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A local approach for interframe displacement estimates is developed by minimization of the 
squared differences between a second-order Taylor expansion of gray values from one frame 
and the observed gray values within the same window from the next frame. It the second-order 
terms in the Taylor expansion are significant, a system of two coupled nonlinear equations for 
the two unknown components of the displacement vector can be derived. In the special case of 
"gray value corners," these equations can be simplified to facilitate a closed form solution. An 
iterative refinement procedure is developed to extend these estimates for image regions which 
do not exhibit exactly the properties of "gray value corners." The minimization approach is 
generalized in such a way that the approach of Horn and Schunck (Artif. lntell. 17, 1981, 
185-203) can be recognized as a special case of this generalized form which should be 
applicable even across occluding edges. It thus appears to be an interesting model for the local 
computation of optical flow. 

1. INTRODUCTION 

T h e  f rame- to- f rame displacement  of characteristic spatial gray value variations can 
yield informat ion abou t  the three-dimensional structure of objects and their motion 
relative to the sensor which records an image sequence f rom a scene with these 
objects (see [1-12] and further references quoted there). 

Stereopsis can be considered as a special case where the number  of frames is 
restricted to two and the displacement  direction is known [13-15]. 

At tempts  to improve  bandwid th  compression by  motion-compensated prediction 
for  interframe coding provide  another  reason to study the determination of image 
displacement  vector  fields (see, e.g., [16-18] for reviews of this area). 

Against  this background of wide-spread interest, numerous ideas have been 
investigated to determine image displacement vector fields. One might distinguish 
three categories a m o n g  these investigations. Approaches in the first category define 
primit ive features characterizing significant local gray value variations. Such features 
are  extracted f rom each image  and matched from frame to frame. The second 
category comprises approaches  which construct complex nonlocal descriptors for 
image patches by combining  several primitive features. Heuristic (dis-) similarity 
functions are employed to grade candidate matches between complex descriptors 
f rom different frames. The  so-called "nonmatching"  approaches toward the de- 
terminat ion of displacement  vector fields are assigned to a third category. An 
explicit simple parametr ic  function of the image coordinates is used to approximate 
a local gray value variat ion by appropriate  choice of the parameter  values. Methods 
f rom analysis are employed to map  the domain of this function into a neighborhood 
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from a preceding or subsequent frame such that this fully specified funct ion 
represents an acceptable approximation to the gray values recorded there. 

Examples for the second category are the tracking experiments in blocks-world 
scenes by Roach and Aggarwal [19] or Radig and his students [20], for rocket scenes 
by Gilbert et al. [21], and for street scenes by Radig [22, 23]. Additional examples  
can be found in the comprehensive survey of application-oriented literature a b o u t  
image sequences by Nagel [24}. Interframe matching techniques applied in this 
context  have recently been surveyed by Aggarwal et al. [25]. Since the design of 
complex descriptors and (dis-) similarity grading functions is usually based on  
scene-dependent heuristics which are difficult to analyze in general, this ca tegory 
will not  be pursued further at this point. 

The  "interest operator" of Moravec [26] and the "directed variances" described by 
Hannah  [27] are examples of feature detectors employed in the first category. T h e y  
represent heuristics to search for gray value variations with a steeply decreasing 
autocorrelation function. Failures of Moravec's interest operator (see [28, 29]) caused 
Dreschler and Nagel [5] to scrutinize the gray value variation around visually 
acceptable cornerpoints in digitized TV images of street scenes. Based on this 
experience they formulated an algorithm to determine local descriptors suitable for 
an interframe match. First results have been presented in [29-31]. Independently,  
Kitchen and Rosenfeld [32] developed a gray level corner detector. Upon closer  
inspection it turns out that the concepts behind these two approaches are identical 
and can be justified in a rather fundamental way. 

The  contribution of this paper is an analysis which shows that the properties of  
feature locations selected in this manner facilitate the determination of both compo-  
nents for the associated displacement vector without recourse to approximate  
solutions of nonlinear equations. This result provides a common conceptual founda-  
tion for the approaches of the first and third categories discussed in the preceding 
paragraphs. Relations between this method and the directionally selective opera tor  
investigated by Marr and Ullman [33] will be pointed out. 

Section 2 will introduce the notation and discuss the relation between the corner  
detector  of Kitchen and Rosenfeld [32] and that of Dreschler and Nagel [5] fol lowed 
by a discussion of previous attempts to determine the displacement vector based on  
"nonmatching"  approaches. Section 4 will employ the concept of a "gray value  
corner"  to determine the displacement vector of such a corner between consecutive 
frames. An error analysis of this method provides the basis to extend this approach  
in the Section 5 by iterative approximation to an environment around such feature  
locations. 

2. MODELING GRAY VALUE VARIATIONS FOR A CORNER DETECTOR 

Figure 1 presents an image from a TV frame sequence studied by Dreschler an d  
Nagel [5]. The gray value variation around the upper left rear window of the white  
cab in the center of Fig. 1 is shown as a 3-D plot in Fig. 2. An idealized version o f  
this gray value variation is given in Fig. 3 with coordinate axes for the image p lane  
coordinates x, y and the gray value g indicated. 

To simplify the notation, the origin of the coordinate system is assumed to be 
centered at the point of interest, i.e., X = (x, y)', where the prime indicates 
transposition. As is well known from elementary differential geometry, a surface 
may be locally approximated by a second-order function of the coordinate vector  
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FIo. 2. The gray value g(x, y) of the upper left corner of the rear window in the white taxicab from 
Fig. I, plotted as a function of the raster coordinates x and y. The selected axea from Fig. I can he  seen 
below the pseudo 3-D plot. 

X = (x, y) ' , 

g(X) = g(Xo) + ( V g ) ' . X  + ½X'(v Vg)X + ~  ( l a )  

=g(Xo)+g~x +gyy+~gx~,x2 +g.~yxY+½gyyy2 +e, ( lb )  

where g~ and gy stand for the partial derivatives of g(X) with respect to x and y,  
respectively, and gxx, gxv, gyy represent the corresponding second partial derivatives, 
all taken at the point X o = (0, 0)'. The symmetric matrix of second derivatives 

(gx~ g~v) 
(VXTg)= gy.~ g~y with gxy=gyx (2a) 

specifies the planar curvature at X0 for the intersection curve between the surface 
g(X) and a plane containing the surface normal at X 0. This matrix can be 
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Fro. 3. Idealized sketch of g(x, y) versus x, y for a "gray value corner" such as the one depicted in 
Fig. 2. The intersection curve CI is parallel to the x axis and C2 is parallel to they  axis. The intersection 
curve C3 connects the min imum of the Gaussian curvature at the "bo t tom"  point B with the turning 
point T o f  the slope and the maxinmm of the Gaussian curvature at the "promontory"  point P. At Qx the 
main curvature along the x direction crosses zero, and analogously for Qy. At the point Q both main 
curvatures are zero. 

transformed into a diagonal one by a suitable rotation of the coordinate system 

gxy g~y] 0 •2 ' 

where the elements in the diagonal are denoted as the principle curvatures of the 
surface at the point X 0. Since the trace and determinant of a matrix are invariant to 
rotations of the coordinate system, one obtains 

Laplacian: V2g = g.x + g~,, = ~l + Kz = 2((~, + K2)/2 ), (3a) 

2 = (3b) Hessian: d e t ( V V g )  = gxx&,y - g.~y KIKZ, 

i.e. the Laplacian of  g yields twice the value of the average curvature and the 
determinant of  the second derivatives ("Hessian") yields the product of the principle 
curvatures, called the "Gaussian curvature." 

2.1 The Approach of  Dreschler and Nagel 

For all points along the intersection curve CI in Fig. 3, the principal curvature 
corresponding to gyy vanishes identically. Therefore, the Gaussian curvature is 
likewise identically zero along CI and, by analogy, along C2. If we consider the 
intersection curve C3, however, the Gaussian curvature will be nonzero around the 
"promontory"  point P and the "bot tom" point B. At the promontory point P, one 
principal curvature represents the flattening of g from the steep ascent to the 
constant plateau. The  second principal curvature at P corresponds to the turning 
orientation of the gradient projection into the xy plane, i.e., to the corner. Since the 
center of the osculating circle for the intersection curves corresponding to both 
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principal curvatures are located on the same side of the surface, the Gaussian 
curvature will be positive. At the bottom point B, one principal curvature again 
corresponds to the turning orientation of the gradient projection and will thus have 
the same sign as at P. The other principal curvature, however, corresponds to the 
flattening from descent to the constant base value. The center of its osculating circle 
is located at the viewer's side of the surface. Since the centers of the osculating 
circles are on different sides of the surface, the principal curvatures have opposite 
sign at this point and the Gaussian curvature will be negative. 

The algorithm of Dreschler and Nagel [5] basically consists of the following rules: 

(i) Determine Gaussian curvature. 
(i_i) Select locations of extremal--positive as well as negative--Gaussian 

curvature. 
(iii) Match a location of maximum positive Gaussian curvature such as P with a 

location of extreme negative Gaussian curvature such as B provided that the 
directions of those principal curvatures which have opposite sign at B and P are 
approximately aligned. 

(iv) Select the point T(i.e., the turning point of the S-like curve increasing in this 
direction from the lower to the higher gray value plateau), where this principal 
curvature crosses zero. This corresponds to the point of maximum slope on the curve 
between B and P. 

2.2 The Approach of Kitchen and RosenfeM 

Kitchen and Rosenfeld [32] consider a unit vector tangent to a curve of constant 
gray value passing through the point of interest. Such a curve X(s) can be implicitly 
defined as a function of its arc length s by 

g(X(s))  = g(Xo) (4) 

provided X 0 does not specify the position for a local extremum of the gray value 
surface g(X). Under these conditions, the tangent vector (dx/ds,  dy/ds)'  to this 
curve can be obtained from 

dg/ds = 0 -- gx dx/ds + ge dy/ds (5a) 

which yields (taking into account the requirement that the tangent vector should 
have unit length) 

The rate of change of this unit tangent vector, i.e., its turning angle, is given by the 
curvature ~ of X(s) at X. This curvature can be determined according to 

K = (d2y /dx2) / (1  + (dy/dx)2) 3/2 (6) 

by implicit differentiation of (4), namely, 

g(X(s))  - g(X0) -~ g(x,  y)  - g (x  o, Yo) = O. (4a) 
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The result for x, multiplied by the gradient magnitude, yields 

2 2 x ~  + gy2 = _ (gx,,g 2 - 2g~,yg;,gy + g y y g x ) / ( g x  + g2y). (6a) 

Kitchen and Rosenfeld found that local maxima of this gradient weighted planar 
curvature isolated comers, especially if the heuristic of nonmaximum suppression 
along the gradient direction is applied to the gradient magnitude prior to its 
multiplication with the curvature x. 

2.3 Comparison of Both Approaches 

To see the equivalence of both approaches explicitly, we shall discuss the locations 
where the gradient magnitude or (equivalently) the squared gradient magnitude 
takes on its maximum value. 

v(g  + -- o  7a) 

o r  

g~ g~y ]\ 

At each point X we may align the coordinate axes with the main curvature 
directions, i.e., gxy = O. The requirement of vanishing derivatives for the expressions 
to be maximized then yields 

gxxgx + g~ygy = 0 ~ Rig ~ = 0 (7C) 

and 

gxygx + gyygy = 0 ~ X2gy --- O. (Td) 

There are four basic situations satisfying these conditions: 

(a) Both principal curvatures vanish identically. This corresponds to a planar 
gray value variation, either constant as at point Q in Fig. 3 or a "sloping plane." 
There is no extreme of the gradient magnitude. 

(b) Both principal curvatures are nonzero. Thus, both gradient components 
have to vanish simultaneously and we have a local minimum of the gradient 
magnitude as it occurs at gray value extrema, namely, "pits" and "peaks." 

(c) Only one principal curvature vanishes identically, whereas the other one is 
different from zero or at most crosses zero at the point X considered. If this other 
main curvature crosses zero, the gradient component along its direction will take on 
an extremum, as at point Qx (xj crossing zero) or Qy (•2 crossing zero) in Fig. 3. 
This corresponds to a "straight line" gray value transition. 

(d) The last case is the one of most interest here. One principal curvature 
crosses zero (equivalent-o an extremum of the gradient component along this 
direction), whereas the other principal curvature is nonzero, forcing the correspond- 
ing gradient component to vanish. This implies that the gradient is oriented along 
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the direction of the principal curvature which crosses zero, resulting in a local 
maximum of this gradient component and therefore the gradient magnitude. An 
example for this "comer" situation is the turning point T on the intersection curve 
C3 in Fig. 3. 

When Kitchen and Rosenfeld apply their nonmaximum suppression heuristic to 
the gradient component perpendicular to a curve of constant gray value in the 
surface g(x, y), they effectively select a curve connecting local turning points of the 
gray value slope such as the curve comprising the points Qy, T, and Q~ in Fig. 3. 
Selecting the point with largest planar gradient-weighted curvature given by Eq. (6a) 
picks the comer point corresponding to T in Fig. 3. If the coordinate system is 
aligned with the principal curvature directions, Eq. (6a) yields 

K ~  + gy (8a) 

The nonmaximum suppression heuristic effectively enforces one principal curvature, 
say ~2, to cross zero, thus resulting in 

= = (8b) x ~  + gy 

because the zero-crossings of g2 implies that the gradient exhibits a maximum and is 
aligned with this principal curvature direction. They then select the largest value for 
this expression, that is the point of steepest gray value slope where simultaneously 
the rate of change in the gradient orientation attains a maximum. 

2.4 Curved Zero-Crossing Contours of the Laplacian 

This discussion has another consequence. Zero-crossing of the Laplacian applied 
to a Gaussian-filtered gray value window have become prominent as descriptors to 
be used in computational theories of stereopsis (e.g., Marr and Hildreth [34], 
Grimson [14], Mayhew and Frisby [15]; see also Baker and Binford [35]). Since the 
displacement direction is assumed to be available in stereopsis, there is no need to 
distinguish between cases (c) and (d) above (i.e., between straight line edges and 
comers), provided they have a significant gradient component along the expected 
displacement direction. 

In the analysis of unrestricted displacement vector fields, it is preferable to isolate 
and track comers in order to estimate both components of the displacement vector. 
Otherwise, supplementary assumptions are required in order to determine the 
missing component; see the discussion in the following section. 

If comers are selected on zero-crossing lines as implied, for example, by the 
approach of Yam and Davis [36] (see also [25]), then it follows from eq. (3a) that 

g x x  + g y y  = 0 ~ K 1 + K 2 o r  K I = - K  2 .  (9) 

If one principal curvature is different from zero on a bending zero-cross!ng contour, 
so must the other one. More or less sharp corners on zero-crossing contours of the 
Laplacian are therefore not indicative of steepest gray value slope, whereas this is the 
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case on straight line stretches with Kj = - %  -- 0. Potential consequences of this 
observation are being investigated [37]. 

The concepts for this comer detector in [5, 29, 32] have been discussed in detail 
because they form the basis for a method to determine both components of the 
displacement vector for such corner points in the following section. In practice, the 
required first and second derivatives of the gray value distribution are determined 
using the operators of Beaudet [38]. The derivation of these operators including 
closed formulas for quadratic windows with odd numbers of pixels along each side 
are presented in Appendix 1 in the manner used for subsequent discussions in this 
contribution. 

3. FUNCTIONAL APPROXIMATION FOR THE ESTIMATION OF 

DISPLACEMENT VECTOR FIELDS 

Starting from empirical considerations, Limb and Murphy [39, 40] investigated an 
approach to estimate the displacement vector component within a TV line. Cafforio 
and Rocca [41, 42] developed a cluster analysis approach to determine both 
components of the displacement vector, possibly for more than a single moving 
object image. Independently, Fukinuki et al. [43] as well as Fermema and Thompson 
[44] reported results obtained by a basically similar approach. 

It is assumed that the image gray value can be approximated sufficiently well by a 
Taylor series (see Eq. (1)) without recourse to higher than linear terms: 

g(X) = g(x0)  + g (x - Xo) + g (y - yo).  (lo) 

Neglecting boundary effects, the temporal change of gray value inside an area is 
exclusively attributed to a shift U = (u, v)' of the sloping gray value plane, i.e., 

g, = 8 g ( X o ) / O t  = - (gx u + gyV) = - (xTg)'*U. (11) 

The time derivative is approximated by the interframe gray value difference 

gt -- D g / D t  = (g(X, t2) - g(X, t l ) ) / D t ,  (12) 

where Dt denotes the time interval between consecutive frames. Since Dt is usually 
constant, one may set it to unity and write for the ith area 

D& = - (Vgi) '*U. ( l la )  

Since each area is characterized by a fixed value for the gray value gradient V&, this 
gives one equation relating the two unknown components u and v of the displace- 
ment vector U to the measured values of V& and Dg i. As an additional relation, one 
may assume that one component is known (e.g., to be equal to zero as in the case of 
binocular stereo vision). 

Both components of the displacement vector may be obtained by the assumption 
that U is constant across at least two different areas with linear independent values 
for the gradient ~Tg t. In this case, at least two independent equations (l la) are 
available to determine both u and v. A standard minimum squared error approach 
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may be used if the constancy of U is assumed for more than two areas [41, 43, 45] 
(see also [18, 24, 46, 47] for additional discussion). 

In general, it will not be known which image areas experience the same displace- 
ment vector U. Therefore, Horn and Schunck [48] investigated a weaker assumption, 
namely, that the displacement vector U should vary smoothly with the image plane 
coordinates. They used a minimization approach to combine their requirement with 
Eq. (1 la). As a result, they obtained two equations relating u and v to their average 
values in a local environment and to the measured values of Dg as well as gx and g.,, 
at each location X. Yachida [49] extended this approach by averaging the displace- 
ment estimates not only in a spatial neighborhood of the current frame, but in 
addition in the same neighborhoods in the preceding and the subsequent frames. 

These approaches, however, do not account for the possibility that the displace- 
ment can change abruptly across occluding or shadow edges. Examples of this effect 
have been given in Dinse et al. [50]. Schunck and Horn [51] show in a careful 
discussion that Eq. (1 la) remains valid across such edges. The smoothness assump- 
tion or even the stronger one of constant U, however, is no longer satisfied in such 
situations. Schunck and Horn [51] present heuristics based on probabilistic estimates 
by which they attempt to detect unrealistic displacement estimates which might 
possibly be due to occlusion or shadow edges. 

A linear model of gray value variations is too simplistic around edges or corners. 
Snyder et al. [52] used the Taylor expansion of Eq. (1) to express the interframe gray 
value difference as a function of the displacement vector and the first- as well as 
second-order derivatives of the gray value distribution in one frame. This does not 
solve the problem, however, because they again obtain a single equation which is, 
moreover, nonlinear in the two unknown displacement vector components u and v. 
Prazdny [53] discussed the special case of pure sensor translation with already 
known focus of expansion. The interframe displacement vectors are then aligned 
with radii emanating from the focus of expansion. Since the direction of the 
displacement vector is known in this case, only its magnitude remains to be 
determined. Prazdny [53] suggested using the single second-order equation given by 
Snyder et al. [52] for the determination of this displacement vector length. This is a 
nonlinear analog of the work of Limb and Murphy [39, 40] where special knowledge 
reduces the number of unknown displacement components to one. 

Webb [12] used a Taylor expansion according to Eq. (1) to estimate the coeffi- 
cients of an affine mapping between local neighborhoods around image locations in 
different frames. He had to assume, however, that the proper displacement between 
the corresponding locations was known or could be deduced by an exhaustive 
search. 

Neither of these approaches is suited to estimate the displacement vector using 
local information only. There are situations where this is possible--as demonstrated 
by interframe matching of isolated local descriptors; for example, using a nearest 
neighbor approach. The gray value comer discussed in Section 2 represents such a 
localized descriptor. The next section will show that a minimization approach can be 
formulated which exploits only local information to derive two coupled nonlinear 
equations for the two unknown displacement components u and v. In the special 
case of a gray value corner, these equations can be reduced to yield two equations. 
One of them is linear in one displacement vector component and no longer contains 
the other unknown component. 
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4. ESTIMATING THE DISPLACEMENT OF GRAY VALUE CORNERS 

Assume that frame 1 of a sequence has been recorded at time tl and frame 2 at 
time t2. g(Xo, t l )  denotes the gray value observed at the location X 0 in frame 1 and 
g(X o, t2) the gray value observed at the same location in frame 2. A local 
environment around X o is assumed to have been displaced between time tl and t2 
by a vector U = (u, v)'. We want to determine U from the requirement that 

MD = [g(X, t2) - g(X - U, tl)] 2 ~ minimum (13) 

summed over all X from the local environment around X 0. If the time interval 
Dt = t2 - tl is small enough so that U remains well within the chosen environment 
around X o, we may use a Taylor series expansion according to Eq. (1) in order to 
represent g ( X -  U, tl). The best fit approximation to the first- and second-order 
partial derivatives determined according to Appendix 1 will exhibit the frame time tl 
in the notation 

P1 = ( f l 0 ,  f l x ,  f l y ,  f l x x ,  f l x y ,  f lyy) ' .  (14) 

The axes of the local coordinate system for the environment around X 0 should be 
aligned with the principal curvature directions such that f l ~  = 0. Moreover, we 
initially neglect the measurement uncertainties and their effect on PI. 

The expression to be minimized by a suitable choice of the unknown displacement 
vector components u and v can now be written as 

M D  = E [g(X, t2) - f l  o - f l ~ ( x  - u) - / l y ( y  - v) 

- ½ f l x x ( x  - u) 2 - ½flyy(y  - v)2] 2. (15) 

Setting to zero the partial derivatives with respect to u and v yields 

0 = ~ , [ f l  x + f l x x ( X  - u)] [g(X, t2) - f l  0 - f l x ( x  - u) - f l y ( y  - v) 

- ½ / l x ~ ( x  - u) 2 - ½ / l y y ( y  - v) 2] (16a) 

0 = ~_,[f l  e + f l e y ( y  - v ) ] [g (X ,  t2) - f l  0 - f l x ( x  - u) - f l y ( y -  v)  

- ½ f l x x ( x  - u) 2 - ½fly~,(y - v)2]. (16b) 

In analogy to Eq. (A12) we define 

Skpq r = Y ' . x f y q g ( x , ,  y j ,  t , ) "  for k = 1,2, (17) 
0 

but still use definition (AI2) without time index if r = 0 since Skt, qo does not 
depend on the frame time. Evaluating the sums and exploiting the symmetry of the 
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environment around X 0 = 0 yields 

0 = [ f l~  - / l x~u l [S200 ,  - floSooo - ½flx~S2oo - ~flyySo20 

+ SoooU (fl~ - ½fl,:~u) + Sooov(fly - Ifly.vV)] 

+ [$2,o, _ ( f l x  _ f lxxU)S2oo ] f l x x  (18a) 

0 = [fly - flyyv] [S2oo , - floSoo o - ½fl,,xS2oo - ½flyySo2o 

+ Sooou(fl x - ½fl,,~,u) + Sooov(fl e - ½flyyv)] 

+ [$20, ' - (/I, - fly.vv)So2o] fl.vy. (18b) 

Using Eqs. (A19) together with (A15) it can be shown that 

floSooo + ½flxxS200 + ...-- Sloo t ½ f l y.v S0 20 

With 

(19) 

gl = g (X ,  tl)= Sloot/Sooo (20a) 

g2 = g(X, t 2 ) =  S2ooJSoo  o (20b) 

and x 2 = $2oo/Sooo as well as y2 = So2o/Soo ° we can write (see (AIg)) 

o = t/Ix - :l.,.,,,l [g - -~ + u( :l, - ½:l~;,) + v(:l, - ½:l:)] 

+'xSflxx[f2x - ( / l x  - flxxu)] (21a) 

o = Ill, - :~,,v][~ - ~ + ,(:ix- ~:l~) + ,,(:l, - ~:I:)] 

+y-2/ly, [ f2y -- (fly - flyyV)]. (21b) 

If the second partial derivatives can be neglected, both Eqs. (21) reduce to the linear 
version (1 la) provided the first derivatives are different from zero. 

A significant second partial derivative exerts its influence through two effects. 
First, the gradient will not be constant within the environment and, therefore, the 
gradient components/ l  x or f l y  determined at the center of the environment must be 
corrected in order to obtain the gradient components at the off-center position given 
by U. 

The factors x2 f l xx  or y2flyy,  respectively, in front of the second term of Eq. (21) 
take into account the nonvanishing average gray value deviation from the center 
value, caused by the curvature of the gray value distribution. Corresponding terms 
can be recognized in Eq. (19). If f l  x - f l , , x U  is different from zero, we may write 
Eq. (21a) ha the form 

g2 - gl + u ( f l ~  - ½flx~u ) + v ( f l , ,  - ½flyyV) 

+x2fl~, .~( f2x - ( f l  X - f l : , x u ) ) / ( f l : ,  - f l x x u  ) -- O. (22) 
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The second term of Eq. (21a) thus represents the relative difference between the 
gradients at X 0 in frame 2 and X 0 - U in frame 1, multiplied by the average gray 
value deviation in the x direction caused by the curvature of the gray value 
distribution. We may write Eq. (22) in the form 

g2 - gl + x 2 f l x ~ ( f 2 x -  ( f l~  - f l x x u ) ) / ( f l ~  - - f l y , u )  

= - - o(/i., - (22a) 

i.e., this term modifies the average temporal gray value difference g2 - gl which 
approximates the partial derivative of the gray value with respect to time. Equation 
(22a) thus can be looked at as a generalization of Eq. (1 I). 

Now let X 0 denote the position of a gray value comer in frame 1 as discussed in 
Section 2. The axes of the local coordinate system should be aligned with the 
principal curvature directions, i.e., f l x y  
mum at X 0, i.e., 

= 0. The gradient passes through a maxi- 

and 

Since f l y  

f l  x = extremum and f l y  = 0 (23a) 

f l x x  = 0 with f l yy  = extremum * 0. (23b) 

and f lxx will rarely vanish exactly at a raster position, the following 
somewhat weaker conditions will allow the same simplification of Eqs. (21) as the 
exact corner conditions (23a) + (23b): 

f l x x u  ,~z f l~  and f l y  << f l yyv  (23c) 

for all relevant values of u and v. With (23) we obtain from (21) 

0 = f l x [ g 2  - gl + u f l  x - ½flyev 2] + x-2flx~[f2 ~ - f i x ]  (24a) 

0 = - f l y y v ' [ g 2  - gl + ufl~ - ½flyyV 2] + - ~ f l y y [ f 2 y  + f lyyV].  (24b) 

Equation (24a) is linear in u and can be employed to eliminate the factor containing 
the square of v in Eq. (24b). This turns Eq. (24b) into an equation linear in the 
remaining unknown v. Assuming a square neighborhood so that x 2 = y2, we obtain 
the result 

v = - f E y / ( f l y y  + f l x x ( f E , , / f l  x - 1)). (25a) 

This result can now be inserted to compute 

1 
u = - fl----~{g2 - gl - ~2/leyv 2 + x 2 / l x x ( f 2 x / f l x  - 1)}. (258) 

The more stringent requirements (23a) and (23b) result in the simple expressions 

v = - - f 2 y / f l y y  (26a) 

u - -  - ( g 2 -  g l -  ½ f l y y v 2 ) / f l x .  (26b) 
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These expressions emphasize in an especially clear manner the importance of the two 
main characteristics for "gray value corners": the gradient component f i x  along one 
principal curvature direction and the second principal curvature f l yy (i.e., perpendic- 
ular to the gradient) must attain local maxima which implies that they are both 
different from zero. 

Experience has shown that the gray value variations characteristic for a "corner" 
are well localized so that a 5 X 5 environment may be already too large to satisfy 
conditions (23). Corner point localization has been improved by a two-stage ap- 
proach, using 3 x 3 operators for precision positioning [29, 5]. Such small environ- 
ments may be insufficient, however, to enclose the characteristic gray value variation 
in the second frame. It therefore seems advantageous to localize a gray value corner 
in frame I based on 3 × 3 operators, but to use 5 × 5 operators to determine the 
parameters required for Eqs. (25) based on (23c). The results obtained in this 
manner may then be considered as suitable starting values for an iterative improve- 
ment of the displacement vector estimation, as discussed in the next section. 

5. ITERATIVE IMPROVEMENT OF THE DISPLACEMENT VECTOR ESTIMATE 

We assume that an initial estimate U 0 for the displacement vector around X o has 
been obtained. Moreover, the gray value distribution g ( X -  Uo, tl) should be 
adequately represented within a neighborhood around X 0 by the best fit approxima- 
tion according to Appendix 1: 

g ( X -  U o, t l ) =  f l ( X  - Uo; PI) .  (27) 

We now want to determine a correction DU for the displacement estimate U o by 
requiring that the weighted sum of squared differences 

dg = g(X, t2) - f l ( X  - U o - DU; PI) (28) 

should be minimized by a suitable choice of DU: 

MG = (dG)'Wc(dG) ~ minimum. (29) 

Here dG represents the column vector of differences according to Eq. (28), where the 
implicit variation of X within the (2k + 1)*(2k + 1) neighborhood around X 0 is 
made explicit by introduction of raster locations X; = (x;, y;)' defined in Eq. (A2). 
The N • N weight matrix W s is the inverse of a covariance matrix which reflects both 
the measurement uncertainties of g(X, t2) as well as those of g(X, tl) propagated 
forward tof l (X;  P1). The covariance matrix for g(X, t2) is given by the inverse of W 
introduced in Eq. (A6). The covariance matrix for f~(X; P1) has been derived in 
Appendix 1. Its elements are given in Eq. (A20). We assume that the measurement 
errors for g(X, t2) and f l (X;  P1) are uncorrelated. The joint covariance matrix for 
the differences dg is then given by the sum of the covariance matrices, i.e., 

= ° %  + ( w ; ' ) , j .  (30) 

The weight matrix required in Eq. (29) can be obtained by inversion of the matrix 
defined in Eq. (30). This inversion can be considerably simplified if the symmetries 
of W C are exploited as discussed in Appendix 2. 
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If U 0 is close to the true displacement vector minimizing M G ,  DU will be small  
and higher than linear terms in the components (Du,  D v )  of DU can be neglected. 
Using this approximation yields the following expression for the partial derivatives 
of dg with respect to Du and Dv: 

Bi. n,, = 0 d g ( x  i, y i ) / O  Du -- f l ;  

Bi. no = 0 d g ( x , ,  yi)//O D v  = f l y  

+ f l x x ( x ,  - ,,o) + f l x , ( e ,  - Vo) (31a) 
+ f l xy (X  , - u o ) +  flyy(y -vo) (31b) 

for i = 1 . . . . .  N. In tiffs approximation, equating the partial derivatives of Eq. (29) 
to zero yields 

O M G / O D U  = 0 = B ' W o ( g ( X ,  t2) - / I ( X  - Uo; P1) + B DU) (32) 

with the solution 

DU -- - ( B ' W a B ) - ' B ' W s ( g ( x  t, y,, t2) - f l ( x ~ -  u o, y , -  v0;P1)). (33) 

The term in braces on the right-hand side of Eq. (33) represents a column vector 
with the row index i (=  1 . . . . .  N) specifying the raster point location according to 
Eq. (A2). It should be noted that the components of the N *2 matrix B depend o n  
U 0 as given by Eqs. (31). The corrected displacement vector is given by 

U = U  0 + D U .  (34) 

The covariance matrix for DU and thus U is given by (cf. Appendix 1, Eq. (A17)) 

= ( 3 5 )  

Another iteration can be attempted, this time using the result for U from Eq. (34) as 
the new initial value, until the square of the corrections Du and Dv become 
comparable to the corresponding diagonal elements of Wff ~. 

6. DISCUSSION OF THE ITERATIVE CORRECTION FORMULA FOR THE 

DISPLACEMENT ESTIMATE 

It is instructive to evaluate Eq. (33) for the example of a 3 × 3 environment as 
depicted in Fig. A1 with N = (2k + 1) 2 = 9. The required matrix W o is given 
explicitly in (A27). We introduce an abbreviation to denote the best fit gradient 
components corrected for the displacement U0: 

hi x = f l  x - fl~,xu o - f l , ,eV o (36a) 

hly ~- f l y  - f l xyU o - f l yyV  o. (36b) 

Using this notation, Eqs. (31) can be written 

Bi, ou -~ hi,, + f l x : , x  ~ + f l x y Y  i 

Bi, oo = hly + f l x y x  i + f l y y y  i. 

(3"7a) 

(37b) 
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Due to the internal symmetries of W~, one can express (B'Wa) in the simple form 

(B'Wc)D~., = (1/2o2)(h1~ + f l~x  i + fl~yyl) (38a) 

(B'W~)Do,, = ( l /2o2)(h ly  + fl~,yx, + flyyy,). (38b) 

A straightforward calculation will yield the intermediate results 

det(B'WGB ) = (N/2o2)2{ x-5~y2(S'l~,:l,, - i l l , )  2 

+ 7~[Vo( i l : . f l , ,  - f l~ , )  - ( / l , f l . .  - / l . f l . , ) ]  2 

+~[uo( s~,,Sl,, - : l~ , )  + ( i l , : l , ,  - / lxSl . , . , ) ]  2) 

and 
(B,W6B)-I= (N/202) (( hl2y -hlxhly) 

det(B'W~B) -h lxhl ,  hl~ 

( : ' .  
4- 

t -fix, i1..7{ o 

(39) 

0)( :,, 
- f l s : .  

-flxy ) 
flxx " 

(40) 

(ou) 
D U  = Dv 

Similar computations result in the following representation for the two-component 
vector: 

B'Wo(g(X, t2) - / I ( X  - Vo; e l ) )  

{[ = (N/202) g - ' 2 - g - T + f l x u ° + f l e v ° - ½ ( u ° v ° ) / f l x y  flyy]~Vo]] hi, 

+ fl,,y flyy] 0 -~ If2y hi;, " 

The desired correction DU for the displacement estimate U o can be written in the 
form 

det(B,WcB) ~-g-T+flxuo+flyv o--~ Vo] Ifl,:y fle, Vo 

× -flxe f l~JI  0 -~ -flxy flx~]lhly 

+-hl~,hl, hi] ]lflxy flyy 0 y"2 If2, hly] 

- /1 ,s  fl~,>: t f 2 ,  hie/ " (42) 
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This  expression for D U  = (Du,  Dr) '  will now be specialized to the situation of a 
gray value corner as discussed in the preceding sections, including the alignment of 
the local coordinate  axes with the principal curvature directions: 

f l x y  = O, f l  x = ext remum ~ 0; f l y  = 0, 

f lx~ , - 0, f l y y  = extremum ~ 0. 

The  Gaussian curvature  vanishes in this case 

f l x x f l y y  - fl2xy = 0 

and the expression for  the determinant  in Eq. (39) reduces to 

det( B ' W o B  ) N 2 2 2~.2 2 2 = ( / o ) y J ' l , . f l y y  

and  the expression for  DU in Eq. (42) to 

ou) 
DU --- Dv 

, (f i 2( 2o 
2 2 g - ' ~ - g ' T + / l x u 0 -  J l y y v °  ] f l , y  

y f l x f l y y  0 

) l f2y hly l )" 

(43) 

hi x 

hly 

(44) 

Under  these condit ions,  Eqs. (36) reduce to 

hl x = f l  x and hly = - f l y y V  o (45) 

and  we obtain for the components  of DU, 

Du = - ( 1 / f l ~ ) ( g 2 - g l  + f l x u  0 ' 2 - J l y y V  o + ( f 2 y  +f l yyvo )Vo)  (46a) 

Dv = - ( 1 / f l y y ) ( f 2 y  + f lyyvo) .  (468) 

If we use an arb i t ra ry  value v 0 in order to compute  v, we see that v o drops out from 
the result: 

v -- v o + Dv = v o - ( ( / 2 y / f l y y )  + Vo) = - f 2 y / f l y y .  (47a) 

In  the case of Eq. (46a), a bit more  care is required. We exploit the assumption that 
the correction Dv is small compared  to the approximately correct value v 0. Then we 
can  write 

v 2 =  ( v  o+  Dv)  z = v ~ +  2voOo 

and together with ( f 2 y  + f leyvo)  = - f l e y D v  based on Eq. (46b), 

u -- u o + Du = - ( 1 / f l x ) ( g 2 -  g l -  ½flyyv2). (47b) 
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The initial value u 0 drops out from the result for u, just as in the case of v. In this 
form, Eqs. (47) are identical to Eqs. (26) derived earlier. 

The correction DU for the displacement estimate will become unreliable if 
det(B'WaB ) threatens to vanish; see Eq. (42). It is therefore desirable to derive a 
threshold for det(B'WaB ). If its value turns out to be comparable to or smaller than 
this threshold, the results from Eq. (33) would be largely determined by noise. 

To simplify the discussion, we assume that the coordinate system is aligned with 
the principal curvature directions, i.e., f lxy = 0. Then we can find two situations 
where the determinant given by Eq. (39) will vanish: 

(i) both principal curvatures vanish, 
(ii) only one principal curvature, say f I.**, and the gradient component f 1.~ along 

this principal curvature direction vanish. 

The first case corresponds to a locally planar gray value variation and the latter 
one to a locally straight line edge, see the discussion in Section 2.3. If the Gaussian 
curvature represented here by ( f lxx f lyy  - f l ] y )  is different from zero, the two last 
terms in Eq. (39) may nevertheless vanish for suitable values of u o and v o. We 
concentrate, therefore, on the first term in the expression for det(B'W~;B) and 
suppress the frame index. Let 

K =  L.,fj,y - f~y (48) 

represent the estimate for the Gaussian curvature. Using propagation of small errors, 
we may write for the variance of K 

(AK)2 = OK hh~,) 2 + Afyy) + A L , )  (49a) 

2 2 2 2 = ( f y y ) 2 ( A f x x ) 2  -t- ( f x x ) ( A f y y )  -4" (2Ly)  (AL,,)  . (498)  

The variances on the right-hand side of Eq. (49) are given by the corresponding 
diagonal elements in the covariance matrix (AI7) for the parameters appearing in 
Eq. (48) defining K. Since we are interested in a threshold value, we replace the 
squared parameters by their variances which represent a reasonable lower limit for 
them. With 

(Af~x) 2 = (AL,y) 2 = 4o2/($4oo - $220) (50a) 

( a L  e)2 = 02/$22 ° (50b) 

we obtain 

( A K )  2 =  2(4o2/($4oo - $2oo)) 2 + 4(a2/$22o) 2. (51) 

Since the determinant contains the square of K, we write (neglecting the second and 
third term) 

( A det( B 'W6B))  2 = ( Odet( B ' W c B ) / O K  )2( A K  ) 2 

= [(N/2o2)2x--~y22K]2(AK) 2. (52) 
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To get a reasonable threshold, we replace K in Eq. (52) by the square root of its 
variance which indicates our uncertainty about the exact value of K. Taking the 
square root yields a lower bound to the standard deviation for the determinant 

A det(B'WaB ) = ( N / 2 o  2 )2x-~y 22( AK )2. (53) 

In the__case of a square environment with N ---- (2K + 1) 2 = Sooo pixels, we have 
x 2 = y2 = $2oo/Sooo. We thus obtain, by using Eq. (51), 

A d e t ( B ' W c B  ) = S~oo([4/($4oo - $220)] 2 + 2(1/$22o)2). (54) 

The entities appearing on the right-hand side of Eq. (54) can be evaluated using their 
closed form representation given in Eqs. (AI4). In the special case of a 3 × 3 
environment (i.e., k = 1), we obtain 

A d e t ( B ' W a B  ) = 9(16 + is) =- 144. 

If the determinant given by Eq. (39) becomes smaller than the threshold given by 
Eq. (54), the environment does not exhibit a gray value variation which is suitable to 
reliably estimate a displacement vector. 

7. FROM ISOLATED DISPLACEMENT ESTIMATES TO DISPLACEMENT 
VECTOR FIELDS 

The formalism for iterative refinement of a displacement estimate developed in 
the preceding sections can be employed, too, to estimate displacement vectors for 
image locations around a gray value corner. The basic idea is to use the final 
displacement estimate obtained at a gray value comer as an initial value for image 
points in its neighborhood and to refine it iteratively based on Eq. (42). 

Such an approach raises two questions: 

(1) Where does it have to stop? 
(2) Will the result for other locations be independent of the initial value at the 

gray value comer? 

The answer to the first question can be found in the discussion at the end of the 
preceding section: the propagation must be terminated when the gray value variation 
in the environment around another point is insufficient to yield a determinant 
according to Eq. (39) which exceeds the threshold given by Eq. (53). 

The second question is more problematical. Gray value comers may occur on 
occluding boundaries. Their displacement will be representative for the moving 
occluding object but not for the background which is occluded or uncovered by the 
displacement of the occluding boundary. The displacement estimate obtained at a 
gray value corner may therefore be inappropriate as a starting value for part of the 
environment. This problem could be controlled by propagating the displacement 
estimate from each gray value corner until either no further propagation is possible 
due to the threshold given by Eq. (53) or until conflicting estimates are encountered. 
It should be noted that the approach developed here uses basically local information. 
The initial value employed in the iterative procedure described in the preceding 
sections could be derived in principle by random search as is often done in complex 
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minimization tasks. Propagation from neighboring pixels--based on the assumption 
of "almost always" smooth displacement variations--could be considered merely as 
a way to reduce the time spent in search. 

This situation has to be distinguished from that encountered in other "nonrnatch- 
ing" approaches discussed in Section 3 (e.g., the approach of Horn and Schunck [48] 
or that discussed by Marr and Ullman [33]). The restriction to linear models of gray 
value variation enforces additional nonlocal assumptions such as smooth variation 
of displacement vectors in order to compensate for the fact that a linear model does 
not provide enough information for the local determination of both displacement 
vector components. 

This analysis suggests a solution to overcome both problems indicated by the two 
questions from which this discussion started. Smooth displacement variations should 
only be postulated for image regions which do not exhibit sufficient structure to 
estimate both components of the displacement vector. The minimization approach 
introduced in Section 4 should be supplemented by the requirement that the change 
of displacement components weighted by the gray value curvature has to be 
minimized simultaneously. 

with 

MT"=ffax,([gCx,,2)-gCx- U , , l ) ]  2 

+B2(uxuy) gxy v + gyy] % 

( , ) )  ) + gx , ] -  
gxy y + gyy ] ( Vy (55) 

u x = Ou/Ox,  uy = Ou/Oy,  v x = Ov/Ox,  v~, = Ov/Oy.  (56) 

The integration has to be extended over the entire image. Vector U is considered to 
be a function of the image location X, i.e., U --- (u, v)' = U(X). The first term on the 
right-hand side of Eq. (55) corresponds to the requirement that the gray value at 
location X in frame 2 is optimally approximated by the gray value at location X - U 
in frame 1. A Taylor expansion of g(X, tl) up the second order is used to make the 
dependence of g(X - U, tl) on U explicit in analogy to Eq. (15). 

The second and third terms on the right-hand side of Eq. (55) express the demand 
that larger changes in the displacement vector can be admitted only where the gray 
value distribution exhibits sufficient variation. This can be seen more easily if we 
assume that the coordinate system is aligned with the principal curvature directions 
of g(X, tl) at X, i.e., g,,e - 0. The second term may then be written in the form 

= x + - u v  . ( 5 7 )  
0 7 + gyy u y + g,,.~ "~ + g),y 

The constant y has been introduced to prevent the determinant from becoming 
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singular in homogeneous gray value regions. A reasonable choice for 3' will be the 
square root of the standard deviation for the Gaussian curvature, i.e., the fourth root 
of Eq. (51). 

If the gray value curvature g~,, in the x direction becomes large at location X, 
larger values for the partial derivative of u along the x-direction will nevertheless not 
contribute much to the expression (55) which has to be minimized, i.e., large values 
of g~,x diminish the constraint on variation of u x along the x direction. Analogous 
considerations can be made for uy and the partial derivatives of v. 

In the limit of vanishing gray value curvature Eq. (55) specializes to the expression 
introduced by Horn and Schunck [48]. Let gx~ --- gxy = gyy = 0 so that g(X - U, tl) 
= g(X, tl)  - U* ~Tg(X, tl). With gtAt = (Og/Ot)At -- g(X, t2) - g(X, tl) for At = 
t2 -- tl taken to be the unit time interval we obtain with a 2 = f12/~, 

M T =  d x d y ( [ g , + g x u + g y v l 2 + e t 2 ( U x  uj, 

The approach represented by Eq. (55) can therefore be considered to be a generaliza- 
tion of both the approaches of Horn and Schunck suitable for image regions with 
slowly varying gray values and the approach outlined in the preceding sections for 
gray value corners. 

If  we have a straight line gray value transition (e.g., only gyy = gxy = 0) the 
displacement vectors should vary smoothly along the y direction, but may exhibit 
considerable changes along the x-direction, i.e., perpendicular to the edge. This case 
corresponds to the situations where displacement estimates are derived from moving 
edges (see, e.g., Korn and Kories [54], Kories [55], Thompson [56], or Haynes and 
Jain [57]). 

8. DISCUSSION 

Some of the theoretical developments discussed in this paper have been imple- 
mented. Preliminary results obtained on the basis of Eqs. (25) and (26) have been 
reported by Nagel and Enkelmalm [58]. Figures 4a and b illustrate displacement 
estimates obtained on the basis of two half frames from a TV frame sequence. These 
two half-frames were taken at a 40-msec interval. Figures 5a and b illustrate the 
estimates obtained from the first and second half frame, i.e., 20 msec apart, of the 
same TV frame. The gray value corners are those selected by the (partially heuristic) 
algorithm reported by Dreschler [29] and Dreschler and Nagel [5]. Closer inspection 
has shown that the conditions for the use of Eq. (25) or (26) are not met at image 
points where unsatisfactory estimates can be seen. This observation has encouraged 
investigations to improve the selection of gray value corners, using the more 
stringent requirements (23). A more thorough investigation of these questions 
including results derived by iterative refinement and an evaluation of Eq. (55) will be 
reported in the future. 

The approach developed in this paper appears to have a conceptual significance 
beyond its practical application. It provides a mathematical basis for a computation 
which may determine displacement vectors based on local information. It thus 
appears possible to determine optical flow without some of the more global 
assumptions required so far. This opens the possibility to determine displacement 
vectors even in the vicinity of optical flow discontinuities which are important clues 
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FIG. 4. Enlarged section around thc white taxicab from Fig. 1 with displacement vectors est imated 
aecording to Eq. (26). The "gray value comers" have been selected by the algorithm of Dreschler [29] and 
Dreschler and Nagel [5]. (a) The first half frame ha.,; been compared with (b) the first half frame of  tile 
subsequent TV frame, recorded 40 msec later. Detailed inspection has shown that the eharacteristics 
assumed for "gray value corners" are not fully met by those points for which unsatisfactory estimates are 
shown. This insight has fostered invcstigations to improve the corner point selection in tile program of 
Dreschler and Nagel. It led, moreover, to the iterative refinement procedure as discusscd in the text. 
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F I o .  5. Analogous to Fig. 4., (a) the first and (b) second half frames of the first TV frame have been 
c o m p a r e d  The time interval is only 20 msec long. 
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for 3-D interpretation. The directionally selective operator discussed by Marr and 
Ullman [33] does not appear to have such properties. Batali and Ullman [59] studied 
a kind of relaxation approach to determine both components of the displacement 
vector based on the output of the zero-crossing displacement operator suggested by 
Marr and Ullman [33]. They essentially assume that the displacement vector varies 
smoothly although their approach is able to cope with isolated strong discontinuities 
in the displacement vector field. 

If we neglect the fact that a curved zero-crossing contour deviates from the locus 
of maximum gray value slope as discussed in Section 2.4, then we may compare the 
approach developed here to that of Marr and Ullman [33] in the following manner: 
Marr and Ullman determine only the sign of the displacement for a small zero-cross- 
ing segment. They therefore have to combine this piece of information from several 
neighboring zero-crossing contour segments in order to determine the displacement 
vector. This implies the assumption that the displacement vector varies 
smoothly--supplemented by a facility to detect discontinuities in the displacement 
vector field. The concept of a "gray value corner," however, comprises a zero-cross- 
ing segment which exhibits sufficient curvature so that the statements about the 
displacement of each "arm" can be locally combined to yield both components of 
the displacement vector. 

It will be an interesting question to study the influence of a Gaussian filter applied 
to the gray value distribution prior to the determination of the displacement vector 
field according to the method developed here. Moreover, this approach has been 
formulated in an asymmetric manner (see, e.g., Eq. (15) which describes the gray 
value variation in frame 2 by the approximating function derived from frame 1). 
One might formulate this approach in a more symmetric manner. These and other 
questions have to be studied. 

Apart from the encouraging preliminary results, the mathematical formulation of 
this local approach for the estimation of a displacement vector field as well as its 
generalization to include the approach of Horn and Schunck as a limiting case 
appeal to intuition. 

APPENDIX 1: APPROXIMATING QUADRIC AND ITS ERRORS 

Given a quadratic domain of side length (2k + 1) for the digitized gray value 
function g(x, y) with x, y = - k ,  - k  + 1 . . . .  , - 1,0, 1,. . . ,  k. It is further assumed 
that the measurement errors for g(x, y) are independent of each other and are 
distributed according to a zero-mean normal distribution N(0, o). 

We want to determine the free parameters in the quadric 

f ( x ,  y) = fo + fx x + fyY + ½fxx x2 + fxyxY + ½fyyy2 (A1) 

in such a way that the sum of the squared differences between the measurement and 
the approximating expression--weighted by the (diagonal) inverted covariance 
matrix of the measurements--becomes a minimum. 

Since it will be required later on, we introduce an explicit linear order among the 
raster points in the given domain. 

x, = ( i -  1)mod(2k + 1) - k  (A2a) 

yi = k - (i - l)div(Ek + l) (g2b) 
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for i = 1, 2 . . . . .  N with N = (2k + 1) 2, where mod represents the modulo operation 
and div truncating integer division. This serialization starts with the leftmost pixel in 
the top row and proceeds row by row from left to right as indicated for the example 
of a 3 × 3 domain in Fig. A1. 

We use tiffs order to introduce column vectors with N components for measure- 
ment  values 

G = g(xi, Yt), i = 1,2 . . . .  , N (A3) 

and the approximation function 

F ( P ) = f ( x , , y ~ ; P ) ,  i =  1 , 2 , . . . , N ,  (A4) 

where P represents the column vector of parameters 

P=(P , ,P2 ,  P3, P4, Ps, P6) '=( fo ,L , f y ,L~ ,Ly , f y , ) ' .  (AS) 

The weight matrix W is given by 

with 6 i j=  1 for i= j ,  ( A 6 )  

= 0 otherwise, 

for i, j = 1,2 . . . . .  N. With these conventions, the expression to be minimized can be 
written 

M = ( F ( e )  - C , ) ' w ( v ( V )  - c , ) .  (A7) 
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Let A denote the matrix of derivatives of F with respect to the components of P, i.e., 

Aa = 8 f ( x i ,  Y i ; V ) / O P t ,  i = 1,2 . . . . .  N, l = 1,2 . . . . .  6, (A8a) 

i 2 .[. 2 A i - - . ( l , x i ,  Y , , i x i , x i Y i ,  2Y i )  i = 1  . . . .  , N .  (A8b) 

Then F can be written as 

and we have 

F = A P  ( A 9 )  

M = (,4r. - G)'W(Ae - G). (A~0) 

The requirement to rninirnizc this expression by appropriate choice of paramcters 
yields 

8 M / O P  = 0 = A ' W (  A P  - G) (Al la)  

or 

P = ( A ' W A ) - ' A ' W G .  

Following Kitchen and Rosenfeld [32], we define 

(Allb) 

N 
Spq~ = E xfyflg£. (Al2) 

t-I 

Due to the symmetry of the domain, terms with r = 0 and odd powers of x~ or Z 
vanish. Using this convention, the matrix ( A ' W A )  can be written in the form 

1 
A ' W A  = - ~  

Soo o 0 0 1 /2  Sz~ o 0 1//2 5o2 o' 

0 $2oo 0 0 0 0 

0 0 So2 o 0 0 0 

1/2 $2o o 0 0 1/4S4o o 0 1//4S22 o 

0 0 0 0 S220 0 

1 / 2  S020 0 0 ] ,/4S220 0 1/4So4o 

with 

Soo o = N  = (2k + 1) 2 

$2o o = So2 o -- 1 / 3 k ( k  + 1)(2k + l) 2 

S2~o = 1 / 9 k ~ ( k  + l )~(2k + 1) ~ 

S~o --- So, o = 1 / 1 5 k ( k  + 1)(2k 4- 1)2(3k z + 3k - 1) 

(A13) 

(A14a) 

(Al4b) 

(Al4c) 

(A14d) 
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from which it follows that 

SoooS22o = S~oo 

det(A'WA ) = ~ (1/o 2 )6S~)ooS]2o(S~o - Sz2 o )2. 

111 

(A15) 

(AI6) 

The inverse of A ' W A  represents the effects of error propagation to the parameters, 
i.e., it is the covariance matrix for the parameters. It is given by 

W p - '  = ( A ' W A ) - '  (AI7) 

~ e  2 

s, o,s  s22o  o o _2s  ,2o o _2 o 2o, 
0 S2oo (S ,  oo - S22o ) 0 0 0 

o o So.,o(S, o o -  s22o) o o 

- 2S~o0S22 o 0 0 4SoooS2a o 0 
0 0 0 0 S~(S4oo - Sno) 

- 2S020S:20 0 0 0 0 4SoooSno ) 

with 

~ = o ~ / (  s ~ S , ~ o (  S,  oo - S~o) ). 

For A ' W G  we obtain 

S001 
Siol  

1 S0,1 
A ' W G  = - f i  1/2Szo ' 

S i l l  

1/2So2t 

Combining (A 17) and (A1 8) yields 

P, = Yo = ( s ~ o  + S2~o)Soo, - S:ooS~o, - So2oSo:, 

Sooo( S ~  - S:=o ) 

e= = L = S~ooS,o,/( SoooS::o ) = S,o,/S=oo. 

e.  = g = So=oSo, , / (  SoooS::o) = So, ,~So:o. 

P .  = L ~  = 2 (SoooS=o ,  - s=ooSoo,) 
Sooo ( S ,  oo - S:2o) ' 

P5 = L~ = s~Li/S22o, 

2( SoooSo2~ - So~oSoo~ ) 
P 6  = f y y  "~ S o o o ( S 4 0 0  _ S22o ) 

(A17a) 

(A18) 

(A19a) 

(A19b) 

(gl9c) 

(A19d) 

(A19e) 

(A19f) 
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Using the expressions given in Eqs. (A14) will yield the operators presented by 
Beaudet [38]--with the exception of Eq. (A19e), where Beaudet obtained the 
opposite sign. Kitchen and Rosenfeld [32] pointed out that Beaudet used row-col- 
umn coordinates rather than the xy system used here. 

The uncertainties propagated from the measurements G to the parameters P 
introduce uncertainties in the values of F(P). Employing error propagation again 
yields the N * N covariance matrix W F- i for the values of F(P): 

W 7 ' = A W ;  'A'. (A20a) 

The element in row i and column j of this covariance matrix is given by the 
expression 

( W ; ' ) q  -- e:*((S4oo + $22o)$22o- (x~ + x~)$2ooS22 o 

- (y? + y?)So~oS=~o + ~ ,xAS,  o o -  S~o)S~oo 

+ y, ~. ( S, oo - S::o ) So:o + ( ~, ~, 4 + y,% 2 ) Sooo S~:o 

+ xix j yiyjSoo o (S,0 o - $220)) (A20b) 

( w ; ' ) , j  = o2 /k2(~  + 1)2(2k + l)~(2k + 3)(2k - l) 

• (k: (k  + ~):(14k : -  14k - 3) - 15~:(k + 1):(~? + 4 + Y,: + e?)  

+ 3 k ( k  + 1)(2k + 3)(2k - l)(x,xj +YlYj) 

+ 4 5 k ( k  + 1)(x/24 + Yi:Y?) + 9(2k + 3)(2k - 1)x,xjZyj) (A20c) 

for i, j = 1,2 . . . . .  N---(2k + 1) 2. To illustrate the dependencies, this matrix is 
given for k = 1, i.e., a 3 × 3 domain. 

29 
8 

- 1  
a2 8 

I'VF -I =-~ - 4  
--4 
- 1  
- 4  

5 

8 - 1  8 - 4  - 4  - 1  - 4  5' 
20 8 - 4  8 - 4  - 4  8 - 4  

8 29 - 4  - 4  8 5 - 4  - 1 
- 4  - 4  20 8 8 8 - 4  - 4  

8 - 4  8 20 8 - 4  8 - 4  
- 4  8 8 8 20 - 4  - 4  8 
- 4  5 8 - 4  - 4  29 8 - 1 

8 - 4  - 4  8 - 4  8 20 8 
- 4  - 1  - 4  - 4  8 - 1  8 29 

(A21) 

It can be seen that W 7 t is symmetric about both diagonals and that the sum of each 
row or column is equal to o 2. 

Since these properties will be used later, their general validity will be shown here. 
The symmetry about the main diagonal follows from the symmetry of Eq. (A20c) for 
the interchange of row and column indices i and j .  The symmetry property of W F- l 
about the other diagonal from the lower left to the upper right corner can be 
formally expressed as 

(WT') i  j (WF-') for i, j = l, .  N = (2k + l) 2. (A22) 
- ~  N + I - J , N + I - I  " ' '  



DISPLACEMENT FROM SECOND-ORDER VARIATIONS 113 

If we increase i or j from 1 to N, the index value N + 1 - j  or N + 1 - i, 
respectively, decreases from N to 1, i.e., we proceed through the raster points just in 
the opposite order than that given by Eqs. (A2). This is equivalent, however, to a 
reflection of the coordinate system at the origin. Inspection of Eq. (A20c) will show 
that it remains invariant if we replace x by - x  and y by - y .  As a consequence, 
We- ~ is symmetric about the other diagonal, too. 

When Eq. (A20c) is summed over the row index i, all terms containing odd powers 
of xi ory~ will vanish due to the symmetry of the environment around the origin. The 
remaining terms can be evaluated using Eqs. (AI2), (A14), and (A15). Straightfor- 
ward algebraic manipulations will then yield equality of this sum with a 2. The 
equivalent statement for a column follows from the symmetry of W/~ about the 
main diagonal. 

APPENDIX 2: SYMMETRIES AND INVERSION OF A COVARIANCE MATRIX 
FOR INTERFRAME DIFFERENCES 

If the errors in the gray value measurements at frame times tl and t2 are 
uncorrelated, the covariance matrix for the interframe difference defined by Eq. (28) 
can be written in the form 

= o%j + ( w ; , ) , j .  (30) 

This matrix is symmetric about the main diagonal as well as about the other 
diagonal from the lower left to the upper right corner. Since the rows and columns of 
W 7 ~ sum to o 2, the rows and columns of W a- t sum to 202. It will now be shown 
that corresponding statements can be proven with respect to the inverse of W o- ~, 
namely, W~;. 

Symmetry of W a about the main diagonal, given this property for W a- t, follows 
from general matrix theory. Le t "  indicate transposition about the other diagonal. In 
analogy to Eq. (A22), we have 

tl," - I~ , ,  
. . o  = = 

(A22a) 

By definition of W c as the inverse of W~ -I we can write 

J 

= Z ( w : '  

= g ( w c '  
J 

= E 
J 

)ij(Wa)jk (A23a) 

) j i (WG)k j = Z(WG-I)N+I_j , t (WG)k .N+I_j  (A23b) 
J 

)~) (wc)j~,, (A23c) 

where we used the symmetry of W C- t and W c about the main diagonal and the fact 
that the name of the summation index as well as the order in which the summation is 
performed do not change the expressions in Eq. (A23b). The last expression of 
(A23c) shows that W~' is the inverse of (W a- i),,. 
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It remains to be shown that the sum of a row of W o equals 1/(2o2).  The (i, j ) t h  
element of W a can be expressed by the cofactor for the corresponding element of 
WC': 

( Wc )ij = cofactor( W a- ' ) i  J d e t (  Wa-' ) . (A24) 

The determinant of Wc -~ remains invariant if one row is added to another. 
Therefore, det(WG -~) remains invariant if we add all other rows (k ~ i) to row i. 
Since adding all elements of a column yields 202, row i will then contain only 
elements equal to 202. If we now develop det(W C 1) for row i, we obtain 

det(Wc-') = 2a:E cofactor(Wa-'  ),j. (A25) 
J 

If all elements in row i of W o are added, Eq. (A24) together with (A25) will yield the 
result 

E(WG)u = 1 / (2o2) .  (A26) 
J 

The properties of W6 allow us to drastically reduce the number of elements which 
actually have to be computed. All elements below the main and the other diagonal 
are given by the symmetry properties of W G. Moreover, the fact that the sum of 
elements in a row or column equals I / (2o  2) can be exploited to further reduce the 
number of elements which have to be computed in the case of an N * N matrix (with 
N = (2k + 1) 2) to (N + 1)(N - l ) /4 .  For a square environment with 2k + 1 = 3 
pixels on one side such as that depicted in Fig. AI, only 20 instead of 81 elements 
need to be computed. For this case, W i I is given explicitly in (A21). The inverse W c 
has been determined based on this W i t according to Eq. (30), 

1 
W c = 7202 

43 - 8  1 - 8  4 4 I 4 - 5  
- 8  52 - 8  4 - 8  4 4 - 8  4 

1 - 8  43 4 4 - 8  - 5  4 1 
- 8  4 4 52 - 8  - 8  - 8  4 4 

4 - 8  4 - 8  52 - 8  4 - 8  4 
4 4 - 8  - 8  - 8  52 4 4 - 8  
1 4 - 5  - 8  4 4 43 - 8  1 
4 - 8  4 4 - 8  4 - 8  52 - 8  

- 5  4 1 4 4 - 8  1 - 8  43 

(a27) 

The covariance matrix WF ~ does not have a full rank of N. Because of the 
symmetries of the environment around X, the errors in the function values computed 
for f l (x ,  y;P1)  are not all independent from each other. The addition of the 
diagonal covariance matrix for the measurements g(x, y, t2) restores Wo -1 to full 
rank of N, however. To avoid a misunderstanding, the reader should note that the 
covariance matrix W F- t for the computed values of f l (x ,  y; PI)  is different from 
the (diagonal) covariance matrix of the measurements g(x, y, tl) based on which the 
parameter vector P1 has been determined. 
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