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Abstract. In this paper we show that a classic optical flow technique by Nagel and Enkelmann (1986, IEEE
Trans. Pattern Anal. Mach. Intell., Vol. 8, pp. 565–593) can be regarded as an early anisotropic diffusion method
with a diffusion tensor. We introduce three improvements into the model formulation that (i) avoid inconsistencies
caused by centering the brightness term and the smoothness term in different images, (ii) use a linear scale-space
focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and
(iii) create an energy functional that is invariant under linear brightness changes. Applying a gradient descent method
to the resulting energy functional leads to a system of diffusion–reaction equations. We prove that this system has a
unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical
scheme in detail. Our method creates flow fields with 100 % density over the entire image domain, it is robust under
a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel
limits which are characteristic for many differential methods for determining optical flow. We show that it performs
better than the optical flow methods with 100 % density that are evaluated by Barron et al. (1994, Int. J. Comput.
Vision, Vol. 12, pp. 43–47). Our software is available from the Internet.
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1. Introduction

The goal of optical flow computations is to estimate
a so-called optical flow field which represents the ap-
parent shift of greyvalue structures in the image plane.
Recovering this displacement field is a key problem in
computer vision and much research has been devoted
to this field during the last two decades. For a survey

of these activities we refer to Mitiche and Bouthemy
(1996), and performance evaluations of some of the
most popular algorithms include papers of Barron et al.
(1994), Jähne and Haussecker (in press), and Galvin
et al. (1998).

One important class of optical flow methods consists
of so-called differential methods. Often they are con-
sidered as useful only in the case of small displacement
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fields. The goal of the present paper is to show that a
combination of linear and nonlinear scale-space ideas
may lead to a well-posed differential method that al-
lows to recover the optical flow between two images
with high accuracy, even in the case of large displace-
ment fields.

We consider two imagesI1(x, y) and I2(x, y) (de-
fined onR2 to simplify the discussion) which repre-
sent two consecutive views in a sequence of images.
Under the assumption that corresponding pixels have
equal grey values, the determination of the optical
flow from I1 to I2 comes down to finding a function
h̄(x, y) = (u(x, y), v(x, y)) such that

I1(x, y) = I2(x + u(x, y), y+ v(x, y)),

∀(x, y) ∈ R2. (1)

To computēh(x, y) the preceding equality is usually
linearized yielding the so-calledlinearized optical flow
constraint

I1(x̄)− I2(x̄) ≈ 〈∇ I2(x̄), h̄(x̄)〉 ∀x̄ (2)

where x̄ := (x, y). The linearized optical flow con-
straint is based on the assumption that the object dis-
placements̄h(x̄) are small or that the image is slowly
varying in space. In other cases, this linearization is no
longer valid.

Frequently, instead of Eq. (1), the alternative equality

I1(x − u(x, y), y− v(x, y)) = I2(x, y),

∀(x, y) ∈ R2 (3)

is used. In this case the displacementh̄(x, y) is centred
in the imageI2(x, y).

The determination of optical flow is a classic ill-
posed problem in computer vision (Bertero and Poggio,
1988), and it requires to be supplemented with addi-
tional regularizing assumptions. The regularization by
Horn and Schunck (1981) reflects the assumption that
the optical flow field varies smoothly in space. How-
ever, since many natural image sequences are better
described in terms of piecewise smooth flow fields sep-
arated by discontinuities, much research has been done
to modify the Horn and Schunck approach in order to
permit such discontinuous flow fields (Aubert et al.,
to appear; Black and Anandan, 1991, 1996; Blanc–
Féraud et al., 1993; Cohen, 1993; Deriche et al., 1995;
Guichard and Rudin, 1996; Heitz and Bouthemy, 1993;
Kumar et al., 1996; M´emin and P´erez, 1998; Nagel and
Enkelmann, 1986; Nesi, 1993; Proesmans et al., 1994b;

Schnörr, 1994; Weickert, 1998). A survey of these ap-
proaches will be presented at the end of this section.

An important improvement of the Horn and Schunck
method has been achieved by Nagel and Enkelmann
(1986) (see also (Nagel, 1983)). They consider the fol-
lowing minimization problem:

EN E(h̄) =
∫
R2
(I1(x − u(x, y), y− v(x, y))

− I2(x, y))2 dx dy

+ c
∫
R2
(∇uT D(∇ I1)∇u

+∇vT D (∇ I1)∇v) dx dy (4)

wherec is a positive constant andD (∇ I1) is a regular-
ized projection matrix in the direction perpendicular of
∇ I1:

D(∇ I1) = 1

|∇ I1|2+ 2λ2

×

(

∂ I1
∂y

− ∂ I1
∂x

)(
∂ I1
∂y

− ∂ I1
∂x

)T

+ λ2I d

. (5)

In this formulation,I d denotes the identity matrix. The
advantage of this method is that it inhibits blurring of
the flow across boundaries ofI1 at locations where
|∇ I1| À λ.

In spite of its merits, however, this method still leaves
room for improvements:

(i) The Nagel–Enkelmann model uses an optical flow
constraint which is centred inI2, while the pro-
jection matrixD in the smoothness term depends
on I1. This inconsistency may create artifacts for
large displacement fields.

(ii) Refraining from a linearization of the optical flow
constraint has the consequence that the energy
functional (6) may be nonconvex. In this case
popular algorithms such as gradient descent meth-
ods may get trapped in physically irrelevant local
minima.

(iii) Minimizers of the energy functional (6) are not
invariant under linear brightness changes of the
imagesI1 and I2.

In the present paper we will address these points
by introducing three improvements into the Nagel–
Enkelmann model:

(i) We design an energy functional that consistently
centers both the optical flow constraint and the
smoothness constraint in the same image.
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(ii) We encourage convergence to the global energy
minimum by embedding the method into a linear
scale-space framework that allows to focus down
from coarse to fine scales in small steps.

(iii) We introduce an adaptation of the parametersc
andλ to the dynamic range of the images such
that the resulting energy functional is invariant
under linear brightness rescalings. This adaptation
is particularly useful in the context of our scale-
space focusing which alters the dynamic range of
the images.

Applying the gradient descent method to our model
leads to a coupled system of two diffusion-reaction
equations, for which we establish the existence of a
unique solution. Interestingly, these equations can be
related to anisotropic diffusion filtering with a diffusion
tensor. We present an efficient numerical scheme that
is based on a linear implicit finite difference discretiza-
tion. Afterwards, we discuss the role of the model pa-
rameters and demonstrate that our model allows very
accurate recovery of optic flow fields for a large range of
parameters. This is done by considering both synthetic
image sequences, for which ground truth flow fields ex-
ist, as well as a real-world test sequence. Owing to the
scale-space focusing, our model is particularly suited
for recovering large displacement fields.

The paper is organized as follows: In Section 2 we
describe our optical flow method that incorporates the
three improvements, and we show that the Nagel–
Enkelmann method and its modifications are closely
related to anisotropic diffusion filtering. In Section 3 we
present existence and uniqueness results for the nonlin-
ear parabolic system that arises from using the gradient
descent method for minimizing the energy functionals.
Section 4 describes an efficient numerical discretiza-
tion of this system based on a linear implicit finite dif-
ference scheme. Section 5 clarifies the role of the model
parameters, and in Section 6 we present experimental
results on synthetic and real-world image sequences.
Finally, in Section 7 we conclude with a summary.

Related Work

Proesmans et al. (1994a, 1994b) studied a related ap-
proach that also dispenses with a linearization of the
optical flow constraint in order to allow for larger dis-
placements. Their method, however, requires six cou-
pled partial differential equations and its nonlinear dif-
fusion process uses a scalar-valued diffusivity instead

of a diffusion tensor. Their discontinuity-preserving
smoothing is flow-driven while ours is image-driven.
Another PDE technique that is similar in vein to
the work of Proesmans et al. is a stereo method by
Shah (1993). Other flow-driven regularizations with
discontinuity-preserving properties include the work
of Aubert et al. (to appear), Cohen (1993), Deriche
et al. (1995), Hinterberger (1999), Kumar et al. (1996),
Schnörr (1994), Weickert (1998), and Weickert and
Schnörr (1999). Related stochastic regularization ap-
proaches have been studied by Black and Anandan
(1991, 1996), Blanc–F´eraud et al. (1993), Heitz and
Bouthemy (1993), and M´emin and P´erez (1998). The
image-driven anisotropic Nagel–Enkelmann approach
has been subject to many subsequent studies. Examples
include later work by Nagel (1987, 1990) as well as re-
search by Schn¨orr (1991a, 1991b) and Snyder (1991).
A multigrid realization of this method has been de-
scribed by Enkelmann (1988), and a related pyramid
framework is studied by Anandan (1989). An isotropic
image-driven optic flow regularization is investigated
by Alvarez et al. (1999). With respect to embeddings
into a linear scale-space framework our method can be
also be related to the optical flow approach of Florack
et al. (1998). Their method differs from ours in that
it is purely linear, applies scale selection mechanisms
and does not use discontinuity-preserving nonlinear
smoothness terms. Our focusing strategy for avoiding
to end up in irrelevant local minima also resembles the
graduated non-convexity (GNC) algorithmsof Blake
and Zisserman (1987). A preliminary version of our
work has been presented at a conference (Alvarez et al.,
1999), and a related optical flow method has been used
by Hinterberger (1999) to generate a movie between
two images.

2. The Model

In this section we consider three modifications of the
Nagel–Enkelmann model in order to improve its perfor-
mance in the case of large displacement fields. We also
discuss relations between this method and anisotropic
diffusion filtering.

2.1. Consistent Centering

We have seen that the energy functional (4) uses an
optical flow constraint and a smoothness term that are
centred in different images. Our experiments showed
that this inconsistency may lead to artifacts when the
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displacement field is large. As a remedy, we consider a
modified energy functional where both the optical flow
constraint and the smoothness constraint are related
to I1:

E(h̄) =
∫
R2
(I1(x, y) − I2(x + u(x, y), y

+ v(x, y)))2 dx dy

+ c
∫
R2
(∇uT D (∇ I1)∇u

+∇vT D (∇ I1)∇v) dx dy. (6)

The associated Euler-Lagrange equations are given
by the PDE system

cdiv (D (∇ I1) ∇u)+ (I1(x̄)− I2(x̄ + h̄(x̄)))

× ∂ I2

∂x
(x̄ + h̄(x̄)) = 0, (7)

cdiv (D (∇ I1) ∇v)+ (I1(x̄)− I2(x̄ + h̄(x̄)))

× ∂ I2

∂y
(x̄ + h̄(x̄)) = 0. (8)

In this paper, we are interested in solutions of the
Eqs. (7) and (8) in the case oflargedisplacement fields
and images that are not necessarily slowly varying in
space. Therefore, we do not use the linearized optic
flow constraint (2) in the above system.

2.2. Relations to Anisotropic Diffusion Filtering

We obtain the solutions of the Euler–Lagrange Eqs. (7)
and (8) by calculating the asymptotic state(t → ∞)
of the parabolic system

∂u

∂t
= cdiv (D (∇ I1) ∇u)+ (I1(x̄)− I2(x̄ + h̄(x̄)))

× ∂ I2

∂x
(x̄ + h̄(x̄)), (9)

∂v

∂t
= cdiv (D (∇ I1) ∇v)+ (I1(x̄)− I2(x̄ + h̄(x̄)))

× ∂ I2

∂y
(x̄ + h̄(x̄)). (10)

These equations do also arise when the steepest
descent method is applied in order to minimize the
energy (6).

Interestingly, this coupled system of diffusion-
reaction equations reveals a diffusion tensor which re-
sembles the one used for edge-enhancing anisotropic

diffusion filtering. Indeed,D(∇ I1)has the eigenvectors
v1 :=∇ I1 andv2 :=∇ I ⊥1 . The corresponding eigenval-
ues are given by

λ1(|∇ I1|) = λ2

|∇ I1|2+ 2λ2
, (11)

λ2(|∇ I1|) = |∇ I1|2+ λ2

|∇ I1|2+ 2λ2
. (12)

We observe, thatλ1 + λ2 = 1 holds independently
of ∇ I1. In the interior of objects we have|∇ I1| → 0,
and thereforeλ1→ 1/2 andλ2→ 1/2. At ideal edges
where |∇ I1|→∞, we obtain λ1→ 0 and λ2→ 1.
Thus, we have isotropic behaviour within regions, and
at image boundaries the process smoothes anisotrop-
ically along the edge. This behaviour is very simi-
lar to edge-enhancing anisotropic diffusion filtering
(Weickert, 1996), and it is also close in spirit to the
modified mean-curvature motion considered in Alvarez
et al. (1992). In this sense, one may regard the Nagel–
Enkelmann method as an early predecessor of modern
PDE techniques for image restoration.

One structural difference, however, should be ob-
served: the optical flow Eqs. (9) and (10) use a tem-
porally constant diffusion tensor, while the nonlinear
diffusion tensor of anisotropic diffusion filtering is a
function of the evolving image itself. Hence, the Nagel–
Enkelmann model is anisotropic and space-variant, but
it remains linear in its diffusion part. Related linear
anisotropic diffusion filters have been pioneered by
Iijima in the sixties and seventies in the context of op-
tical character recognition; see Weickert et al. (1999)
and the references therein. For a detailed treatment
of anisotropic diffusion filtering we refer to Weickert
(1998), an axiomatic classification of mean-curvature
motion and related morphological PDEs for image
analysis is presented in Alvarez et al. (1993), and recent
collections of papers on PDE-based image smoothing
methods include (Berger et al., 1996; Caselles et al.,
1998; Romeny et al., 1997; Nielsen et al., 1999).

2.3. Recovering Large Displacements
by Scale-Space Focusing

The energy functional (6) may be nonconvex due to its
data term without linearization. In this case we cannot
expect the uniqueness of solutions of the elliptic system
(7) and (8). As a consequence, the asymptotic state of
the parabolic system (9) and (10), which we use for
approximating the optical flow, depends on the initial
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data. Typically, we may expect that the algorithm con-
verges to a local minimizer of the energy functional
(6) that is located in the vicinity of the initial data.
When we have small displacements in the scene, the
natural choice is to takeu≡ v≡ 0 as initialization of
the flow. For large displacement fields, however, this
may not work, and we need better initial data. To this
end, we embed our method into a linear scale-space
framework (Iijima, 1962; Weickert, 1999). Consider-
ing the problem at a coarse scale avoids that the algo-
rithm gets trapped in physically irrelevant local min-
ima. The coarse-scale solution serves then as initial data
for solving the problem at a finer scale. Scale focusing
has a long tradition in linear scale-space theory (see
e.g. Bergholm (1987) for an early approach), and in
spite of the fact that some theoretical questions remain
open, it has not lost its popularity. For more details on
linear scale-space theory we refer to Florack (1997),
Iijima (1973, 1989), Lindeberg (1994) and Sporring
et al. (1997). Using a scale-space approach enables us
also to perform a finer and more reliable scale focusing
as would be the case for related pyramid or multigrid
approaches.

We proceed as follows. First, we introduce a linear
scale factor in the parabolic PDE system in order to end
up with

∂uσ
∂t
= cdiv

(
D
(∇ I σ1

) ∇uσ
)

+ (I σ1 (x̄)− I σ2 (x̄ + h̄σ (x̄))
)

× ∂ I σ2
∂x

(x̄ + h̄σ (x̄)), (13)

∂vσ

∂t
= cdiv

(
D
(∇ I σ1

) ∇vσ )
+ (I σ1 (x̄)− I σ2 (x̄ + h̄σ (x̄))

)
× ∂ I σ2
∂y

(x̄ + h̄σ (x̄)) (14)

whereI σ1 :=Gσ ∗ I1, I σ2 :=Gσ ∗ I2, h̄σ (x̄) := (uσ (x̄),
vσ (x̄)), andGσ ∗ I j represents the convolution ofI j

with a Gaussian of standard deviationσ .
The convolution with a Gaussian blends the in-

formation in the images and allows us to recover a
connection between the objects inI1 and I2. In our
application, this global support property that is char-
acteristic for linear diffusion scale-spaces is very im-
portant. It makes them favourable over morphological
scale-spaces in the sense of Alvarez et al. (1993), since
the latter ones cannot transport information between
topologically disconnected objects.

We start with a large initial scaleσ0. Then we com-
pute the optical flow(uσ0, vσ0) at scaleσ0 as the asymp-
totic state of the solution of the above PDE system using
as initial datau≡ v≡ 0. Next, we choose a number of
scalesσn<σn−1 < · · · < σ0, and for each scaleσi

we compute the optical flow(uσi , vσi ) as the asymp-
totic state of the above PDE system with initial data
(uσi−1, vσi−1). The final computed flow corresponds to
the smallest scaleσn. In accordance with the loga-
rithmic sampling strategy in linear scale-space theory
(Koenderink, 1984), we chooseσi := ηiσ0 with some
decay rateη ∈ (0, 1).

2.4. Invariance Under Linear Greyvalue
Transformations

A remaining shortcoming of the modified model is that
the energyE(h̄) is not invariant under grey level trans-
formation of the form(I1, I2)→ (k I1, k I2), wherek is
a constant. Therefore, the choice of the parameters de-
pends strongly on the image contrast. This is especially
problematic when the method is embedded in the scale-
space focusing strategy, since the amount of smoothing
influences the contrast range in the regularized images
Gσ ∗ I1 andGσ ∗ I2.

We address this problem by normalizing the parame-
terscandλ in such a way that the energyE(h̄)becomes
invariant under grey level transformation of the form
(I1, I2) → (k I1, k I2). We computec andλ by means
of two parametersα ands ∈ (0, 1) that are calculated
via

c = α

max
x̄
(|(∇Gσ ∗ I1)(x̄)|2) ,

s =
∫ λ

0
H|∇Gσ ∗I1|(z) dz

where H|∇Gσ ∗I1|(z) represents the normalized his-
togram of|∇Gσ ∗ I1|. We names the isotropy frac-
tion. When s→ 0, the diffusion operator becomes
anisotropic at all locations, and whens→ 1, it leads to
isotropic diffusion everywhere. So nowc= c(α,∇Gσ ∗
I1), andλ= λ(s,∇Gσ ∗ I1).With this normalization of
c andλ, the energyE(h̄) is invariant under grey level
transformation of the form(I1, I2) → (k I1, k I2). In
practical applications of our method it is thus sufficient
to specify the parametersα ands instead ofc andλ.
The parametersc andλ are then automatically adjusted
to the dynamic image range in each step of the focusing
procedure.
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3. Existence and Uniqueness of the
Parabolic System

In this section we show the existence and uniqueness of
solutions of the parabolic system (13) and (14) where
D(∇ I σ1 ) is given by (5). The parametersc andλ can be
arbitrary positive real numbers. In particular, they may
be determined as described in the previous section. First
we introduce an abstract framework where we study
the above system. This framework is used to show the
existence and uniqueness of the solutions afterwards.

3.1. Abstract Framework

For simplicity we assume that the images are defined on
the entire spaceR2.We assume that the input imagesI1

andI2 belong to the functional spaceL2(R2). Let H =
L2(R2) × L2(R2), and let us denote byA :D(A) ⊂
H → H the differential operator defined by

A(h̄) = −c

(
div

(
D
(∇ I σ1

) ∇uσ
)

div
(
D
(∇ I σ1

) ∇vσ )
)
,

whereD(A) is the domain of the mappingA. If I1 ∈
L2(R2) then I σ1 ∈ W1,∞(R2), so∇ I σ1 is bounded and
the eigenvalues of the diffusion tensorD

(∇ I σ1
)

are
strictly positive. Therefore, asc > 0, the operatorA(h̄)
is a maximal monotone operator. For more details about
maximal monotone operators we refer to Brezis (1973).
Next, let us introduce the functionF : H → H defined
by

F(h̄) = (I σ1 − I σ2 (I d + h̄)
)∇ I σ2 (I d + h̄).

Then the abstract evolution problem can be written as{
dh̄σ
dt + Ah̄σ = F(h̄σ ) in H , ∀t ∈ [0, T ]

h̄σ (0) = h̄0 in H.
(15)

Any classical solution̄hσ ∈C1([0, T ]; H)∩C([0, T ];
D(A)) of (15) is given by

h̄σ (t) = S(t)h̄0+
∫ t

0
S(t − s)F(h̄σ (s)) ds, (16)

where{S(t)}t>0 is the contraction semi-group associ-
ated to the homogeneous problem.

Definition. We say thath ∈ C([0, T ]; H) is a gener-
alized solution of (15) if it satisfies (16).

3.2. Existence and Uniqueness Result

In order to prove existence and uniqueness, we have to
establish a lemma first.

Lemma 1. Suppose that I1, I2 ∈ L2(R2), then F
is Lipschitz-continuous, and the Lipschitz constant L
depends on the functions I1 and I2 and onσ .

Proof: First we note that ifI1, I2 ∈ L2(R2), then
we have in particular thatI σ2 ∈ W1,∞(R2) and I σ1 ∈
L∞(R2). Let h̄1, h̄2 ∈ H . For thei -th component of
F(h̄1)− F(h̄2), i = 1, 2, we have the following point-
wise estimate.

|Fi (h̄1)− Fi (h̄2)|
= ∣∣(I σ1 − I σ2 (I d + h̄1)

)
∂i I

σ
2 (I d + h̄1)

− (I σ1 − I σ2 (I d + h̄2)
)
∂i I

σ
2 (I d + h̄2)

∣∣,
≤ ∣∣I σ2 (I d + h̄1)∂i I

σ
2 (I d + h̄1)

− I σ2 (I d + h̄2)∂i I
σ
2 (I d + h̄2)

∣∣
+ ∣∣I σ1 ∣∣ · ∣∣∂i I

σ
2 (I d + h̄1)− ∂i I

σ
2 (I d + h̄2)

∣∣,
≤ 1

2

∣∣∂i
(∣∣I σ2 ∣∣2)(I d + h̄1)− ∂i

(∣∣I σ2 ∣∣2)(I d + h̄2)
∣∣

+ ∥∥I σ1
∥∥
∞ ·

∣∣∂i I
σ
2 (I d + h̄1)− ∂i I

σ
2 (I d + h̄2)

∣∣,
≤ 1

2
CLip

(
∂i
(∣∣I σ2 ∣∣2)) · |h̄1− h̄2| +

∥∥I σ1
∥∥
∞

·CLip
(
∂i I

σ
2

) · |h̄1− h̄2|

≤
(

1

2
CLip

(
∂i
(∣∣I σ2 ∣∣2))+ ∥∥I σ1

∥∥
∞ · CLip

(
∂i I

σ
2

))
· |h̄1− h̄2|,

whereCLip( f ) denotes the Lipschitz constant of the
function f . We finally deduce that

‖F(h̄1)− F(h̄2)‖H = ‖F1(h̄1)− F1(h̄2)‖L2

+‖F2(h̄1)− F2(h̄2)‖L2

≤
2∑

i=1

(
1

2
CLip

(
∂i
(∣∣I σ2 ∣∣2))+∥∥I σ1

∥∥
∞

·CLip
(
∂i I

σ
2

)) · ‖h̄1− h̄2‖H .

We conclude the proof of the lemma by setting

L =
2∑

i=1

(
1

2
CLip

(
∂i
(∣∣I σ2 ∣∣2))+ ∥∥I σ1

∥∥
∞ · CLip

(
∂i I

σ
2

))
.

This shows the assertion. 2
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Now we can state the existence and uniqueness result
for problem (13) and (14).

Theorem 1. Suppose that I1, I2 ∈ L2(R2) then, for
all h̄0 ∈ H , there exists a unique generalized solution
h̄σ (t) ∈ C([0,∞); H) of (13) and(14).

Proof: The assumptions onI1 and I2 allow us to ap-
ply Lemma 1. Assume thath̄1(t)andh̄2(t)are solutions
of (16) for initial conditionsh̄1(0) andh̄2(0), then we
have, using the fact thatA is monotone (which yields
‖S(t) f ‖H ≤ ‖ f ‖H ), and the Lipschitz continuity ofF
the following estimate.

‖h̄1(t)− h̄2(t)‖H ≤ ‖h̄1(0)− h̄2(0)‖H

+ L
∫ t

0
‖h̄1(s)− h̄2(s)‖H ds.

Applying the Gronwall–Bellman lemma (Brezis, 1973)
gives

‖h̄1(t)− h̄2(t)‖H ≤ eLt · ‖h̄1(0)− h̄2(0)‖H ,

which yields uniqueness of the solution if it exists. Now
consider the Banach space defined by

E = {h̄ ∈ C ([0,∞); H) : sup
t≥0
‖h̄(t)‖H e−Kt <∞}

endowed with the norm‖h̄‖E = supt≥0 ‖h̄(t)‖H e−Kt .
Let φ : E→ C ([0,∞); H) be defined by

φ(h̄)(t) = S(t)h̄0+
∫ t

0
S(t − s)F(h̄(s)) ds.

If K > L, thenφ(E) ⊂ E, andφ is L
K -Lipschitz since

‖φ(h̄1)− φ(h̄2)‖E

= sup
t≥0
‖φ(h̄1)(t)− φ(h̄2)(t)‖H e−Kt ,

≤ sup
t≥0

∫ t

0
L‖h̄1(s)− h̄2(s)‖H dse−Kt

≤ sup
t≥0

L‖h̄1− h̄2‖E · e−Kt
∫ t

0
eKs ds

≤ sup
t≥0

L

K
‖h̄1− h̄2‖E · e−Kt (eKt − 1)

≤ L

K
‖h̄1− h̄2‖E.

We deduce thatφ is a contraction, and by Banach’s
fixed point theorem there exists a uniqueh̄σ such that
φ(h̄σ ) = h̄σ . This is the generalized solution of (15),
and the proof is concluded. 2

Remark. We notice that our existence and uniqueness
proof is based on rather weak assumptions on the initial
imagesI1 andI2. We only assumed square integrability.
They do not have to be continuous and may even be cor-
rupted by noise or quantization artifacts, as is common
for real-world images. The behaviour of the solution
whenσ goes to 0 is a challenging mathematical prob-
lem. If I1 andI2 are not sufficiently smooth, we cannot
expect a good asymptotic behaviour whenσ tends to 0.
This suggests that the original imagesI1 andI2 should
always be preprocessed by some small amount of Gaus-
sian smoothing. In our experiments we shall also ob-
serve that it can be advantageous to stop the focusing
procedure whenσ attains the order of the pixel size.

4. Numerical Scheme

Next we describe an efficient algorithm for our op-
tical flow model. We discretize the parabolic system
(13) and (14) by finite differences (see e.g. Morton and
Mayers (1994) for an introduction to this subject). All
spatial derivatives are approximated by central differ-
ences, and for the discretization int direction we use
a linear implicit scheme. LetD(∇Gσ ∗ I1) =: ( a

b
b
c ).

Then our linear implicit scheme has the structure

uk+1
i, j − uk

i, j

τ

= c

(
ai+1, j + ai, j

2

uk+1
i+1, j − uk+1

i, j
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1
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× uk+1
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)
+ I2,x

(
x̄i, j + h̄k

i, j

) (
I1(x̄i, j )− I2

(
x̄i, j + h̄k

i, j

)
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i, j I2,x
(
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i, j
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(
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(
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, (17)



48 Alvarez, Weickert and Śanchez
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Although this scheme might look fairly complicated at
first glance, it is actually straightforward to implement.
The notations are almost selfexplaining: for instance,
τ is the time step size,h1 andh2 denote the pixel size
in x and y direction, respectively,uk

i, j approximates
uσ in some grid pointx̄i, j at timekτ , and I1,x is an
approximation toGσ ∗ ∂ I1

∂x . We calculate values of type
I2(x̄i, j + h̄k

i, j ) by linear interpolation.
The idea behind linear implicit schemes is to use im-

plicit discretizations in order to improve stability prop-
erties, as long that they lead to linear systems of equa-
tions. Implicit means that unknowns of the new time
level appear on both sides of the equation. For nonlinear
equations, fully implicit methods would require a com-
putationally expensive solution of nonlinear systems of
equations. The computationally less expensive linear
implicit methods avoid this by using suitable Taylor
expansions, such that the resulting system of equations
become linear. In our case we achieved this by using

the first-order Taylor expansion

I2
(
x̄i, j + h̄k+1

i, j

) ≈ I2
(
x̄i, j + h̄k

i, j

)
+ (uk+1

i, j − uk
i, j

)
I2,x
(
x̄i, j + h̄k

i, j

)
+ (vk+1

i, j − vk
i, j

)
I2,y
(
x̄i, j + h̄k

i, j

)
in a fully implicit discretization, and by discretizing
Gσ ∗ ∂ I2

∂x andGσ ∗ ∂ I2
∂y in an explicit way. A consistency

analysis shows that the preceding scheme is of second
order in space and of first order in time.

We solve the resulting linear system of equations
iteratively by a symmetric Gauß–Seidel algorithm. In
order to explain its structure let us suppose that we want
to solve a linear systemAw̄ = b̄whereA = D−L−U
andD is a diagonal matrix,L a strictly lower triangular
matrix, andU a strictly upper triangular matrix. Then
the symmetric Gauß–Seidel iterations are given by

(D − L) w̄(n+1/2) = b̄+U w̄(n),

(D −U ) w̄(n+1) = b̄+ Lw̄(n+1/2)

where the upper index denotes the iteration index. The
systems are solved directly using forward and back-
ward elimination, respectively.

In an earlier version of our work (Alvarez et al.,
1999) we have studied an explicit scheme that did not
require to solve linear systems of equations. The lin-
ear implicit approach that we employ in the meantime,
however, has led to a speed-up of one to two orders of
magnitude, since it allows significantly larger time step
sizes without creating stability problems.

5. Parameters

Our algorithm for computing the optical flow depends
on a number of parameters that have an intuitive mean-
ing:

• The regularization parameterα specifies the balance
between the smoothing term and the optical flow con-
straint. Larger values lead to smoother flow fields by
filling in information from image edges where flow
measurements with higher reliability are available.
• The isotropy fractions determines the contrast pa-

rameterλ via the cumulative histogram of the image
gradient magnitude. Choosing e.g.s := 0.7 means
that the smoothness term diffuses isotropically at
70% of all image locations, while 30% of all loca-
tions are assumed to belong to image edges, where
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smoothing is performed anisotropically along the
edge.
• The scaleσ0 denotes the standard deviation of the

largest Gaussian. In general,σ0 is chosen according
to the maximum displacement expected.
• The decay rateη ∈ (0, 1) for the computation of the

scalesσm := ηmσ0. We may expect a good focusing
if η is close to 1.
• The smallest scale is given byσn. It should be close

to the inner scale of the image in order to achieve
optimal flow localization.
• The time step sizeτ and the stopping timeT for

solving the system (13) and (14) at each scaleσm are
pure numerical parameters. We experienced that fix-
ing τ := 10 andT := 500 creates results that are suf-
ficiently close to the asymptotic state. Using smaller
values ofτ or larger values ofT slowed down the
algorithm without improving the quality of the flow
fields.

In the next section we will see that the results of our
method are hardly affected by fairly large parameter
variations. As a consequence default values can be used
for most of the parameters.

6. Experimental Results

Figure 1 shows our first experiment. We use a synthetic
image composed of four black squares on a white back-

Figure 1. Computation of the optical flow for the square images
with α = 0.6,s= 0.1, andη = 0.95. (a) First row, left pair: Original
image pair. (b) Second row, left pair: Optical flow components(u, v)
for σ0 = 10. (c) Third row, left pair: Optical flow result after focusing
down toσ12 = 5.7. (d) First row, right pair:σ25 = 2.9. (e) Second
row, right pair:σ37 = 1.4, (f) Third row, right pair:σ50 = 0.8.

Figure 2. Left: Average angular error of the optic flow calculations
for the squares in the first frame of Fig. 1. Right: Corresponding
average Euclidean error.

ground. Each square moves in a different direction and
with a different displacement magnitude: under the as-
sumption that thex axis is oriented from left to right
and they axis from top to bottom, the left square on
the top moves with(u, v) = (5, 10), the right square
on the top is displaced with(u, v) = (−10, 0), the left
square on the bottom is shifted by(u, v) = (0,−5),
and the right square on the bottom undergoes a transla-
tion by(−10,−10). In order to visualize the flow field
(u, v) we use two grey level images(ugl , vgl) defined
by ugl := 128+ 12u andvgl := 128+ 12v. In Fig. 1
we notice that the flow estimates improve significantly
by focusing down fromσ0 := 10 toσ50 := 0.8: flow
discontinuities evolve and the calculated flow fields ap-
proximate the true motion field more and more.

This qualitative observation is confirmed in the quan-
titative evaluations carried out in Fig. 2. The left plot
shows the average angular errors in the four squares of
the first frame. The angular error9e has been calculated
in the same way as in Barron et al. (1994) using

9e := arccos

 ucue+ vcve+ 1√(
u2

c + v2
c + 1

)(
u2

e+ v2
e + 1

)

(19)

where(uc, vc) denotes the correct flow, and(ue, ve) is
the estimated flow. The right plot depicts the Euclidean
error

√
(ue− uc)2+ (ve− vc)2 averaged over all pix-

els within the four squares of the first frame.
In both cases we observe that the error is reduced

drastically by focusing down in scale-space until it
reaches a very small value when the Gaussian width
σ approaches the inner scale of the image. Further re-
duction ofσ leads to slightly larger errors. It appears
that this is caused by discretization and quantization
effects. We evaluated the error only in the interior of
the squares because of the constant background. The
flow is not defined correctly in this area in the sense
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Figure 3. Result when the optical flow constraint and the smooth-
ness constraint are centred in different images. Images and parame-
ters are identical with those in Fig. 1.

that any displacement of the background is compatible
with the image sequence.

Figure 3 demonstrates the importance of consistent
centering of the optical flow constraint and the smooth-
ness constraint. In this experiment the smoothness term
follows the gradient ofI2, while the optic flow term is
centred inI1, i.e. we are looking for displacements from
I1 to I2. Since the boundary locations ofI1 and I2 dif-
fer for large displacements, it is not surprising that the
optical flow field that respects the discontinuities ofI2

is “leaking” at the boundaries ofI1.
We notice that when an object moves across the im-

age sequence, the background is partially occluded.
This occlusion problem is illustrated in Fig. 4. In the

Figure 4. Illustration of the occlusion problem. A square is moving
from I1 to I2. The shadowed region in the imageI1 has no corre-
spondence inI2.

direction of the object motion a region of the back-
ground is occluded, so the points of this region (the
shadowed area of Fig. 4) have no correspondence in
I2, and the optical flow constraint is no longer valid. In
this background region some slight inhomogeneities
appear as can be seen in Fig. 1. However, we observed
that the smoothness term of the energy helps to reduce
such effects.

For the following experiment we use the classi-
cal Hamburg taxi test sequence. These data are avail-
able at the ftp siteftp://csd.uwo.ca in the direc-
tory pub/vision. Instead of taking two consecutive
frames—as is usually done—we consider the frames
15 and 19. The dark car at the left creates a largest
displacement magnitude of approximately 12 pixels.
In Figs. 5 and 6 we present the computed flow. The

Figure 5. Computation of the optical flow for the taxi sequence
(frames 15 and 19) withα = 0.6, s = 0.1, σ0 = 10,σn = 0.8, and
η = 0.95.

Figure 6. Vector plot of the optical flow from Fig. 5.
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Figure 7. Optical flow results for the marbled block sequence
(frames 20 and 25) withα= 0.6, s= 0.1, σ0= 10, σn= 0.8, and
η= 0.95.

computed maximal flow magnitude is 11.68, which is
a good approximation of the actual displacement of
the dark car. It is interesting to note that, although the
movement of the pedestrian in the upper left part of the
scene is difficult to recognize in the greyscale plot in
Fig. 5, the vector plot in Fig. 6 shows that this motion
is not suppressed.

In Figs. 7 and 8 we show the results of our method
for the marbled block sequence. This sequence is copy-
right by H.-H. Nagel (KOGS/IAKS, University of Karl-
sruhe, Germany). It has been recorded and first eval-
uated by Michael Otte (Otte and Nagel, 1995) and
it is available fromhttp://i21www.ira.uka.de/
image-sequences. The marbled block sequence de-
scribed a real-world scene where the camera is moving.
In our experiments we took the frame 20 and 25, and
we used the same parameters as for the taxi scene.

Next we perform quantitative comparisons with clas-
sic optical flow techniques from the survey paper of
Barron et al. (1994). This is done using their ground
truth data as well as the evaluation utilities that are
available from their ftp siteftp://csd.uwo.ca in the
directorypub/vision. It should be noted that the re-
sults in Barron et al. (1994) have been achieved with test
sequences where the displacements are small, while
our method is designed for large displacement fields.
Moreover, their methods also used a presmoothing in

Figure 8. Vector plot of the optical flow from Fig. 7.

time which involves more than two frames, whereas
we use only two frames. In spite of these limitations
we are going to show that we can obtain competitive
results with our method.

In the comparison we focus on those methods in
Barron et al. (1994) that create flow fields with 100%
density. For many subsequent tasks such as the infer-
ence of egomotion and surface structure this is a very
desirable property. Local methods that yield a lower
density may have to be supplemented with additional
strategies for filling in information at locations where
no results are available. Their practical performance
may thus depend heavily on this postprocessing. Vari-
ational approaches with smoothness terms do not re-
quire such a postprocessing step as they automatically
yield flow fields with 100% density.

In Figs. 9 and 10 we show the computed optical
flow for the Square2sequence that depicts a square
moving with velocity (4/3,−4/3). Table 1 gives a
comparison with the results of Barron et al. for some
classic optic flow techniques that create flow fields
with 100% density. It can be seen that our proposed
technique reveals smaller errors than these methods.
In particular, this also shows that our three modifi-
cations improve Nagel’s method substantially. While
the implementation of Nagel’s method in Barron et al.
(1994) gives an angular error of 34.57◦, our method re-
veals an error of 10.97◦. In this example Barron et al. as-
sume that the background moves in the same direction
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Figure 9. Computation of the optical flow for theSquare2sequence
with α = 0.6, s= 0.1, σ0 = 10,σn = 1, andη = 0.95.

Figure 10. Vector plot of the optical flow from Fig. 9.

as the square. However, as the background is constant
the displacement is not well defined in this area. If we
focus our attention on the error of the computed flow
within the interior of the square we obtain an average
angular error of 0.85. This shows that the computed
flow is very accurate in the interior of the square.

Next we draw our attention to the most complex
synthetic test sequence from Barron et al. (1994), the
Yosemite sequence with cloudy sky. It contains dis-

Table 1. Comparison between the results from Barron et al. (1994)
with 100% density and our method for theSquare2sequence.

Technique Aver. error (◦) Stand. deviat. (◦) Density (%)

Horn and Schunck 47.21 14.60 100
(original)

Horn and Schunck 32.81 13.67 100
(modified)

Nagel 34.57 14.38 100

Anandan 31.46 18.31 100
(unthresholded)

Singh (step 1) 49.03 21.38 100

Singh (step 2) 46.12 18.64 100

Our method 10.97 9.60 100

Figure 11. Computation of the optical flow for the Yosemite se-
quence withα = 0.6, s= 0.1, σ0 = 5, σn = 1, andη = 0.95.

placements of up to five pixels. Our optical flow re-
sults are shown in Figs. 11 and 12, and a juxtaposition
with other methods can be found in Table 2. Again our
technique outperforms all methods from Barron et al.
(1994) which yield flow fields with 100% density. With
an angular error of 5.53◦ it even reaches the estima-
tion quality of typical methods with 30% density, and
the standard deviation of 7.40◦ is lower than the stan-
dard deviation of all methods that have been evaluated
in Barron et al. (1994): the best method (Lucas and
Kanade withλ2 ≥ 5.0) had an average angular error of
3.22◦ with a standard deviation of 8.92◦ and a density
of only 8.7%.

In order to evaluate the robustness of our algorithm
with respect to the choice of parameters we present
in Table 3 the errors for the Yosemite sequence tak-
ing different values of the parameters. To simplify the
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Figure 12. Vector plot of the optical flow from Fig. 11.

Table 2. Comparison between the results from Barron et al. (1994)
with 100% density and our method for the Yosemite sequence.

Technique Aver. error (◦) Stand. deviat. (◦) Density (%)

Horn and Schunck 31.69 31.18 100
(original)

Horn and Schunck 9.78 16.19 100
(modified)

Nagel 10.22 16.51 100

Anandan 13.36 15.64 100
(unthresholded)

Uras et al. 8.94 15.61 100
(unthresholded)

Singh (step 2) 10.03 13.13 100

Our method 5.53 7.40 100

presentation, we fixed the finest scale toσn := 1, and as
numerical parameters we usedτ := 10 andT := 500.
These parameters are almost independent of the image
and can therefore be set to default values. Hence, we
vary only the parametersα, s, η andσ0 in Table 3.

First of all it can be seen that our method outperforms
all methods in Barron et al. (1994) with 100% density
not only in case of optimized parameters, but also for
a rather large range of parameter settings. Let us now
study the parameter influence in more detail.

One important observation from Table 3 is that the
decay parameterη has an important influence of the
result: values around 0.5, as are implicitely used by
typical pyramid-based focusing algorithms, are by far
not optimal. A slow focusing withη = 0.95 gives sig-
nificantly better results. Our experience with other im-
ages suggests thatη may be fixed to this value for all
applications.

Table 3. Errors for the Yosemite sequence, using different
parameters of the algorithm.

Init. Isotr. Decay Angul. Stand.
Smoothness scale fract. rate error dev.
α σ0 s η (◦) (◦)

0.4 5 0.1 0.90 5.61 7.46

0.5 ,, ,, ,, 5.57 7.41

0.6 ,, ,, ,, 5.55 7.37

0.7 ,, ,, ,, 5.56 7.33

1.0 ,, ,, ,, 5.69 7.24

0.6 1 0.1 0.90 16.83 15.23

,, 2.5 ,, ,, 5.92 7.31

,, 5 ,, ,, 5.55 7.37

,, 10 ,, ,, 5.54 7.37

,, 15 ,, ,, 5.81 8.45

0.6 5 0.01 0.90 5.70 7.92

,, ,, 0.1 ,, 5.55 7.37

,, ,, 0.2 ,, 5.70 7.31

,, ,, 0.5 ,, 6.38 8.14

,, ,, 0.8 ,, 7.31 9.76

,, ,, 0.9 ,, 7.64 10.37

,, ,, 0.99 ,, 8.04 11.21

0.6 5 0.1 0.50 7.25 7.58

,, ,, ,, 0.70 6.14 7.36

,, ,, ,, 0.80 5.75 7.33

,, ,, ,, 0.95 5.53 7.40

,, ,, ,, 0.99 5.56 7.45

Choosing too a small value for the isotropy frac-
tion s does hardly worsen the results, while for larger
values the smoothness term becomes isotropic almost
everywhere and approximates the Horn and Schunck
scheme (Horn and Schunck, 1981). In order to avoid
the resulting deteriorations, we propose to fixs := 0.1,
which means that the method smoothes anisotropically
at 90% of all locations.

Regarding the smoothness parameterα, our method
appeared to be rather robust with respect to over- and
underestimations. We have thus used a fixed value of
0.6 for all experiments in the present paper.

As already mentioned, the initial scaleσ0 should be
chosen such that it covers the largest expected displace-
ments. We found that overestimations are less critical
than underestimations. This also confirms the use of the
focusing strategy. Too small values increase the dan-
ger of ending up in a physically irrelevant local min-
imum. Actually,σ0 was basically the only parameter
that we had to adapt in order to analyse different image
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sequences. Since it has a clear physical interpretation,
this adaptation was simple.

Remark. More detailed information about the ex-
periments in this section can be found at the web
site http://serdis.dis.ulpgc.es/∼lalvarez/
research/demos. In particular, some movies to illus-
trate the focusing strategy are presented. At this site we
also provide a window oriented image processing soft-
ware namedXMegaWave (see Gonz´alez and Trujillo,
1994) which includes the algorithm that we have de-
veloped in this paper.

7. Conclusions

Usually, when computer vision researchers deal with
variational methods for optical flow calculations, they
linearize the optical flow constraint. Except for those
cases where the images vary sufficiently slowly in
space, linearization, however, does only work for small
displacements. In this paper we introduced three im-
provements into a classical method by Nagel and
Enkelmann where no linearization is used. We identi-
fied this method as two coupled linear anisotropic diffu-
sion filters with a nonlinear reaction term. We showed
that this parabolic system is well-posed from a math-
ematical viewpoint, and we presented a linear implicit
finite difference scheme for its efficient numerical so-
lution. In order to avoid that the algorithms converges
to physically irrelevant local minima, we embedded
it into a linear scale-space approach for focusing the
solution from a coarse to a fine scale. A detailed quan-
titative analysis using test sequences with ground truth
data showed the following results.

• The method can recover displacements of more than
10 pixels with good accuracy.
• It performs significantly better than Nagel’s original

method and all other methods with 100% density that
are evaluated by Barron et al. (1994).
• The performance hardly deteriorated for quite a large

range of parameters. This allows to use default pa-
rameter settings for many applications.

In spite of these favourable properties, there are still
possibilities for further improvements and extensions
of this algorithm. For instance, we expect that our
method can benefit from results obtained from preced-
ing frames. One can interpolate the flow in the previous

frames in order to have a first estimation of the flow in
the current frame (Black and Anandan, 1991). If this
first estimation is a reasonable initial guess for our algo-
rithm, there is no need to introduce large scale correc-
tions by using large values forσ0. A smaller initial scale
σ0 speeds up the focusing procedure and makes the al-
gorithm faster. As an example for another extension
possibility, we are currently investigating the use of
our method for related matching problems such as 3D
reconstructions from greyscale and colour stereo pairs
(Alvarez et al., 2000; Alvarez and S´anchez, 2000). It is
our hope that our method that combines anisotropic
diffusion-reaction equations with linear scale-space
techniques may serve as a motivation to study other
combinations of linear and nonlinear scale-space ap-
proaches for solving computer vision problems.
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