occlusion at pixel x if w_{12} is significantly different from $-w_{21}$
 2. Estimation of velocity inside the occlusion regions:
 • use of an in-painting method (see TADI lecture on scale space): use of guided norm, w is smoothing in the direction of w inside these regions

• Stages 1. and 2. are repeated until convergence
• Joint estimation of optical flow and inpainting is also possible
Horn and Schunck issues: concluding remarks

Figure 7: Large displacements, discontinuous vector field, occlusions

Figure 8: Ground truth, Horn and Schunk (1981), Sun et al (2010)
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Alternatives approaches

Data assimilation

Neural networks

Evaluation

Appendix
Data assimilation approach

- A formalism for inverse problems: knowing some partial observation of a physical system and a background, knowing physics of the system (time evolution), and knowing statistics of errors (covariances matrices), how to retrieve the system?
- a state vector \(X_t \in \mathbb{R}^n \) describes the physical system over time \(t \in [0, T] \)
- a model \(\mathbb{M} \) (physics) rules the time evolution of \(X \):
 \[
 X_{t+1} = \mathbb{M}_t X_t
 \]
- we have a first guess (background) of the initial condition of \(X \):
 \[
 X_0 = X_b + \epsilon_B, \quad \epsilon_B \text{ assumed Gaussian of covariance } B
 \]
- we have partial observation \(Y \in \mathbb{R}^d \) of \(X \):
 \[
 Y_t = \mathbb{H}_t X_t + \epsilon_{R_t}, \quad R_t \text{ assumed Gaussian of covariance } R_t
 \]
 \(\mathbb{H} \) is called observation operator. As \(d < n \), it is non invertible
Data assimilation approach: 4DVar formalism

• The question: how to retrieve the initial condition X_0 satisfying the system?

\[
X_0 = X_b + \epsilon_B \\
X_{t+1} = M_t X_t \\
Y_t = H_t X_t + \epsilon_{R_t}
\]

(6)
(7)
(8)

• From Eq. (7): $X_t = M_{t-1} \cdots M_1 M_0 X_0 = M_0 \rightarrow_t X_0$
\[\Rightarrow X \text{ only depends on } X_0\]

• To answer to the question: find X_0 that minimizes

\[
J(X_0) = \left\| X_0 - X_b \right\|_B^2 + \sum_{t=0}^{T} \left\| Y_t - H_t X_t \right\|_{R_t}^2
\]

s.t. Eq. (7)

Notation: $\left\| \epsilon \right\|_A^2 = \int \epsilon^T(x) A^{-1}(x) \epsilon(x) dx$
Minimize the 4DVar cost function

\[J(X_0) = \| X_0 - X_b \|_B^2 + \sum_{t=0}^{T} \| Y_t - \mathbb{M}_t X_t \|_{R_t}^2 \]

- Gradient of \(J \) (assuming \(\mathbb{M} \) and \(\mathbb{H} \) linear) is:

\[
\nabla J(X(t_0)) = 2B^{-1}(X(t_0) - X_b)
+ 2 \left[\mathbb{H}_0^T R_0^{-1} D_0 + \mathbb{M}_1^T \left[\mathbb{H}_1^T R_1^{-1} D_1 + \cdots + \mathbb{M}_T^T \mathbb{H}_T^T R_T^{-1} D_T \right] \right]
\]

with \(D_t = Y_t - \mathbb{H}_t X_t \)

- In practice, gradient can also be obtained using automatic differentiation (ex: Autograd for Pytorch)

- Minimum of \(J \) is achieved by steepest descent with a Quasi-Newton solver (ex: L-BFGS)
4DVar diagram (in a DL spirit)

\[||\varepsilon_b||^2_B \]

\[X_b \]

\[X_0 \]

\[M_{0\rightarrow t} \]

\[X_t \]

\[M_{t\rightarrow T} \]

\[X_T \]

\[H_0 \]

\[Y_0 \]

\[\|\varepsilon_{R_0}\|^2_{R_0} \]

\[H_t \]

\[Y_t \]

\[\|\varepsilon_{R_t}\|^2_{R_t} \]

\[H_T \]

\[Y_T \]

\[\|\varepsilon_{R_T}\|^2_{R_T} \]

control variables

data

numerical cost

estimation
Application to optical flow estimation

- Physical system: a scalar map, I, is advected by a velocity map, w
 \[X = \begin{pmatrix} I \\ w \end{pmatrix}^T \]
- From this system we observe the scalar map at various acquisition dates t: $Y_t = I(., t)$, and we want to retrieve w
- Observation operator is then the projection of X into the subspace \mathbb{R}^d of observation: $HX = Y$
- Advection is the physical process ruling the state vector in time:
 \[\frac{\partial I}{\partial t} + \nabla I(t) \cdot w(t) = 0 \]
 \[\text{(9)} \]
 while velocity will be supposed stationary
- After time discretisation, \mathcal{M} writes such as:
 \[I_{t+1} = I_t + \Delta t \nabla I_t \cdot w_t \]
 \[\text{(advection)} \]
 \[w_{t+1} = w_t \]
 \[\text{(stationarity)} \]
- Δt is the time step
Application to optical flow estimation (cont’d)

- Possible choice of background: $X_b = (\vec{0} \; I_0)^T$
 - we never observe w

- We assume no spatial correlation on Y:
 - R_t is diagonal and $R_t(x)$ gives the variance noise acquisition as pixel x

- Missing data: set $R_t^{-1}(x) = 0$
 - we can use 4DVar for inpainting!

- No observation at time t: set $R_t^{-1} \equiv 0$:
 - we control the number of time steps, no need of multi-resolution scheme to respect the optical flow assumption ($t + 1 = t + N \times \Delta t$, with $\Delta t = 1/N$ arbitrarily small)

- Optical flow estimation, even in a 4DVar formalism, remains ill-posed and need regularization
 - Regularization of w_0 can be embedded in matrix B:
 derivation being linear, it exists B such as: $\|X_0 - X_b\|_B^2 = \alpha \|\nabla w_0\|^2$
Some results: Inpainting on ocean images

Evaluation on ground truth

Cloud cover inpainting
Some results: Rain nowcasting

Figure 9: left and middle: two radar rainmaps for two successive times acquisition; right: the motion and its intensity estimated from theses observation

- Forecast is done by applying $\mathbb{M}_{0 \rightarrow t}$ on last observation and the estimated velocity map
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Alternatives approaches

Data assimilation

Neural networks

Evaluation

Appendix
Limitations of variational approaches

- Model used (brightness constancy, regularization) remain imperfect and not always justified: need of more general models, whose parameters would be learned with supervised machine learning techniques

- Short state-of-the-art:
 - Black et al [Black et al., 1997]: PCA computed on a training set, motion is seen as a linear combination of eigenvector. The optical flow equation is projected onto the PCA basis leading to a linear regression problem. No regularization.
 - Rosenbraum et al [Rosenbraum et al., 2013]: motion models as a Gaussian mixture
 - Sun et al [Sun et al., 2008]: image are pre-processed with a bank of FIR filters, filters are learned (by likelihood maximization) before compute the optical flow
Deep neural networks

- Following Sun’s idea, CNN can be used to learn motion estimation filter
 - at first order: the linear optical flow equation, as well regularization, use differential operators that can be learned with convolution kernels ⇒ convolutional networks
 - at second order: universal approximation theorem, [Hornik et al., 1989], a network with an hidden layer can approximate any continuous function ⇒ deep networks
- Availability of huge databases for motion estimation (KITTI, SINTEL...) permits to train deep CNN, with a limitation, these databases being synthetic and a lack of realism
Flownet [Dosovitskiy et al., 2015]

- FlownetS (Simple) and FlownetC (Correlated)

Figure 10: Both figures from [Dosovitskiy et al., 2015]

- Details of the green box:
Flownet [Dosovitskiy et al., 2015]

- "U-Net" architecture:
 - Encoder into a latent space, then decoder
 - Skip connection between each resolution downsample
- Encoder, two versions:
 - FlownetS ('Simple'): input data are stacked into channels (2 consecutive RGB images = 6 channels) than encoded
 - FlownetC: ('Correlation'): two separate stages, one by images. Then features are merged with a correlation product (unlearned) before to be encoded into the latent space
- The network learns the evolution law between a pair of images: richer than the advection
- The encoder/decoder architecture mimics a multiresolution scheme
- Loss function: \(\mathcal{L}(w, \hat{w}) = \|w - \hat{w}\| \) (supervised training)
- Better results for FlownetC than FlownetS
The “Flying chairs” database

- Dataset of 45 Gb, semi-synthetic images

 ![Image of chairs]

- Size required to train correctly FlowNet.

 https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html

- Train: several hours on a huge GPU

- still outperformed by the best variationnal approaches (on small displacements specially)
- Spynet: standard multiresolution pyramid without latent space

Figure 11: From [Ilg et al., 2017]

- Outperforms Flownet
- Flownet2: combination of several FlownetS and FlownetC, with a module dedicated to “small displacements” outperforms Spynet
RAFT [Teed and Deng, 2020]

- Recurrent All-Pairs Field Transforms for Optical Flow

Figure 12: From [Teed and Deng, 2020]

- Architecture:
 - a Feature encoder, similar to FlownetC, but the correlation is **4D between all-pairs** of pixel feature of the two input images
 - Iterative update: a multiresolution strategy \(w^{k+1} = \Delta w + w^{k-1} \), obtained from successive pooling of 4D correlation and a GRU module
 - Loss: weighted \(L_1 \) EPE on each \(w^k \), supervised.
Unsupervised training

- Training sets are not always realist, how to train without ground truth?
- Change the loss function: consider the reconstruction error instead of EPE

Figure 13: From [Yu et al., 2016]
The optical flow constraint is embedded in the loss

\[\mathcal{L}_{EPE}(w, w^{GT}) = \|w - w^{GT}\| \Rightarrow \mathcal{L}_{warp}(I_1, I_2, w) = \|I_1 - \text{Warp}(I_2, w)\| \]

Remains ill posed! Regularization is required:

\[\mathcal{L}_{\text{smooth}}(w) = \|\nabla w\| \]

Issue: the optical flow constraint must be verified for correct performance

At this moment, unsupervised approaches remain less accurate, work in progress (Deep Image Prior...).
Semi-supervised training with GAN [Lai et al., 2017]

- Generator: a NN $G(l_1, l_2)$ producing a velocity \tilde{w} minimizing the warping loss
- Idea for a discriminator D: train a NN such a:

$$D(\tilde{w}) = \begin{cases}
1 & \text{if } \tilde{w} \text{ produced from a ground truth} \\
0 & \text{if } \tilde{w} \text{ is computed by } G
\end{cases}$$

- D knows the ground truths, G is trained to make D wrong
Evaluation: introduction

- Difficulty of evaluation without ground truth
- Ground truth remains possible in some cases
 - synthetic images (coming from computer graphics)
 - useful as proof of concept
 - but not always realistic
 - real data
 - possible in some cases (controlled or known rigid/articulated motions, \textit{in situ} measures)
 - but costly and complex to set up
- others and general cases
 - human validation: measuring displacement of objects/regions/points of interest
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues
Alternatives approaches

Evaluation

Introduction

Qualitative evaluation (visualization)

Quantitative evaluation (benchmarks)

Appendix
Comparison of sparse vector field

Example of Hamburg’s taxis (no ground truth)

Figure 14: Horn and Schunck (red), Zack *et al* (blue)

With Matlab/Matplotlib: `quiver()`
Evaluation by visualization: Middlebury colormap

- Dense representation: Middlebury colormap\(^3\)
- Color wheel: velocity direction, color saturation: velocity magnitude

Figure 15: \(L_2\) (left), TV-\(L_1\) (right)

\(^3\)http://vision.middlebury.edu/flow/
Evaluation by visualization: velocity magnitude

- Dense representation with velocity magnitude (norm):
 \[\|w\| = \sqrt{u^2 + v^2}\]

Figure 16: \(L_2\) (left), \(TV-L_1\) (right)
Evaluation by visualization: stream lines

- Stream lines: trajectory of point $x_0 \in \mathbb{R}^2$ transported by a static vector field $w(x)$ (here, stationary velocities, no time)

- Solve:

$$\frac{\partial x}{\partial s}(s) = w(x(s)) \quad s \in [0, 1] \quad (12)$$

$$x(0) = x_0$$

- Solution (integration):

$$x(s) = x_0 + \int_0^s w(x(u))du$$

- Resolution using a 4-order Range-Kutta scheme (i.e. $w(x(u))$ is evaluated by bilinear interpolation)
Evaluation by visualization: stream lines (cont’d)

- Stream lines:

Figure 17: function stream2() (Matlab) streamplot() (Matplotlib)
• Line Integral Convolution (LIC): dense visualization of stream lines
• Determination of stream lines, Eq (12)
• Integration using the following way:

\[\text{LIC}(x_0) = \int_{\mathbb{R}} k(u - u_0) T(x(u)) du \]
\[x_0 = x(u_0) \]

• \(T \): image of texture (uniform noise)
• Convolution kernel \(k \) determine a window over the stream line:
 • \(k(u) = \frac{1}{2L} 1_{[-L,+L]} \)
 • or \(k \) Gaussian kernel of variance \(L \)
Figure 18: L_2 (left), TV-L_1 (left)
Evaluation by visualization: trajectories

- Temporal trajectory: points transported by a non stationary velocity field $w(x, t)$

- Modification of Eq (12):

\[\frac{\partial x}{\partial t} = w(x, t) \]
\[x(0) = x_0 \]

- Integration:

\[x(t) = x_0 + \int_0^t w(x(u), u)du \]

- Use of 4-order Rung-Kutta scheme
Evaluation by visualization: trajectories (cont’d)

- Matlab: `stream3()`, Matplotlib?
- Can be combined with LIC sort a dense visualization

Figure 19: L_2 (red), TV-L_1 (blue)
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Alternatives approaches

Evaluation

Introduction

Qualitative evaluation (visualization)

Quantitative evaluation (benchmarks)

Appendix
Quantitative evaluation

- Comparison with the **ground truth**
- How to compare? visually, with statistics
- How to obtain a ground truth? Use of *twin* experiments

![Diagram showing comparison with ground truth](chart.png)
Let w be the reference, \tilde{w} the estimated.

Angular error: $\varepsilon_{AE} = \langle w, \tilde{w} \rangle = \arccos \left(\frac{w^T \tilde{w}}{\|w\| \|\tilde{w}\|} \right)$

Angular error in space-time ([Fleet and Jepson, 1990]):

$\varepsilon'_{AE} = \langle (w, 1), (\tilde{w}, 1) \rangle = \arccos \left(\frac{1 + w^T \tilde{w}}{\sqrt{(1 + \|w\|^2)(1 + \|\tilde{w}\|^2)}} \right)$

Figure 20: Angular error in space, and in space-time
Quantitative evaluation: error measurements (cont’d)

- Relative Norm Error: \(\varepsilon_{RNE} = \frac{\|w\| - \|\tilde{w}\|}{\|w\| + \epsilon} \)
- End Point Error: \(\varepsilon_{EPE} = \|w - \tilde{w}\| \) warning: an absolute error, relevant for comparison.
- Relative End Point Error: \(\frac{\|w - \tilde{w}\|}{\|w\| + \epsilon} \)
- Final statistics: mean and standard deviation of these error maps
Quantitative evaluation: Benchmarks

- First database for ranking optical flow algorithms: Baron et al [Barron et al., 1994]
 - a survey (about ten methods)
 - synthetic data with ground truth
 - evaluation using previous statistics

Figure 21: Synthetic data (with ground truth)

https://www-pequan.lip6.fr/~bereziat/barron/
Quantitative evaluation: Benchmarks (cont’d)

• and also true data:

Figure 22: True data with ground truth
Quantitative evaluation: Middlebury

- Middlebury database, [Baker et al., 2011]\(^5\)
- Synthetic and true data with ground truth known for tuning, and hidden for performance ranking

\(^5\)http://vision.middlebury.edu/flow

Figure 23: Example of synthetic data with ground truth
Figure 24: Example of true data with ground truth

- black areas: occluding regions
Quantitative evaluation: Middlebury (cont’d)

Figure 25: True and synthetic data with hidden ground truth

- Characteristics: large displacements, discontinuous velocity field, occluding
- Other databases are available: Sintel Flow Database\(^6\), KITTI (road traffic)\(^7\)...

\(^6\)http://sintel.is.tue.mpg.de/
\(^7\)http://www.cvlibs.net/datasets/kitti/
Quantitative evaluation without ground truth

- Without ground truth? One can verify the estimated velocity map transport correctly image I_1 to I_2

Figure 26: reconstruction error
Quantitative evaluation without ground truth (cont’d)

- Reconstructed image: \(I_1^{\text{warped}}(x + w(x)\delta t) = I_1(x) \)
- Issue: this process leaves uninitialized pixels in \(I_1^{\text{warped}} \) because the mapping \(x \mapsto x + w \) is not bijective application in a discrete world
- Possible solutions:
 - Initialize \(I_1^{\text{warped}}(x) = I_1(x) \) before mapping. Drawback: introduce false discontinuities
 - Fill in holes with inpainting technique. Drawback: no more false discontinuities, but not necessarily correct values
 - \(I_1^{\text{warped}}(x) = I_1(x' + w(x')) \) where \(x' \) is the pixel in \(I_1 \) that is mapped to \(x \) in \(I_2 \). Drawback: issue if \(x \) has several antecedents
- Error measurement: \(||l_2 - I_1^{\text{warped}}|| \)
Appendix

Hierarchical model-based motion estimation.

Robust dynamic motion estimation over time.

Learning parametrized models of image motion.
In *Computer Vision and Pattern Recognition*.

High accuracy optical flow estimation based on a theory for warping.

An algorithm for total variation minimization and applications.
Nonlinear variational method for optical flow computation.
In *SCIA*, pages 523–530.

Flownet: Learning optical flow with convolutional networks.
In *International Conference on Computer Vision*.

Computation of component image velocity from local phase information.

Multilayer feedforward networks are universal approximators.

Flownet 2.0: Evolution of optical flow estimation with deep networks.
In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

Occlusion-aware optical flow estimation.

Semi-supervised learning for optical flow with generative adversarial networks.
In *NIPS*.

On the estimation of optical flow: relations between different approaches and some new results.

Space scale and edge detection using anisotropic diffusion.

Raft: Recurrent all pairs field transforms for optical flow.
In European Conference on Computer Vision.

Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness.
In European Conference on Computer Vision.

A duality based approach for realtime TV-\(1\) optical flow.