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Occlusion-Aware Optical Flow Estimation

Serdar Ince and Janusz Konrad, Fellow, IEEE

Abstract—Optical flow can be reliably estimated between areas
visible in two images, but not in occlusion areas. If optical flow is
needed in the whole image domain, one approach is to use addi-
tional views of the same scene. If such views are unavailable, an
often-used alternative is to extrapolate optical flow in occlusion
areas. Since the location of such areas is usually unknown prior
to optical flow estimation, this is usually performed in three steps.
First, occlusion-ignorant optical flow is estimated, then occlusion
areas are identified using the estimated (unreliable) optical flow,
and, finally, the optical flow is corrected using the computed oc-
clusion areas. This approach, however, does not permit interac-
tion between optical flow and occlusion estimates. In this paper,
we permit such interaction by proposing a variational formula-
tion that jointly computes optical flow, implicitly detects occlusions
and extrapolates optical flow in occlusion areas. The extrapolation
mechanism is based on anisotropic diffusion and uses the under-
lying image gradient to preserve structure, such as optical flow
discontinuities. Our results show significant improvements in the
computed optical flow fields over other approaches, both qualita-
tively and quantitatively.

Index Terms—Anisotropic diffusion, disparity estimation, mo-
tion estimation, occlusions, optical flow.

1. INTRODUCTION

PTICAL flow algorithms [1]-[6] are among the best
methods for the estimation of disparity in stereo images
and motion in video sequences. However, occlusion areas
[Fig. 1(a)], resulting from scene structure and/or object motion,
pose significant challenges. In this paper, by the term “occlu-
sion area” we refer to an area in one image [area A in image
I, Fig. 1(a)] that disappears in the other image (I). Note that
a disappearing area becomes an appearing area (also known as
“uncovered area”) if the direction of arrows is reversed. When
considering motion, the direction of arrows is related to time
(forward versus backward), while in stereo it is related to the
order of views (left-to-right versus right-to-left). Although the
work presented here is generic and applies to both stereo and
motion, our specific examples are in stereo, and, thus, we will
also refer to optical flow as disparity.
It is important to note that for any pair of images optical
flow is undefined in an occlusion area since, by definition,
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(a)

Fig. 1. Tllustration of occlusion effects on a horizontal cross-section of two
images depicting position change of a simple object (black): (a) area A from
I, is being occluded in I i by the object, while area B is being uncovered and
(b) intermediate image J that can be reconstructed if areas O and Op are
identified and proper correspondence with either I, or Iy is established.

a corresponding area cannot be found in the other image [in
Fig. 1(a) points in A have no match in Ir]. However, in certain
applications it is desirable to identify optical flow everywhere
in an image. For example, when rendering a virtual view, depth
(disparity) needs to be known for all pixels to be rendered
[Fig. 1(b)], while in video frame-rate conversion motion of all
pixels is needed. Solutions to this problem have been proposed
using additional images [7]-[9]. In one interesting approach,
a data-matching term in optical flow formulation is adaptively
disabled in order to select the best prediction among several
images [9]. We will use a similar disabling strategy in the
approach proposed here. From now on, however, we are con-
cerned with the estimation of optical flow from two images
only.

Most optical-flow estimation errors arise in occlusion areas
due to forced, but unreliable, intensity matching, and are
further aggravated by smoothing of optical flow across object
boundaries (adjacent to occlusion area). Without explicitly
detecting occlusions, methods have been proposed to deal with
oversmoothing, such as image-adaptive, isotropic diffusion
[10], anisotropic diffusion (image or flow-adaptive) [11], [12],
[5], [13], [14], and isotropic diffusion with nonquadratic regu-
larizers [4], [6]. These methods lead to discontinuity-preserving
vector fields, but do not account for occlusions. A step towards
accounting for occlusions was taken by jointly estimating
forward and backward optical-flow fields under flow-field reg-
ularization [15], [16]. In one case, the resulting flow diffusion
was isotropic but adapted to the difference between forward and
backward optical-flow estimates (large difference indicating
occlusions) [15], while in the other case the diffusion was
anisotropic and based on underlying image gradients [16].

The above methods lead to discontinuity-preserving vector
fields, but still produce erroneous results at object boundaries
since incorrect intensity matches are allowed despite occlusions.
One remedy is to extrapolate (inpaint), rather than estimate,
optical flow in occlusion areas [17], [13]. Ideally, one would
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first identify occlusion areas and then compute optical flow ac-
counting for these areas. However, it is unclear how to find oc-
clusion areas without first computing optical flow. Hence, in
practice, occlusion-unaware optical flow is computed first, re-
sulting in incorrect vectors in occlusion areas (a match is forced
despite lack of correspondence). Then, occlusion areas are iden-
tified, and, finally, the optical flow is corrected there [13]. This
three-step approach is deficient since incorrect vectors from oc-
clusion areas affect their neighbors in visible areas due to spatial
regularization typically used. Moreover, this approach does not
bootstrap optical flow estimates to improve occlusion detection
results.

More recently, methods have been proposed that jointly
estimate disparity and occlusions. One such method is based
on a visibility constraint but treats the disparity correction
in occlusion areas as a postprocessing step [17]. Moreover,
this corrective step assumes that depth in occlusion areas and
surrounding pixels is constant along epipolar lines. Although
often valid, this assumption fails for image backgrounds with
varying depth. Another method jointly estimates bidirectionally
consistent (forward/backward) motion fields and occlusion
labels using Markov random fields in a Bayesian framework
[18]. However, the occlusion detection mechanism relies on
an intensity, rather than flow-field, mismatch, and no vector
correction is performed in occlusion areas. Graph cut methods
[19], [20] have been used in disparity/motion estimation under
occlusions, as well. These methods explicitly define an occlu-
sion term in the formulation, however the intensity matching
and occlusion terms usually do not interact, i.e., disable each
other, unlike in the approach proposed here.

A joint approach somewhat similar to the one proposed
here was recently developed by Xiao et al. [21]. Although not
formulated through a single cost function under optimization,
the approach is implemented in a loop and can be considered
a joint approach. However, the method employs a bilateral
filter and locally adjusts filter strength by using precomputed
occlusion labels in each iteration, whereas we use anisotropic
diffusion and let the joint formulation drive the diffusion
process by using “soft” occlusion information (no explicit
occlusion labeling step). Moreover, the occlusion detection
relies on intensity mismatch, that is unreliable under image noise
and illumination changes [22], while we use an optical-flow
mismatch.

In this paper, we deal with the deficiencies of prior ap-
proaches by proposing a variational formulation that jointly
estimates optical-flow vectors, implicitly detects occlusions
and extrapolates optical flow in occlusion areas. The evolving
occlusions force vector extrapolation (via diffusion) by au-
tomatically disabling intensity matching at occluded pixels,
but permit standard estimation at visible pixels. By using
anisotropic diffusion driven by underlying image gradient,
the interaction between occlusion-area and some visible-area
optical-flow vectors is inhibited. At the same time, this joint
formulation solved iteratively facilitates interaction between
optical-flow vectors and occlusion labels, thus leading to more
coherent solutions. Evaluation of the proposed approach on
synthetic and real images demonstrates its efficacy, both quali-
tatively and quantitatively.
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The paper is organized as follows. In Section II, we describe
image-driven anisotropic optical-flow diffusion. In Section III,
we describe our joint formulation, and in Section IV, we present
experimental results.

II. OPTICAL FLOW EXTRAPOLATION via IMAGE-DRIVEN
ANISOTROPIC DIFFUSION

Consider rendering intermediate view .J based on views I,
and Ir [Fig. 1(b)]. In a simple scenario, disparity between
I, and Ip would be computed first, and then intensities
of I, and I would be disparity-compensated onto .J to
create the intermediate view. However, since area A undergoes
occlusionin I, disparity cannot be computed here, which makes
rendering the corresponding area O, (visible in I ) impossible.
Similarly, disparity remains undefined in the uncovered area
B, and, thus, Op (visible in ) cannot be reconstructed. In
order to reconstruct Op and Opg, a proper correspondence
with Ir, and IR, respectively, needs to be established via
disparity. Also, as recently suggested, motion-based object
segmentation could be improved had vectors been known
in occlusion areas [23].

An analogous problem was solved for images by
Bertalmio et al. [24]. They proposed an algorithm to fill
in, or inpaint, missing areas in an image using surrounding
intensities and their gradients. Their approach consists of two
steps: first, extending available gradients into a missing area,
and then applying anisotropic diffusion to propagate the avail-
able intensities into this area. The image gradients are extended
first so that the subsequent anisotropic diffusion preserves them
(e.g., intensity/color discontinuities). In the case of disparity
inpainting, image intensities are known in occlusion areas,
and, thus, the first step is not needed under the assumption that
image and disparity discontinuities coincide. Therefore, we
propose to extrapolate disparities using anisotropic diffusion
driven by image gradient.

Letx = (z,y)T € Q be a spatial position in image I defined
on . Also, let {d(z)}zcq be a disparity field to be computed;
d = [u,v]T with u and v being, respectively, horizontal and
vertical components of the disparity vector d. Finally, let O C €2
be an occlusion area in image I. In order to inpaint disparities
d, we exploit the underlying image structure by carrying out the
following minimization:

min//(')(Fm(u,I) + Fy(v,I))dz )

u,v

where I is defined as follows:

Fz(u,I) — VTU(.’E) ['J(ux(Z)D 0 VU((I:)

0 g(|1*(=)))
@

g( ) is a monotonically decreasing function, and I*, I¥ are hor-
izontal and vertical derivatives of I, respectively.

The above minimization leads to anisotropic diffusion; dis-
parities in occlusion areas are diffused while accounting for the
underlying image gradient. Assuming that the gradient mag-
nitude within an object is small, an iterative algorithm imple-
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Fig. 2. Comparison of disparity extrapolation methods on computer-generated
images: (a) I, ; (b) partial disparity map with ground-truth occlusions (black);
ground-truth disparity as (c) intensity image and (d) 3-D surface; and the
extrapolated disparity based on (e) depth constancy along epipolar line; (f)
isotropic diffusion; (g) standard inpainting; (h) proposed approach; and (i-1)
corresponding 3-D surfaces of disparity extrapolated in occlusion areas.

menting (1) will diffuse disparities inside each object only. The
edge-stopping function g( -) will prevent diffusion across ob-
ject boundaries because gradient is usually large there. The cost
function (2) is very similar to the one proposed by Perona and
Malik [25]. However, while in Perona and Malik’s case image
intensity undergoes smoothing and at the same time drives the
edge-stopping function g( - ) to control anisotropy during diffu-
sion, in our case horizontal and vertical disparity components
are being (separately) smoothed but anisotropy is controlled by
the underlying image intensity. This approach has also been
used by others to regularize disparities [13], [14].

In Fig. 2, we compare results of the proposed image-driven
anisotropic disparity diffusion with those of other extrapolation
methods on a synthetic image. We assume that we are given a
stereo pair [left image shown in Fig. 2(a)] and a partially esti-
mated horizontal (1-D) disparity map with occlusions marked in
black [Fig. 2(b)]. We would like to extrapolate the disparity map
in the occlusion area and closely approach the ground-truth dis-
parity, shown in Fig. 2(c) as an intensity image and in Fig. 2(d)
as a 3-D surface. A simple extrapolation using depth constancy
along epipolar line [13] leads to a patch-like result shown in
Fig. 2(e). On the other hand, isotropic diffusion [Fig. 2(f)] is
overly smooth. The results of standard inpainting and the pro-
posed approach are shown in Fig. 2(g) and (h), respectively.
The last row in Fig. 2 shows the same results in form of a
3-D surface around the occlusion area. Although standard in-
painting preserves structure much better than depth constancy
and isotropic diffusion, there is still unwanted smoothing espe-
cially at the bottom of the white rectangle. The image-driven
anisotropic diffusion, however, produces an extrapolated dis-
parity field with a clear discontinuity and is barely distinguish-
able from ground-truth.
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III. JOINT OPTICAL FLOW ESTIMATION/INPAINTING

As shown in the previous section, image-driven anisotropic
diffusion can be an effective tool in extrapolation of optical flow
in occlusion areas. However, we assumed that occlusion areas
are known as is optical flow outside occlusion areas, and, thus,
the inpainting is basically a postprocessing step. Now, we pro-
pose a new approach that combines optical-flow estimation, oc-
clusion detection and optical-flow extrapolation in a single for-
mulation.

Let I;, : Qp — RT,Ir : Qr — RT, and let = be-
long either to 7, or Q. We would like to compute two
disparity fields: {dp(z) = [ur(z),vr(%)]T }zcq, and
{dr(z) = [ur(z),vr(x)]T }zcq, that, for pixels visible
in both images, minimize some metric of the following photo-
metric errors:

prr(x) = I1(x) — Ir(z + dr(z))
pRL(z) :IR(.’II> —IL(.TI+dR(I)). 3)

At the same time, in order to distinguish occluded and visible
image areas, we propose to use the disparity mismatch (geo-
metric constraint)

cr(z) = ||di(z) + dr(z + di(z))||
cr(z) = [ldr(z) + di(z + dr(z))]| ©)

where || - || denotes Euclidean norm. Both €, (z) and eg(z) are
expected to be small for visible pixels and larger for occluded
and uncovered pixels. Note that although photometric errors (3)
could have been used as occlusion indicators, they are less ro-
bust to noise and intensity variations [22].

In order to model data-matching, disparity and occlusion con-
straints, we propose three pairs of energy functions (six in total).
Combined using adjustable weights, these functions will allow
us, during minimization, to trade off intensity matching accu-
racy for disparity and occlusion smoothness.

Since photometric constraints, expressed through errors (3),
do not hold in occlusion areas (p% ; and p% are large), we need
to disable their impact on the overall cost function whenever €,
or e is large (indicating occlusion). We can accomplish this by
multiplying p% ; and p%; by a weight function inversely pro-
portional to e, and er (4), respectively. The larger the disparity
mismatch, the smaller will be the contribution of this photo-
metric error to the overall cost function. We propose a mono-
tonically decreasing weight function D(z) = 1/(1 + K2?),
with constant K > 0 controlling function’s slope. D(er(z))
and D(eg(z)) approach zero as the disparities dy,, dg are less
and less capable of compensating each other. We define the first
pair of energy functions as follows:

P = / [ Dlcv@)loin(a) iz
Ef = / [ Dienta)pns(@)] s 5)

These energies differ from the usual optical flow formulation
by their ability to disable the impact of photometric error when
the disparities do not compensate each other. This is essential
because these areas are most likely occluded and the intensity
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matching term is not beneficial. On the contrary, it may lead
to false solutions. A similar idea was used in [9], where a pre-
diction term was disabled in favor of another prediction term
(multiple images available), while here the prediction term is
disabled in favor of diffusion term (two images only).

We embed the idea of image-driven disparity extrapolation
through the second pair of energy functions

E? = //Q (Fe(ur,It) + Fe(vr, Ir))dz
E,%://Q (Fp(up, IR) + Fu(vgr, I))dz (6)

with F, defined in (2). Note that energies (5) and (6) jointly
lead to edge-preserving regularization (no disparity smoothing
across strong intensity gradients) when D( -) is close to 1, but
result in disparity inpainting when D( -) is zero (i.e., possible
occlusion area), since the data-matching terms are disabled.

The energies (5) can be easily made arbitrarily small by
choosing vector fields with sufficiently large ¢, and er (4) for
all . In order to prevent this, we propose an explicit occlusion
model through the following energies:

= [ (1= D{es(z))s
= (1= Deala))) @

Note that 1 — D(er(z)) and 1 — D(er(x)) approach 1 as the
geometric errors ey, () and eg(z) grow, and can be thought of
as occlusion indicators in /7, and Iy, respectively. The above
energy terms, by introducing a penalty at each occlusion point,
keep the total area of occlusions from growing indefinitely. Oth-
erwise, all image points declared as occluded would result in
a low-energy, but degenerate, solution. Since minimization of
these terms encourages D(z) to be close to 1, the computed
vector fields are encouraged to be as close inverses of each other
as possible (except occlusion areas).

In order to perform joint disparity estimation, implicit oc-
clusion detection and disparity extrapolation, we combine the
above energy terms and carry out the following two minimiza-
tions simultaneously:

min Fy, By = Bf +nEf + pEy

L

n;in Er, FEr=EE +nE3 +uESQ (8)
R

where 1 and p are regularization factors. Since Ey, and ER are
functionals of both dy, and dg (through D(er,) and D(eg)), the
minimization is performed in an interleaved fashion; one itera-
tion of minimization is performed on F, and the estimated dj,
is used in one iteration on E'r, and vice versa. A derivation of
Euler-Lagrange equations can be found in the Appendix.

One may wonder why not minimize the sum Ey + Er with
respect to dy, and dp instead. It turns out that such a formu-
lation leads locally (around occlusion areas) to contradictory
constraints. Consider x ¢ A C €y butsuch thatx € B C
Qg [Fig. 1(a)]; intensity at x in Iy, is visible in Ir but in-
tensity at « in Iy is not visible in I7,. When minimizing E7,
with respect to dz, at « (8), a reliable disparity estimate can be
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obtained since an intensity match can be established between
I1, and I'p. When minimizing E;, + Egr also with respect to
d;, at z, the following energy terms need to be considered:
EP + nE? + nES + EX + nE§ (note that E75, is indepen-
dent of dr.). Clearly, in addition to F,, also the sum Eg + uEg
is minimized, thus biasing the estimate away from the correct
solution obtained when minimizing F7, only. This bias occurs
since F/ g + uEg is a function of both dy, and d g, and is particu-
larly severe for z visible in I, but uncovered in I since dg(x)
is unreliable (obtained by anisotropic diffusion). The impact of
dr(z) occurs through p%; () which may be large since z is in
an uncovered area of Ir (no match in 1), and through eg(x)
which may also be large for the same reason (dr(z) points to
a visible area in Iy, from where dy, is unlikely to point back
to z). In order to reduce both terms, dy, diverges from the cor-
rect estimate. Such erroneous solutions occur only around oc-
clusion/uncovered areas, which we confirmed experimentally.
However, in separate, but alternating, minimizations of £, with
respect to dy, and of Er with respect to dg, no such effects
take place. Although we have no proof of convergence of alter-
nating minimizations (8), a multiresolution implementation (see
below) and regularizers (6) help avoid divergence, and we did
not experience it in our experiments. Note that a similar mini-
mization strategy was used by Alvarez et al. [16].

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We discretized the resulting partial differential evolu-
tion equations using finite differences (see [25] for the
discretization of anisotropic diffusion). We used an explicit
discretization scheme for its simplicity, and a small time step
(At = 1.5 x 1077) to assure stability of calculations. All sub-
pixel (noninteger position) values, e.g., Ir(z + dr(x)), were
computed using bicubic interpolation. We used a hierarchical
implementation to avoid local minima. Images were prefiltered
with a Gaussian filter and downsampled so that at the lowest
resolution the maximum disparity did not exceed 1-2 pixels.
The estimation was started at the lowest resolution and the
result propagated to the next higher resolution by interpolation.
We used rectified stereo pairs, i.e., d = [u0]T; the vertical
disparity component was set to zero in estimation, therefore
leading to a simplified version of the algorithm.

In order to carry out evaluation of the proposed algorithm,
we introduce two different weighting functions D in our en-
ergy formulation: D1(z) = 1/(1 + K12z?) which weights the
photometric error in (5) and D(z) = 1/(1 + K22?) which
keeps the total area of occlusions from growing indefinitely (7).
As shown in Table I, for different values of K; and K5, and
different functional forms of g(z) our formulation may be sim-
plified to the original optical flow [1], edge-preserving optical
flow [5], or symmetric optical flow [16] estimation, the latter
one forcing the two disparity fields to be close inverses of each
other. The symmetric optical flow algorithm includes the occlu-
sion-limiting term (7) but does not disable the data-matching
term in (5). This is of interest for state-of-the-art video coding
based on the discrete wavelet transform (DWT) as it is able to
ensure a close invertibility of vector fields, important for such
coders [26]. Also, note that for K3 = Ky = 0 and ¢g(z) = 1,
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TABLE 1
OPTICAL FLOW (OF) ESTIMATION ALGORITHMS TESTED

Algorithm K1 K> g9(2)

Original OF [1] 0 0 1

Edge-preserving OF [5] 0 0 monotonically-decreasing

Symmetric OF [16] 0 >0  monotonically-decreasing

Proposed algorithm >0 >0 monotonically-decreasing
TABLE II

ABSOLUTE ERROR PER PIXEL IN COMPUTED DISPARITY FIELDS

Image #1 (Fig. 3) Image #2 (Fig. 4)

ur, UR urL UR

Original OF 4.57 4.67 1.63 1.44

Edge-preserving OF  1.55 1.51 0.81 0.52

Symmetric OF 1.61 1.83 0.60 0.45

Proposed algorithm  0.58 0.53 0.35 0.36
TABLE III

ABSOLUTE DISPARITY ERROR PER PIXEL FOR #;, ON TEST IMAGE FROM FIG. 4
AT DIFFERENT LEVELS OF ZERO-MEAN WHITE GAUSSIAN NOISE

Resulting  Original Edge- Symmetric ~ Proposed

PSNR(dB) OF preserving OF OF algorithm
No noise 1.63 0.81 0.60 0.35
27.01 1.66 0.91 0.74 0.50
24.09 1.69 1.08 0.81 0.60
23.12 1.69 1.00 0.87 0.64
20.35 1.80 1.18 0.96 0.72

TABLE IV

ABSOLUTE DISPARITY ERROR PER PIXEL FOR THE TEST IMAGE FROM
FIG. 4 AND DIFFERENT PARAMETER VALUES. IN EACH EXPERIMENT, ONE
PARAMETER IS ADJUSTED WHILE OTHER PARAMETERS ARE UNCHANGED

n = 6000, p = 2000

K =10, = 2000 K =10, n = 6000

K up UR n ur, UR ”w ur, UR
3052 046 1000 0.54 0.45 100 1.00  1.16
7 047 043 3000 043 040 1000  0.53  0.47
10 035 0.36 6000 035 0.36 2000 0.35 0.36
12037 0.36 9000 0.37 0.37 3000 044 043

minimizations in (8) reduce to two original optical flow algo-
rithms executed in parallel. In all experiments, whenever K1
and K are nonzero we use the value of 10, while = 6000 and
@ = 2000.

First, we tested the four approaches on two synthetic
sequences. Fig. 3 shows an unusually shaped object that is dis-
placed horizontally by 15 pixels over a stationary background.
The original images and corresponding ground-truth occlusion
area for I, are in the top row of Fig. 3. The ground-truth dis-
parity map for I, and its four estimates, presented as intensity,
as well as the recovered occlusions are shown in the remaining
two rows. The second synthetic sequence (Fig. 4) is more
challenging; two circles displace in opposite directions. There
are three occlusion regions between images and a significant
portion of occlusions is due to one object covering the other.
Table II shows the absolute error per pixel for the estimated
disparities.
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(a) (b)

(d) (e)

® (h)

Fig. 3. Results for a computer-generated pair of images: (a) I.; (b) Ig;
ground-truth: (c) occlusions for I, and (d) disparity for I, and disparities for
I, computed using progressively more complex formulations: (e) original OF;
(f) edge-preserving OF; (g) symmetric OF; (h) proposed method; and (i) likely
occlusion areas obtained by thresholding 1 — D(er(z)). In disparity images,
black and white colors represent 0 and 15 pixels of disparity, respectively.

Clearly, the proposed method [Figs. 3(h) and 4(h)] outper-
forms the original [Figs. 3(e) and 4(e)] and edge-preserving op-
tical flow [Figs. 3(f) and 4(f)] algorithms, both subjectively and
numerically. Note a significant improvement offered by edge-
preserving regularization compared to the original optical flow
algorithm. The symmetric optical flow algorithm [Figs. 3(g) and
4(g)] offers some subjective and numerical advantage over the
edge-preserving optical flow but since it enforces forward/back-
ward vector consistency at occluded pixels, the improvement is
limited. Had the occlusion areas been very small, the symmetric
optical flow would have improved the results significantly [16].
In our images, however, disparity mismatch over large occlu-
sion areas affects visible pixels through diffusion and results in
disparity errors. Still, this method is of interest for DWT-based
video coding due to close mutually inverse properties of the re-
sulting vector fields [26].

We also compared the four approaches in the presence of
noise; we added zero-mean white Gaussian noise to the test
image from Fig. 3. The absolute disparity error per pixel for
uy, is shown in Table III for different levels of noise. Clearly,
the proposed method performs well under noise as well. This
can be explained by the adaptive nature of the algorithm; since
disparities at noisy pixels usually lead to significant geometric
errors (4), the contribution from these pixels is disabled in (5).
It should be also noted that the hierarchical scheme used, which
includes a prefiltering step, acts as a noise suppressor and helps
all tested methods deal with noise.
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(b)

€9) (h)

Fig. 4. Results for another pair of computer-generated images; see caption of
Fig. 3 for description. In the disparity images, black, gray, and white colors
represent —10, 0, and 10 pixels of disparity, respectively.

Finally, we tested the algorithms on camera-acquired images:
Exit (Fig. 5) and Michel (Fig. 6). We present results for the sym-
metric optical-flow and the proposed algorithm only. For Exit,
the improvements are clear in occlusion area to the right of the
person closest to the camera, visible especially in close-up im-
ages [Fig. 5(e) and (f)]; in the symmetric optical flow result,
there is a clear spillover of disparities from person’s body into
the background (pixels in the occlusion area fail to find corre-
spondence in the other image). However, such errors are largely
corrected by the proposed method, because the matching term
(5) is disabled in occlusion areas. The estimated occlusion areas
are shown in Fig. 5(g). Similar improvements can be observed
for Michel [Fig. 6(c)—(f)]. Note the large occlusion areas, e.g.,
behind the head, that lead to incorrect large disparities for sym-
metric optical flow [Fig. 6(c) and (e)], but are corrected by the
proposed method [Fig. 6(d) and (f)]. In this example, we used
1 = 5000, because the occlusion area is much larger; unless
the occlusion count is penalized, it will grow beyond reason-
able limits.

A. Parameter Selection

As in other methods, an important issue is parameter selec-
tion. In the proposed formulation, three parameters K, 7 and p
influence the results. We chose n = 6000 and 1 = 2000 ex-
perimentally. While a larger 7 would force an even smoother
disparity field, a larger ;4 would further reduce the number of
(implicitly) estimated occlusion pixels. We chose K to be 10
because when e, i.e., mismatch between vector fields, is larger
than 1 pixel, D(e) falls below 0.1, a small enough value to sig-
nificantly reduce contribution of the intensity matching term.
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(e) ¢ (€]

Fig. 5. Experimental results for Exit image pair (property of Mitsubishi
Electric Research Laboratories) : (a) I; (b) Ir; estimated disparity for Ix:
(c) symmetric-OF; and (d) proposed method; and (e)—(f) close-ups of results
from (c)—(d), (g) likely occlusion areas obtained by thresholding 1 — D(e g (z)).

Note that there exist methods such as expectation maximization
[27], min-max principle [28] and unbiased risk estimator [29]
that can be used to automatically select parameter values.

In order to demonstrate that a very precise selection of param-
eters is not necessary in our method, Table IV shows absolute
disparity error per pixel for the test image from Fig. 4 while
changing either K, or i, or p. It can be seen that as parameters
are increased threefold, the error changes at most by 10%—-20%.
We also tested a relatively very small value of ¢ = 100; almost
half of the pixels were marked as occlusion. This was to be ex-
pected since, as we mentioned earlier, this leads to mismatched
disparities d, and di and, consequently, to disabling of the pho-
tometric error (5).

V. CONCLUSIONS AND FUTURE WORK

We presented a variational framework for joint optical flow
estimation, occlusion detection, and optical flow extrapolation
based on two images only. The new formulation calculates two
closely symmetric flow fields and also inpaints the optical flow
in occlusion areas. This formulation improves state-of-the-art
approaches in three ways. First, the image-driven anisotropic
diffusion fills-in flow vectors in occlusion areas respecting
image structure (intensity discontinuities), therefore providing
plausible solutions (unlike constant-disparity extrapolation).
Second, the joint formulation permits interaction between
optical flow and occlusions during estimation, thus allowing
mutual corrections (unlike in the case of three-step approaches).
Third, by disabling the data-matching term in occlusion areas,
the estimation bias of optical flow vectors is eliminated since
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(e)

Fig. 6. Experimental results for Michel image pair (property of Microsoft Re-
search Cambridge, U.K.): see caption of Fig. 5 for description.

the system relies exclusively on anisotropic diffusion (in visible
areas data-driven flow and diffusion work together).

The proposed algorithm has shown significant improvement
over original and edge-preserving optical flow formulations
both subjectively and numerically. Moreover, the symmetric
variant of the proposed algorithm may be interesting for
DWT-based video coding because of the particular relationship
between the resulting vector fields (close mutual inverses) [26].
We observed that the proposed approach brings only about 40%
of additional computational load to the standard optical flow
algorithm due to the additional interpolation operations stem-
ming from terms such as v”. We also observed that for larger
occlusion areas the number of iterations must be increased so
that diffusion can fill-in the areas using neighboring values. One
shortcoming of the method is evident in highly textured images
because image-driven flow diffusion is inhibited due to the high
local intensity gradient; a common problem of image-driven
regularizers. This problem is being currently addressed.

APPENDIX A

Let &7, = {ur,vr},Pr = {ur,vr} be sets of disparity
field components that we seek by minimizations in (8). As-
suming that Q7 = Qpr = Q in all energy terms (5)-(7), we
can rewrite cost functionals in (8) as follows:

B = [ [ vtz
B [ [ entoyis

er(z) = ef (z) + nei (z) + pef (z)

er(z) = ex(x) +nef (z) + pef (o)
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where
et () = Dr(z)[prr(z)]?
er(€) = Dr()[pre(2))?
7 (z) = Fo(up, Ip) + Fo(vr, I1)
ep(x) = Fp(ur, Ir) + Fe(vr, IR)
e?(z) = (1 — Dr(x))
eq(x) = (1 - Dg(x))

and Dy (z) 2 D(e(z)), Dr(z) 2 D(er(z)). We will mini-
mize 1, and Fr simultaneously by assuming that dy, is con-
stant when computing dr and vice versa. This will lead to in-
terleaved descent equations, i.e., one iteration of dy, using the
values of dr from previous iteration and vice versa.

Using the calculus of variations, two Euler-Lagrange equa-
tions (one for each unknown in ®.) for each F. can be found in

the form of
¢y (wr) = (der)/(dwr) — (9)/(D )@mﬁﬂaf)—
(9)/(9y)(Der) /(dw?) =
N s (wr) = (9er)/(Owr) — (9)/(9)(Der) /(D) —
(9)/(9y)(9er)/(0wh) = 0

where e (wr,) and e’z (wr) are the first variations with respect
towr, € ®r, wr € ®p, whereas w® and w” are derivatives with
respect to « and y, respectively. Expanding each equation and
omitting derivatives that are equal to zero (e.g., et /Out = 0),
we get two Euler—Lagrange equations for each E as follows:

def uaeg o 2862 +286§ —0

owry, owry, Oxr dwf ~ Oy &uy

dek 0e$) B 38@% L9 0 8eR 0 )
Jwpr Jwr Or dwy, Oy awR

where, again, wy, € ®;, and wr € P . Partial derivatives with
respect to ur,vr,uR,vr can be computed as follows (x was
dropped for simplicity of notation)

aeL 8DL ~
= — 2D 17
ouy ouy (PLR) LLRPLR
aef 8DL 2 ~
— = — 2D 1%,
ouL, vy, (PLR) LIRPLR
8e§ 0Dgr ~
—t = — 2DRI7
dup Oup (PRL) RILPRL
aeP 8DR =
ﬁ = Don (prr)? — 2DRIY pRr
00e) 0065 _ 0CglENug) | 0C(TEDuY)
dz duf Oy dul oz dy
0 e} | 0 deg 9 (29(|I7])vE) 4 9Cg(TzDvr)
Ox Ov§ Ay oy ox Jy
0 Oeyy 0 dey 9 (29(|T5])uf) L 9Qo(Ipug)
Oz ou¥, — Jy du'y ox oy
0 deq 0 dey _ 9(29(ITE])vF) L 9Qg(zDvR)
dz vy Oy dvy oz Ay
% . aDL aeL _ _8DL
our, Our, ' Ovr, vy,
O¢g __ODgr O __ODr
8uR 8U,R ’ 8’()R BvR
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where I” and I? are horizontal and vertical derivatives of I.,
while 7 and I” are derivatives evaluated off =, e.g., I (z) =
I# (x + dr(x)). Furthermore, we have

0Dy, _ 9K (14 u%)epw + VRerL v
our, (14 K(er,u)? + K(er,0)?)?
oDy, wheru + (1 +0%)erw
v, (14 K(epw)?+ K(ep,)?)?
% _ ok (14 4% )eru + Vierw
Oupg (1+K(€R7U)Z+K(6Rﬂ))2)2
9Dgr _ ok wepu+ (14+7Y)erwy
Ovgr (14+ K(epw)?+ K(erv)?)?
where
ernu(x) = ur(x) + ur(z + dr(x))

= uR(x) + uL(:l: + dR(-":))

(z)

erw(x) =vp(x) + vr(z +do(x))
(z)
(z) = vr(z) + vr(z + dr(z))

are individual components of disparity errors (4) and

u”,v*,uY,v?Y are again derivatives evaluated off x, e.g.,
uy(x) = uy(z + dg(z)). Using an auxiliary time variable ¢,
equations in (9) can be solved by discretizing gradient descent
equations
Owp, /0t = —e (w),0wr /0t = —ep(w),w, € DL
and
wgr € Pp.
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