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Abstract
Recently, convolutional networks (convnets) have proven
useful for predicting optical flow. Much of this success is
predicated on the availability of large datasets that require
expensive and involved data acquisition and laborious la-
beling. To bypass these challenges, we propose an unsuper-
vised approach (i.e., without leveraging groundtruth flow)
to train a convnet end-to-end for predicting optical flow be-
tween two images. We use a loss function that combines
a data term that measures photometric constancy over time
with a spatial term that models the expected variation of
flow across the image. Together these losses form a proxy
measure for losses based on the groundtruth flow. Empiri-
cally, we show that a strong convnet baseline trained with
the proposed unsupervised approach outperforms the same
network trained with supervision on the KITTI dataset.

1 Introduction
Visual motion estimation is a core research area of computer
vision. Most prominent has been the recovery of the appar-
ent motion of image brightness patterns, i.e., optical flow.
Much of this work has centred on extracting the pixelwise
velocities between two temporal images within a variational
framework [7, 13].

Recently, convolutional networks (convnets) have
proven useful for a variety of per-pixel prediction tasks, in-
cluding optical flow [3]. Convnets are high-capacity mod-
els that approximate the complex, non-linear transforma-
tion between input imagery and the output. Success with
convnets has relied almost exclusively on fully-supervised
schemes, where the target value (i.e., the label) is provided
during training. This is problematic for learning optical
flow because directly obtaining the motion field groundtruth
from real scenes — the quantity that optical flow attempts
to approximate — is not possible.

In this paper, we propose an end-to-end unsupervised ap-
proach to train a convnet for predicting optical flow between
two images based on a standard variational loss. Rather than
rely on imagery as well as the corresponding groundtruth

flow for training, we use the images alone. In particular,
we use a loss function that combines a data term that mea-
sures photometric constancy over time with a spatial term
that models the expected variation of flow across the image.
The photometric loss measures the difference between the
first input image and the (inverse) warped subsequent im-
age based on the predicted optical flow by the network. The
smoothness loss measures the difference between spatially
neighbouring flow predictions. Together, these two losses
form a proxy for losses based on the groundtruth flow.

Recovering optical flow between two frames is a well
studied problem, with much previous work founded on vari-
ational formulations [7, 2, 13, 12]. Our loss is similar to
the objective functions proposed for two-frame motion es-
timation; however, rather than optimize the velocity map
between input frames, we use it to optimize the convnet
weights over the training set of imagery.

Several recent works [3, 10] have proposed convnets that
learn the mapping between input image frames and the cor-
responding flow. Each of these approaches is presented in
a supervised setting, where images and their correspond-
ing groundtruth flows are provided. This setting assumes
the availability of a large, annotated dataset. Existing flow
datasets (e.g., KITTI [6]) are too small to support training
accurate networks. Computer generated scenes and their
corresponding flow [3, 10, 4] provide a means to address
this issue. Although some recent efforts have attempted to
semi-automate the data creation process [4], creating large,
diverse imagery remains laborious. Another possibility is
using the output of an existing optical flow estimator to pro-
vide the groundtruth [14]. This training approach may result
in learning both correct flow prediction and the failure as-
pects of the flow estimator used for training. In this work,
we avoid these drawbacks by learning flow in an unsuper-
vised manner, using only the input imagery.

Concurrent work has proposed unsupervised methods
to circumvent the need of vasts amounts of labeled data
for training. A spatiotemporal video autoencoder [11]
was introduced that incorporates a long short-term mem-
ory (LSTM) architecture for unsupervised flow and image
frame prediction. Here, we present a simpler feedforward
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convnet model targeting flow prediction alone. Most closely
related to the current paper is recent work that proposed
a convnet for depth estimation trained in an unsupervised
manner [5]. In a similar fashion to the proposed approach, a
photometric loss warps one image to another, and a smooth-
ness loss term is used to bias the predictor towards smooth
depth estimates. Unlike the current work, the manner in
which the photometric loss is handled (via a linear Taylor
series approximation) precludes end-to-end learning.

Contributions In the light of previous research, we make
the following contributions. First, we present an unsuper-
vised approach to training a convnet in an end-to-end man-
ner for predicting optical flow between two images. The
limited but valuable groundtruth flow is reserved for fine-
tuning the network and cross-validating its parameters. Sec-
ond, we demonstrate empirically that a strong convnet base-
line trained with our unsupervised approach outperforms
the same network trained with supervision on KITTI, where
insufficient groundtruth flow is available for training.

2 Technical approach

Given an RGB image pair as input, X ∈ RH×W×6, our ob-
jective is to learn a non-linear mapping (approximated by a
convnet) to the corresponding optical flow, Y ∈ RH×W×2,
where H and W denote the image height and width, re-
spectively. In Section 2.1, we outline our unsupervised loss.
Section 2.2 provides details on how the unsupervised loss is
integrated with a reference convnet architecture.

2.1 Unsupervised loss

The training set is comprised of pairs of temporally consec-
utive images, {I(x, y, t), I(x, y, t+1)}. Unlike prior work,
we do not assume access to the corresponding velocity pixel
labels, cf. [3]. Instead, we return to traditional means for
scoring a given solution, via a loss that combines a photo-
metric loss between the first image and the warped second
image, and a loss related to the smoothness of the velocity
field prediction [7]:

L(u,v; I(x, y, t), I(x, y, t+ 1)) =

`photometric(u,v; I(x, y, t), I(x, y, t+ 1))+

λ`smoothness(u,v), (1)

where u,v ∈ RH×W are the horizontal and vertical com-
ponents of the predicted flow field, respectively, and λ is a
regularization parameter that weighs the relative importance
of smoothness of the predicted flow. Note, the photomet-
ric loss can be replaced or augmented with other measures,
such as the image gradient constancy [2].

Given the predicted flow, the photometric loss is com-
puted as the difference between the first image and the back-
ward/inverse warped second image:

`photometric(u,v; I(x, y, t), I(x, y, t+ 1)) = (2)∑
i,j

ρD(I(i, j, t)− I(i+ ui,j , j + vi,j , t+ 1)),

where ρD is the data penalty function. We consider the
robust generalized Charbonnier penalty function ρ(x) =
(x2 + ε2)α to mitigate the effects of outliers [13].

To compute the non-rigid backward warp, we use the re-
cently proposed spatial transformer module [8]. This allows
the learning to be performed with standard backpropaga-
tion in an end-to-end fashion. In brief, the spatial trans-
former can be described as two parts that work in sequence:
(i) a sampling grid generator and (ii) a differentiable im-
age sampler. (The spatial transformer localization step is
not needed here as flow prediction, (u, v), provides the nec-
essary parameters for the mapping between image points
across frames.) The sampling grid is generated by the fol-
lowing pointwise transformation:(

x2
y2

)
=W(u,v)

(
x1
y1

)
=

(
x1 + u
y1 + v

)
, (3)

where (x1, y1) are the coordinates in the first image and
(x2, y2) are the sampling coordinates in the second image.
The bilinear sampling step can be written in the following
(sub-)differentiable form:

Iwarp(x1, y1, t+ 1) =

H∑
j

W∑
i

I(i, j, t+ 1)M(1− |x2 − i|)M(1− |y2 − j|),

(4)

where M(·) = max(0, ·). For details about backpropagat-
ing through this module, see [8].

Regions with insufficient image structure support mul-
tiple equally scoring velocities, e.g., the aperture problem.
To address this ambiguity, we introduce a standard robust
(piecewise) smoothness loss:

`smoothness(u,v) =

H∑
j

W∑
i

[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)

+ ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)], (5)

where ρS(·) is the (spatial) smoothness penalty function re-
alized by the generalized Charbonnier function.

A summary of our proposed unsupervised approach for
flow prediction is provided in Fig. 1.
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Figure 1: Overview of our unsupervised approach.

Figure 2: “FlowNet Simple” architecture. Two images are
taken as input, and an optical flow prediction is generated
using a multi-stage refinement process. Feature maps from
the contractive part, as well as intermediate flow predic-
tions, are used in the “upconvolutional” part.

2.2 Network architecture
We use “FlowNet Simple” [3] as a reference network. This
architecture consists of a contractive part followed by an ex-
panding part. The contractive part takes as input two RGB
images stacked together, and processes them with a cascade
of strided convolution layers. The expanding part imple-
ments a “skip-layer” architecture that combines information
from various levels of the contractive part with “upconvolv-
ing” layers to iteratively refine the coarse flow predictions.
The FlowNet Simple architecture is illustrated in Fig. 2.

In this work, we use a loss comprised of a final loss and
several intermediate losses placed at various stages of the
expansionary part. The intermediate losses are meant to
guide earlier layers more directly towards the final objective
[9]. In FlowNet, the endpoint error (EPE), a standard error
measure for optical flow, is used as the supervised training
loss. As a proxy to per-pixel groundtruth flow, we replace
the EPE with the proposed unsupervised loss, (1).

3 Empirical evaluation

3.1 Datasets
Flying Chairs This synthetic dataset is realized by
applying affine mappings to publicly available colour
images and a rendered set of 3D chair models. The dataset
contains 22, 232 training and 640 test image pairs with
groundtruth flow. To cross-validate the hyper-parameters
and monitor for overfitting in learning, we set aside 2, 000
image pairs from the training set. We use both photometric
and geometric augmentations to avoid overfitting. The
photometric augmentations are comprised of additive Gaus-

sian noise applied to each image, contrast, multiplicative
colour changes to the RGB channels, gamma and additive
brightness. The geometric transformations are comprised
of 2D translations, left-right flipping, rotations and scalings.

KITTI 2012 This dataset consists of images collected on
a driving platform. There are 194 and 195 training and
testing image pairs, respectively, with sparse groundtruth
flow. The training set is used for cross-validation and to
monitor the learning progress. For training, we use the
raw KITTI data from the city, residential and road classes,
where groundtruth flow is unavailable. To avoid training on
related testing imagery, we remove all raw images that are
visually similar with the testing ones, including their tem-
poral neighbours ±20 frames. The (curated) raw data is
comprised of 82, 958 image pairs. We include both photo-
metric and geometric augmentations. We use the same type
of photometric augmentations as applied to Flying Chairs.
The geometric transformations consist of left-right flipping
and scalings. We also use a small relative translation.

3.2 Training details

We use the “FlowNet Simple” architecture provided in the
publicly available FlowNet Caffe code [1]. For the photo-
metric loss, the generalized Charbonnier parameter, α, is
set to 0.25 and 0.38 for Flying Chairs and KITTI, respec-
tively. For the smoothness loss, α is set to 0.37 and 0.21
for Flying Chairs and KITTI, respectively. The smoothness
weight, λ, is set to 1 for Flying Chairs and 0.53 for KITTI.
We use Adam as the optimization method, where its param-
eters β1 = 0.9 and β2 = 0.999. The initial learning rate is
set to 1.6e−5 for Flying Chairs and 1.0e−5 for KITTI and
we divide it by half every 100, 000 iterations. The batch size
is set to four image pairs. In total, we train using 600, 000 it-
erations for Flying Chairs and 400, 000 for KITTI. In initial
tests, we noticed that the unsupervised approach had diffi-
culties in regions that were highly saturated or very dark.
Adding photometric augmentation compounds this issue by
making these regions even less discriminable. To address
this issue, we pass the geometrically augmented images di-
rectly to the photometric loss prior to photometric augmen-
tation. Further, we apply a local 9× 9 response normaliza-
tion to the geometrically augmented images to ameliorate
multiplicative lighting factors.

3.3 Results

Table 1 provides a summary of results. As expected,
FlowNet trained with the groundtruth flow on Flying Chairs
outperforms the unsupervised one. Note, however, the
scenario where sufficient dense groundtruth is available
is generally unrealistic with real imagery. Conversely,
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Figure 3: KITTI example. (top-to-bottom) Input image
frames overlaid, groundtruth flow, and predicted flow from
unsupervised network overlaid on the first input image.

Approach Chairs KITTI
Avg. All Avg. NOC

test train test train test
EpicFlow [12] 2.9 3.5 3.8 1.8 1.5
DeepFlow [15] 3.5 4.6 5.8 2.0 1.5

LDOF [2] 3.5 13.7 12.4 5.0 5.6
FlowNet [3] 2.7 7.5 9.1 5.3 5.0

FlowNet (ours) 5.3 11.3 9.9 4.3 4.6
Table 1: Average endpoint error (EPE) flow results. The
reported EPEs for supervised FlowNet are the best results
of the FlowNet Simple architecture [3] without variational
smoothing post-processing. “Avg. All” and “Avg. NOC”
refer to the EPE taken over all the labeled pixels and all
non-occluded labeled pixels, respectively.

KITTI exemplifies an automative scenario, where abundant
dense groundtruth flow with real images is unavailable. To
sidestep this issue, previous work [3] used synthetic data
as a proxy for supervised training. On the non-occluded
(NOC) metric, the unsupervised approach improves upon
the supervised one [3] on the KITTI training set. This im-
provement persists on the official test set. Considering all
pixels (i.e., occluded and non-occluded) the proposed ap-
proach remains competitive to the supervised one. Figure 3
shows an example flow prediction result on KITTI. While
the performance of the unsupervised approach lags behind
the state-of-the-art, it operates in realtime with a testing run-
time of 0.03 seconds on an NVIDIA GTX 1080 GPU.

4 Discussion and summary
We presented an end-to-end unsupervised approach to train-
ing convnets for optical flow prediction. We showed that

the proposed unsupervised training approach yields com-
petitive and even superior performance to a supervised one.
This opens up avenues for further improvement by leverag-
ing the vast amounts of video that can easily be captured
with commodity cameras taken in the domain of interest,
such as automotive applications. Furthermore, this is a gen-
eral learning framework that can be extended in a variety
of ways via more sophisticated losses to enhance convnet-
based mappings between temporal input imagery and flow.
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V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
FlowNet: Learning optical flow with convolutional net-
works. In ICCV, pages 2758–2766, 2015.

[4] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds
as proxy for multi-object tracking analysis. In CVPR, 2016.

[5] R. Garg, V. Kumar BG, and I.D. Reid. Unsupervised CNN
for single view depth estimation: Geometry to the rescue.
CoRR, abs/1603.04992, 2016.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The KITTI dataset. IJRR, 2013.

[7] B.K.P. Horn and B.G. Schunck. Determining optical flow.
AI, 17(1-3):185–203, 1981.

[8] M. Jaderberg, K. Simonyan, A. Zisserman, and
K. Kavukcuoglu. Spatial transformer networks. In
NIPS, 2015.

[9] C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-
supervised nets. In AISTATS, 2015.

[10] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train convo-
lutional networks for disparity, optical flow, and scene flow
estimation. In CVPR, 2016.

[11] V. Patraucean, A. Handa, and R. Cipolla. Spatio-temporal
video autoencoder with differentiable memory. CoRR,
abs/1511.06309, 2015.

[12] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.
EpicFlow: Edge-preserving interpolation of correspon-
dences for optical flow. In CVPR, 2015.

[13] D.Q. Sun, S. Roth, and M.J. Black. A quantitative analysis of
current practices in optical flow estimation and the principles
behind them. IJCV, 106(2), 2014.

[14] D. Tran, L.D. Bourdev, R. Fergus, L. Torresani, and
M. Paluri. Deep end2end voxel2voxel prediction. In Work-
shop on DeepVision, 2016.

[15] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
DeepFlow: Large displacement optical flow with deep
matching. In ICCV, 2013.

4

lmb.informatik.uni-freiburg.de/resources/software.php
lmb.informatik.uni-freiburg.de/resources/software.php

