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Scale and image primitive (1)

• In most of image processing problems:

Axiom
Detection of an image primitive is possible only at an optimal scale

Axiom ([Marr and Hildreth, 1980])
An image is characterized by its local intensity variation at each scale

• An image primitive: edges, contours, regions, pixels structures,

• Scale: an abstract measurement of image structures size, in practice,
we measure in “pixels”
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Scale and image primitive (2)

• Image resolution: number of pixels in an image
• and then: scale ̸= resolution

resolution

scale

• Range of scales are bounded:
• minimal scale: 1 pixel, the real size may be known if we knows the

pixel "size"
• maximal scale: given by the image resolution (i.e. the number of

pixels)
• Primitive ⇒ a local brightness variation ⇒ a differential operator to

approximate ⇒ linear filter size suited to the image primitive size.
Ex: f ′(x) ≃ f (x + 1)− f (x) 3



Importance in Image processing

• Optimization ⇒ calculus of variation ⇒ partial differential equations
⇒ approximation of differential operators

• Continuous and discrete solutions belong to a scale space (admitted)

• A dedicated conference: Conference on Scale Space and Variational
Methods in Computer Vision
Scope: Image analysis Scale-space methods Level sets methods PDEs in image processing, Inverse

problems in imaging Compressed sensing, Optimization methods in imaging Convex and non convex

modeling and optimization in imaging, Restoration and reconstruction, Multi-scale shape analysis, 3D

imaging modalities, 3D vision, Wavelets and image decomposition, Segmentation, Stereo reconstruction,

Optical flow, Motion estimation Registration, Surface modeling, Implicit surfaces, Shape from X,

Inpainting, Color enhancement, Perceptual grouping, Selection of salient scales, Feature analysis,

Cross-scale structure, Multi-Orientation Analysis, Differential geometry and Invariants, Mathematics of

novel imaging methods, Sub-Riemannian geometry, Medical imaging.
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A first description of scale spaces

• The idea is not novel:
• [Rosenfeld and Thurston, 1971]: bank of various operators with

different sizes for edges detection:
• [Klinger, 1971, Uhr, 1972]: representation at various resolution

(obtained by under-sampling) ⇒ pyramid of resolutions
• consequence: primitive scales decreases with the image resolution
• advantage: any primitive can be detected with the same operator: it

exists an optimal representation (a level in the pyramid) to detect a
given primitive
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Pyramid of resolutions (1)

• Let’s K > 0 an natural
number, and 0 < k ≤ K

• IK ≡ I image with finest
resolution

• I k image at resolution
(level) k is obtained from
superior resolution k + 1:

• applying an anti-aliasing
filter (a Gaussian
smoother)

• and downsampling of
factor 2 in the two image
direction (image size
divided by 4)

2n−1 × 2n−1

2n × 2n
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Pyramid of resolutions (2)

• Reduction operator R, in 1-D:

f (k−1)(x) = R(f (k)) =
∑
n∈N

c(n)f (k)(2x − n)

with c a low-pass filter

• In 2-D: we get a separable filter, c(n, p) = c(n)c(p)

I (k−1)(x , y) = R(f (k)) =
∑
n∈N

∑
p∈N

c(n, p)I (k)(2x − n, 2y − p)
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Characterization of c (1-D)

• Spatial properties:
• finite support in Z: ∃N such as ∀|n| > N, c(n) = 0
• positivity: c(n) ≥ 0
• unimodality: c(|n|) ≥ c(|n + 1|)
• symmetry: c(n) = c(−n)

• normalization:
∑

c(n) = 1
• identical contribution at each level:

∑
c(2n) =

∑
c(2n + 1)

• Frequency properties:
• low-pass filter: high frequencies components are set to zero to avoid

aliasing
• should approximate an ideal low-pass filter (ideal filter have an

infinite support in frequency domain)

• Examples:
• N = 3: unique filter: ( 1

4 ,
1
2 ,

1
4 )

• N = 5: ( 1
4 − a

2 ,
1
4 , a,

1
4 ,

1
4 − a

2 ), with a = 0.4 we are closest to a
Gaussian
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Band-pass pyramid

• between each level, use a pass-band instead of low-pass

• construction: subtract adjacent levels of a low-pass pyramid,

L(k) = f (k) − E(f (k−1)) (1)

L(0) = f (0) (2)

• E upsample operator to retrieve the previous resolution

• but: loss of information

E(f (k−1)) = 2
∑

c(n)f (k−1)
(
x − n

2

)
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Band-pass pyramid: applications

• Structure detection: image structures are localized in the pyramid
levels compatible with their sizes

• Information is not redundant between the pyramid levels: low
correlation between levels, each level may be efficiently compressed

• Easy to select some details levels

• Imperfect reconstruction is possible by inverting Eqs.(1, 2):

f̃ (0) = L(0)

f̃ (k) = L(k) + E(f̃ (k−1))

11



Pyramid of resolutions: pros and cons

• Pro:
• Easy to implement, low complexity
• Allows to implement efficient multiresolution algorithms

• Cons:
• non invariant by translation
• non invariant by rotation

• To go further: [Burt, 1981], [Crowley, 1981]
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First definition of scale scale (in R)

• Continuous case: scale parameter and spatial domain are continuous

• First definition appears in founding paper [Witkin, 1983] and
addresses 1-D signals

• Given a signal f , we derive a family of signals L indexed by a scale
parameter t ∈ R+:

f : R→ R original signal

L : R×R+ → R scale representation

• Definition of L:

L(x , t = 0) = f (x)

L(x , t) = gσ(t) ⋆ f (x), t > 0

14



Choice for g

• g is a convolution kernel
• a Gaussian of standard deviation σ:

gσ =
1

σ
√

2π
e−

x2
2σ2

• Rem: σ(t) =
√
t

• Action on a signal:

Figure 1: From [Witkin, 1983]

15



One more dimension

• L belongs to a space having one more dimension than those of f

• Supplementary dimension: a space of scale factor t:

Grey Level

space, x

scale, t

Figure 2: From [Witkin, 1983]

• A first application: look for a local extrema at a given scale and
downscale
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Link with the heat equation

• The diffusion equation (in 1-D):

∂

∂t
L(x , t) =

1
2

∂

∂x2

2

L(x , t) (3)

L(x , 0) = f (x) (initial condition) (4)

• This equation rules the heat diffusion (L is a temperature) in an
homogeneous 1-D medium

Theorem
A solution of system (3,4) is given by:

L(x , t) = g√t ⋆ f (x)

where g is the Gaussian function with standard deviation of
√
t
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Proof

• Easy to verify that g√t is solution of (3):

g(x , t) =
1
t
e−

x2
2t

∂

∂t
g(x , t) = − 1

2t2
e−

x2
2t +

1
t

(
x2

2t2

)
e−

x2
2t

=
1

2t2
e−

x2
2t

[
x2

t
− 1
]

∂

∂x
g(x , t) = − x

t2
e−

x2
2t

∂2

∂x2
g(x , t) = − 1

t2
e−

x2
2t − x

t2

(
−x

t

)
e−

x2
2t

=
1
t2
e−

x2
2t

[
x2

t
− 1
]

⇒ ∂

∂t
g(x , t) =

1
2

∂2

∂x2
g(x , t)
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Proof (next)

• g√t(x) is not solution of eq. (4) (indetermination for t = 0)

Lemma

∂

∂x
(f ⋆ g)(x) = f ⋆

∂g

∂x
(x)

f ⋆ (g + h) = f ⋆ g + f ⋆ h

• replace L by f ⋆ g√t in equation (3), apply the lemma, and remark
that f ⋆ g is solution of eq. (3):

∂

∂t
(f ⋆ g√t)−

1
2

∂2

∂x2
(f ⋆ g√t) = f ⋆

∂

∂t
g√t −

1
2
f ⋆

∂2

∂x2
g√t

= f ⋆ (
∂

∂t
g√t −

1
2

∂2

∂x2
g√t)

= 0
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Proof (next)

• Is eq. (4) verified?

• g√t ⋆ f (x) =
∫
R
f (x − u)g√t(u)du

• Admitted:

lim
t→0

∫
R

f (x)
1

t
√

2π
e−

x2
2t dx =

∫
R

f (x)δ(x)dx

for all function f integrable in R

• Dirac delta function (δ) is a generalized function (distribution)
implicitly defined by: ∫

R

f (x)δ(x)dx = f (0)

• by definition of δ, it comes:

lim
t→0

∫
R

f (x − u)g√t(u)du =

∫
R

f (x − u)δ(u)du = f (x)
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Proof (lemma)

• Distributivity:
∂

∂x
(f ⋆ g)(x) =

∂

∂x

∫
R

f (y)g(x − y)dy

=

∫
R

∂

∂x
(f (y)g(x − y))dy

=

∫
R

f (y)
∂

∂x
g(x − y)dy

• Linearity:

f ⋆ (g + h) =

∫
R

f (x − y)(g(y) + h(y))dy

=

∫
R

f (x − y)g(y)dy +

∫
R

f (x − y)h(y)dy

• Recall that convolution is commutative:

f ⋆ g(x) =

∫
R

f (x − y)g(y)dy =

∫
R

f (y)g(x − y)dy

by change of variable (domain reversal)
21



Causality principle

• A fundamental principle is verified: non creation of "structures"
when the scale increases

• Hypothesis: a structure in an image is characterized by its edges,
and then, by its image value extrema

• at scale t0, if x0 is a local maxima, then
∂2

∂x2 L(x0, t0) < 0 ⇒ ∂
∂t
L(x0, t0) < 0

• Taylor expansion at t: L(x0, t) ∼ L(x0, t0) +
∂
∂t
L(x0, t0)(t − t0)

• then: ∀t > t0, L(x0, t) < L(x0, t0)

• at scale t0, if x0 local minimum, then
∇2L(x0, t0) > 0 ⇒ ∂

∂t
L(x0, t0) > 0

• then ∀t > t0, L(x0, t) > L(x0, t0)

• Local maxima decrease, local minima increase: the image tends to
be more and more homogeneous
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Properties of the Gaussian kernel

• It is a smoothing filter: it does not create new image structures

• It is a weighted mean filter:∫
R

gσ(x)dx = 1 (5)

• It has fast decreasing toward zero: beyond |x | >
√
t, g(x) ≈ 0

⇒ image structures smaller than
√
t are suppressed
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Gaussian kernel graph
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Semi-group property

• The family of Gaussian functions (F , g⋆) has a structure of
semi-group, i.e.:

• g(., t) ⋆ g(., s) = g(., t + s)

• A representation at scale t2 can be deduced from any inferior scale
t1:

t2 > t1, L(t2, x) = gt2−t1 ⋆ L(t1, x)

• This property is used in the pyramid of resolutions

• In frequency domain, we have:

L̂t2(w) = ĝt2−t1(w)× L̂t1(w)

25



Concluding remarks

• Gaussian filter: details smaller than a scale disappear

• Question: does it exist another filters than Gaussian?

• A desirable property: the causality property (no new image
structures at higher representation scale)

• In particular: noise should decrease with the scale, and should never
be amplified

• Causality is a central property of the scale space theory, see
[Koenderink, 1984]

• How to generalize to R2?
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Continuous linear scale space in R2

Definition (Continuous scale space for an image)
Let I : R2 → R be an image. Let L be a familly of images, derived from
I , such as:

L : R
2 ×R+ → R

L(x, 0) = I (x),∀x ∈ R2

L(x, t) = g√t ⋆ I (x),∀x ∈ R2, t ∈ R+ (6)

with:

g√t(x) ≡ 1
2πt

e−
x2+y2

2t

f ⋆ g(x) ≡
∫
R2

g(x , y)f (x ′ − x , y ′ − y)dx ′dy ′

L is called scale representation of the image I , parameter t is the scale

28



Example

(a) Original Image (b) t = 1.0 (c) t = 1.5

Figure 3: Example of scale decomposition

• Larger structures are suppressed with higher scales. . .
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Example (animation)

Loading data ...

Figure 4: Animating scale space
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cameraman.mpg
Media File (video/mpeg)



The 2-D Gaussian function

• The 2-D Gaussian function is separable:

gσ(x) = gσ(x)× gσ(y)

=
1√
2πt

e−x2/2t 1√
2πt

e−y2/2t =
1

2πt
e−(x2+y2)/2t

• Implementation of 2-D Gaussian smoothing is efficient:

I ⋆ gσ(x) =
∫
R

(∫
R

I (x − x ′, y − y ′)gσ(x
′)dx ′

)
g(y ′)dy ′

• This property holds for superior dimensions
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The 2-D Heat equation

Theorem
The scale space representation L of a function f : R2 → R verifies the
following system of equations:

∂

∂t
L(x, t) =

1
2
∇2L(x, t) (7)

L(x, 0) = I (x) (8)

• ∇2L = ∇T∇ =
2∑

i=1

∂2

∂x2i
L is the Laplacian operator

• System (7 ,8) is the Heat equation in a 2-D homogeneous medium
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Differentiation in scale space

• Let’s consider an image at scale t, and its partial derivative respect
to spatial coordinate:

∂

∂x
L(x , t) =

∂

∂x

(
I ⋆ g√t(x)

)
= I ⋆

∂

∂x
g√t(x)

• Function g√t is C∞ and ∂n

∂xn g√t is integrable ∀n
• If I is integrable, and not necessarily differentiable, then ∂n

∂xn L is
defined

• Allows a weak definition of derivative, that can be applied to any
functions even not differentiable:

I ⋆ gσ −→
σ→0

I

I ⋆
∂n

∂xn
gσ −→

σ→0

∂n

∂xn
I

34



Properties of derivatives in scale space

• Space scale properties apply to image derivatives

• Indeed: if L solution of ∂
∂t L = 1

2∇2L then ∂L also a solution

• Moreover:

g√t1 ⋆
∂n

∂xn
g√t2 =

∂n

∂xn
g√t1+t2 (9)

∂m

∂xm
g√t1 ⋆

∂n

∂xn
g√t2 =

∂n+m

∂xn+m
g√t1+t2 (10)

• If a computer vision problem is formulated as solution of linear
PDEs, solutions live in a scale space
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Uniqueness of continuous scale space representation (1)

• Let us consider an axiomatic definition of scale space:
the set of parametric functions derived from an image I and an
operator Ht such as

1. linearity: I 7→ Lt = Ht(I ) is linear
2. translation invariant system: H(I ◦ T ) = H(I ) ◦ T , T translation, ◦

composition operator
3. semi-group structure: Ht1+t2 = Ht1 ◦ Ht2

• What operators H may be available?

Theorem (Uniqueness of Gaussian kernel)
All continuous space scale representations write:

L(x, t) = ht ⋆ I (x) =
∫
Ω

ht(x′)f (x − x′)dx′ (11)

with ht the Gaussian function of variance t
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Uniqueness of continuous scale space representation (2)

• Axioms 1. (linearity) and 2. (translation invariant system) lead to a
convolution with a kernel to be determined

• Translation invariant: a change of variable x → x − a under the
integral (convolution) leaves unchanged the spatial domain (R2)

• Uniqueness relies on the Pi-theorem (admitted)
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Uniqueness of continuous scale space representation (3)

Lemma (Pi-theorem (Vaschey-Buckingham))
Consider any physical system f relying n state variables (with dimension)
such as f (q1, · · · , qn) = 0.
Then it exists a family of variables πi without dimension and a function
F such as: 

F (π1, · · · , πp) = 0

πi =
n∏

k=1

qlkk
(12)

Variables πi are without dimension as explained as a product (Pi) of
variables qj .

• Pi-theorem means that a physical system never depend on the
choice of units (and the scale)

• Main lines of the proof are given in appendix

39



Content

Part 1: linear scale space

Introduction

Earlier works: image decomposition

Continuous linear scale space: 1-D case

Continuous linear scale space in R2

Differentiation in scale space

Uniqueness of continuous scale space representation

Implementation

Automatic scale selection

Applications

Concluding remarks on the linear continuous case

Part 2: non linear scale spaces

APPENDIX

40



Implementation (Matlab)

f u n c t i o n g = gD( f , s c a l e , ox , oy )
%%% Perform a gau s s i a n d e r i v a t i v e c o n v o l u t i o n
%%% f : i n pu t image
%%% s c a l e : smooth ing paramete r
%%% ox , oy : x and y d e r i v a t e o r d e r ( 0 , 1 , 2 , 3 )

% Bu i l d the g au s s i a n k e r n e l
K = c e i l (3∗ s c a l e ) ;
x = −K:K;
Gs = exp(−x .^2/(2∗ s c a l e ^2 ) ) ;
Gs = Gs/sum (Gs ) ;

% Ca l c u l a t e the d e r i v a t i v e s en x and y−d i r e c t i o n
Gsx = gDe r i v a t i v e ( ox , x , Gs , s c a l e ) ;
Gsy = gDe r i v a t i v e ( oy , x , Gs , s c a l e ) ;

% Do the c o n v o l u t i o n
g = convSepBrd ( f , Gsx , Gsy ) ;
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Implementation (Matlab)

f u n c t i o n r = gDe r i v a t i v e ( o rde r , x , Gs , s c a l e )
%%% Compute a d e r i v a t i v e o f a 1D Gauss i an k e r n e l
%%% ord e r : o r d e r d e r i v a t i o n 0 ,1 ,2 ,3
%%% Gs : d i s c r e t i z e d , c e n t e r e d gau s s i a n k e r n e l
%%% s c a l e : v a r i a n c e o f Gs
sw i t c h o r d e r
ca se 0
r = Gs ;

ca se 1
r = −x /( s c a l e ^2) .∗ Gs ;

ca se 2
r = ( x.^2− s c a l e ^2)/( s c a l e ^4) .∗ Gs ;

ca se 3
r = x .∗ ( 3∗ s c a l e ^2−x .^2 )/ ( s c a l e ^6) .∗ Gs ;

o t h e rw i s e
e r r o r ( ’ on l y ␣ d e r i v a t i v e s ␣up␣ to ␣ t h i r d ␣ o r d e r ␣ a r e ␣ suppo r t ed ’ ) ;

end
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Implementation (Matlab)

f u n c t i o n g = convSepBrd ( f , w1 , w2)
%%% convo l v e a l ong colums and rows wi th r e p e t i t i o n
%%% of the bo rde r

N = s i z e ( f , 1 ) ;
M = s i z e ( f , 2 ) ;
K = ( s i z e (w1 ( : ) , 1 ) −1 )/2 ;
L = ( s i z e (w2 ( : ) , 1 ) −1 )/2 ;
%% 1 1 1 1 1 | 1 2 . . . N | N N N N N
%% K t imes K t imes
i i n d = min (max ( ( 1 : (N+2∗K))−K, 1 ) ,N) ;
j i n d = min (max ( ( 1 : (M+2∗L))−L , 1 ) ,M) ;
%% f ( 1 , . ) K t imes then f ( 1 , . ) . . . f (N , . )
%% then f (N , . ) K t imes
%% then bo rde r r e p e t i t i o n . . .
fwb = f ( i i n d , j i n d ) ;
g = conv2 (w1 , w2 , fwb , ’ v a l i d ’ ) ;

43



Examples

Figure 5: phone=imread("phone.pgm");imshow(phone)
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Examples

Figure 6: imshow(gD(phone,1,0,0)
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Examples

Figure 7: imshow(gD(phone,2,0,0)
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Examples

Figure 8: imshow(gD(phone,5,0,0)
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Examples

Figure 9: imshow(gD(phone,10,0,0)

48



Examples

Figure 10: imshow(gD(phone,1,1,0)
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Examples

Figure 11: imshow(gD(phone,2,1,0)
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Examples

Figure 12: imshow(gD(phone,5,1,0)
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Examples

Figure 13: imshow(gD(phone,10,1,0)
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Examples

Figure 14: imshow(gD(phone,1,0,1)
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Examples

Figure 15: imshow(gD(phone,2,0,1)
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Examples

Figure 16: imshow(gD(phone,5,0,1)
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Examples

Figure 17: imshow(gD(phone,10,0,1)
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Examples

Figure 18: imshow(gD(phone,1,1,1)
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Examples

Figure 19: imshow(gD(phone,2,1,1)
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Examples

Figure 20: imshow(gD(phone,5,1,1)
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Examples

Figure 21: imshow(gD(phone,10,1,1)
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Automatic scale selection (1)

• scale space techniques can detect objects whose the size is known.
Practically, this size is not known.

• In the following, we model a 1-D image structure by the following
signal:

f (x) = sinω0x

ω0, pulsation, represents a structure of period 1
ω0

• Scale space representation of this signal:

L(x ; t) = f ⋆ g√t(x)

= e−ω2
0t/2 sinω0x

• We remark that t 7→ |L(., t)|∞ = e−ω2
0t/2 is monotone decreasing
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Automatic scale selection (2)

• Derived signal:

L(m)(x , t) =
∂mL(x , t)

∂xm

|L(m)(., t)|∞ = ωm
0 e

−ω2
0t/2

• Again t 7→ |L(m)(., t)|∞ is monotone decreasing
→ there is no optimal scale to detect a structure of size 1

ω0

• [Lindeberg, 1998]: let us introduce the normalized derivative:

∂γ
x = tγ/2

∂

∂x
, γ > 0
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Automatic scale selection (3)

• Normalized derivative of L at order m:

L(m)
γ (x , t) =

(
tγ/2

)m ∂mL

∂xm

• The maximum of this signal:

|L(m)
γ (., t)|∞ = tmγ/2ωm

0 e
−ω2

0t/2

• t 7→ |L(m)
γ (., t)| is no more monotone decreasing along scale

parameter, and has a unique maximum at:

tmax =
γm

ω2
0

It exists an optimal scale to detect a structure of size 1
ω0

, the
optimal scale value depends on ω0

• The maximum depends on ω0:

max(|L(m)
γ (., t)|∞) =

(γm)γm/2

eγm/2 ω
(1−γ)m
0 (13)
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Automatic scale selection (4)

• Practically, we get γ = 1: a special case for where the maximum of
L
(m)
γ is independent of ω0
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Figure 22: Maximal amplitude of L(m)
γ
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Blob detection (1)

• a discrete image is a constant piecewise function and a set of
relatively homogeneous regions

• Applying a Gaussian smoothing, regions get a Gaussian profile

Figure 23: A (Gaussian) blob
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Blob detection (2)

• Laplacian of Gaussian: Laplacian operator localizes the extrema of
Gaussian blob both in space and in scale

Scale

Figure 24: Action of Laplacian on a blob, local extrema in space and scale
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Automatic scale selection for blob detection (1)

• Algorithm:
• Compute ∂γ

xxL, ∂γ
yyL, ∂γ

xyL for various scales
Practically, get γ = 1, then ∂γ

xxL = tLxx , ∂γ
yyL = tLyy , and

∂γ
xyL = tLxy

• Blob detection: compute

F (t) = traceH(L) = t(Lxx + Lyy )

or
F (t) = detH(L) = t(LxxLyy − L2

xy )

for all scales
• Localize local maxima of F both in space and in scale. The optimal

scale informs on blob size
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Automatic scale selection for blob detection (2)

Figure 25: Sunflower field
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Automatic scale selection for blob detection (3)

(a) Hessian trace (b) Hessian determinant

Figure 26: Circle diameters are determined from the optimal scale (credit:
Hailin Shi)
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Edge detection

• First order detectors (approximation of first derivative)
• Local maxima of gradient norm at various scales
• Local maxima of normalized gradient norm both in space and scale

• Second order detectors:
• Marr operator (Laplacian) at various scales and get zeros crossing
• No automatic scale selection
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Harris detector (recall)

• Consider the following tensor applied on an image I :

A(I )(x , y) = ∇IT (x , y)∇I (x , y) =

(
I 2x Ix Iy
Ix Iy I 2y

)

• Practically, we consider A(I ) = GσI
⋆
(
∇IT (x , y)∇I (x , y)

)
with GσI

Gaussian function of variance σI
2 otherwise determinant of ∇IT∇I

is equal to zero

• σI = integration scale: determines the “size” of corners to be
detected

• Let’s consider κ ∈ [0.04, 0.15], Harris operator is defined by:

R(I ) = det(A(I ))− κTr2(A(I ))

• (x , y) is a corner ⇔ R(I )(x , y) > 0 and (x , y) is a local maxima of R
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Harris-Laplace detector

• Harris detector is rotation invariant as R(I ) = λ1λ2 − κ(λ1 + λ2)
2,

λ1 and λ2 eigenvalues of A(I )

• σI is not a scale parameter: R is not scale invariant if a mono-scale
approximation of image derivative (Sobel for instance) is used

• Harris-Laplace replaces I (x , y) by L(x , y , σD) = Gs ⋆ I (x , y) in the
definition of A

• Normalized derivatives may also be used (Lx(x , y , σD), Lx(x , y , σD))

• σD = differentiation scale

• Harris-Laplace detector: (x , y , σD) is a corner
⇔ R(I )(x , y , σI , σD) > 0 and (x , y) is a local maximum of R both in
space and differentiation scale for an given integration scale σI
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Harris-Laplace detector and automatic selection of the inte-
gration scale

• How to choice σI ?

• Algorithm [Lindeberg, 1998]:
1. k = 1, s1 set to an initial scale integration value
2. (xi , yi ) the set of detected corners by Harris-Laplace at σI = s1

3. k = k + 1
4. Find the scale maximizing the normalized Laplacian of Gaussian of

points (xi , yi )

t̂ = argmaxt∈[0.7,··· ,1.4] |tsk(Lxx(xi , yi , tsk) + Lyy (xi , yi , , tsk))|

5. sk+1 = t̂sk , determine (xi , yi ) the set of corners detected by
Harris-Laplace at scale integration sk+1

6. Iterate 3-4 up to convergence of sk
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Others multi-scale detectors

• Scale invariant features detectors : SIFT, SURF, . . . direct
application of space-scale theory

• Not covered here but already studied in other M2 courses
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Linear continuous space scale: concluding remarks

• Solutions of the homogeneous heat equation can be expressed as a
Gaussian smoothing

• Gaussian smoothing allows to select the primitives of a certain scale
(i.e. size). This scale depends on the standard deviation of the
Gaussian kernel

• Scale selection can be done optimally (using normalized derivatives)

• Scale space can be defined in an axiomatic way (linearity, shift
invariant, semi-group) and is unique (Gaussian smoothing)

78



Perspectives: what’s happen in the discrete case?

• Discrete in space, continuous in scale?
• Important question: practically, the Gaussian kernel is sampled for a

given scale.
• A scale space representation is called admissible if:

• is linear and shift invariant (i.e. discrete convolution)
• respects the causality principle (i.e. low pass filter)
• verify the semi-group property

• The set of admissible kernels is a countable family and has been fully
described by Schoenberg (1953)

• A direct consequence of Schoenberg: the Gaussian kernel sampling
is not an admissible representation: the semi-group property is not
respected excepted when t1 divides t2
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Perspectives: what’s happen in the discrete case?

• Another consequence: the closest infinite impulse response (IIR)
admissible filter to sampled Gaussian filter is the discrete analog of
Gaussian kernel

T (n, t) = e−αt In(αt), α > 0

with In(t) = (−i)nJn(it) and Jn Bessel function of first kind

• To go further: Lindeberg’s book [Lindeberg, 1994] or
http://pequan.lip6.fr/~bereziat/cours/master/amo/
amo-ss-cours2.pdf (in French)
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Motivations (1)

• Linear scale space representation has desirable properties but also
has some issues

• loss of important details (contours) at higher scales
• loss of localization and lower accuracy

• For some applications it’s a concern!
• denoising
• segmentation
• regularization

• Principle of non linear scale spaces: find representations that respect
the causality principle AND that preserve image discontinuities (two
antagonist constraints)
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Motivations (2)

• Basic idea: consider a diffusion process image driven:
• Over edges: no diffusion (contours are preserved)
• Elsewhere: diffusion (smoothing)

• Equivalence between linear scale space and homogeneous heat
equation (linear diffusion PDE)

• What’s about non linear diffusion PDEs? Is it possible to derive
alternative scale spaces?

• Roadmap: consider a non linear diffusion PDE and check if some
scale space axioms are verified (causality property, edges
preservation)
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Discretization of PDEs

• Numerous methods and depending on type of equation
• Here we present the finite difference method that applies on

• elliptic equations (such as Poisson equation: uxx + uyy = f )
• hyperbolic equations (such as waves equation: utt = cuxx)
• and finally parabolic equations (such as diffusion: ut = (Dxu)x)

• In the following we denote ux = ∂u
∂x , uxx = ∂2u

∂x2 , . . .
• Recall: Taylor expansion of a function f at point x0:

f (x) ≃
n∑

i=0

f (i)(x0)
(x − x0)

i

i !
+O((x − x0)

n)

with f (i) the i-order derivative, O(u) −→
u→0

0

• Approximation at order i :

f (x) ≃
n∑

i=0

f (i)(x0)
(x − x0)

i

i !

stands only in a neighborhood of x0

85



Approximation of first derivative

• Example 1 (first order Taylor expansion): forward difference

f (x +△) ≃ f (x) + f ′(x)△ (14)

f ′(x) ≃ f (x +△)− f (x)

△

• Example 2 (first order Taylor expansion): backward difference

f (x −△) ≃ f (x)− f ′(x)△ (15)

f ′(x) ≃ f (x)− f (x −△)

△

• Example 3: centered difference (subtracting (15) to (14)

f (x +△)− f (x −△) ≃ 2f ′(x)△ (16)

f ′(x) ≃ f (x +△)− f (x −△)

2△ (17)
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Approximation of second derivative

• Consider the two following Taylor expansions at second order:

f (x +△) ≃ f (x) + f ′(x)△+ f ′′(x)
△2

2

f (x −△) ≃ f (x)− f ′(x)△+ f ′′(x)
△2

2

• Adding them leads to

f ′′(x) ≃ f (x +△)− 2f (x) + f (x −△)

△2

• Others schemes are possible: remark that f ′′(x) = (f ′(x))
′ and

approximate in two steps using first order operators previously seen

• Important remark: loss of uniqueness in the discrete world
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Application: approximation of the heat equation (1-D)

• The question: how to approximate the heat equation in a correct
numerical scheme?

∂u

∂t
(x , t) = c

∂2u

∂x2
(x , t) x ∈ [x0, x1], t ∈ [t0, t1] (18)

• Space discretization: x 7→ u(x , t) is sampled on an uniform grid
• xj = x0 + j ×△x with j = 0 · · · J and J = x1−x0

△x
, △x is called space

step

•
∂2u

∂x2 (xj , t) ≃
u(xj+1, t)− 2u(xj , t) + u(xj−1, t)

△2
x

• Time discretization: t 7→ u(x , t) is sampled on an uniform grid
• tn = t0 + n ×△t , △t is called time step

•
∂u

∂t
(x , tn) ≃

u(x , tn+1)− u(x , tn)

△t
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Application: approximation of the heat equation (1-D)

• Replace left and right members in (18) by their approximation:

un+1
j − unj
△t

= c
unj+1 − 2unj + unj−1

△2
x

• Numerical scheme called FTCS (Forward Time, Centered Space):

un+1
j = unj + c

△t

△2
x

(unj+1 − 2unj + unj−1) (19)

• Given an initial condition (a vector U0 =
(
u00 u01 · · · u0J

)T
), we

compute an approximate solution of u(xn, tj)

• The scheme is said explicit as we can compute in one pass Un from
Un−1
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Stability analysis of a numerical scheme

• Does a numerical scheme converge to a correct solution? A
necessary condition is stability: the error

ϵnj = u(xj , tn)− unj

remains small for all n, unj is a numerical solution of the discrete
equation computed with a finite precision, u(xj , tn) is the truth
solution of the continuous equation

• A tool: the spectral (Fourier) analysis

• Consider solutions in the form of u(xj , tn) = ϵnj + unj , replace in (19):

ϵn+1
j = ϵnj − α(ϵnj+1 − 2ϵnj + ϵnj−1) (20)

with α = c△t

△2
x

• Error verifies the discrete PDE
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Spectral analysis

• Spectral analysis aims to study the behavior of solution writing:

ϵj =

N
2∑

k=1

ξke
ikj△x , j = 0 · · · J

• Error also depends on time but the Fourier basis don’t, ξk = ξk(n)

• The numerical scheme, eq. (20), is similar to a geometric sequence,
the error evolves exponentially in time:

ϵnj =

N
2∑

k=1

ξnke
ikj△x , with ξk constant

• A sufficient condition is to study the stability for each mode k :
ξnke

ikj△x
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Spectral analysis of discrete Heat equation

• To summarize: the spectral analysis of a discrete PDE studies the
behavior of solutions writing unj = ξnke

ikj△x when n tends to ∞
• Application to the discrete heat equation (FTCS scheme): let’s

replace unj by ξnke
ikj△x in Eq. (20):

ξn+1
k e ikj△x = ξnke

ikj△x + α(ξnke
ik(j+1)△x − 2ξnke

ikj△x

+ξnke
ik(j−1)△x )

ξk = 1 + α
(
e i△xk − 2 + e−i△xk

)
= 1 + α (2 cos(△xk)− 2)

= 1 − 4α sin2
△xk

2
(recall: cos 2a = 1 − 2 sin2 a)
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Stability of discrete Heat equation (FTCS)

• The scheme is stable iff |ξk | < 1

• If ξk > 0:

ξk = 1 − 4α sin2
△xk

2
< 1 ∀α > 0

• If ξk < 0:

ξk = 4α sin2
△xk

2
− 1 < 1 ⇔ 4α sin2

△xk

2
< 2

⇔ α <
1
2

• CFL condition1: the scheme is stable if c△t

△2
x
< 1

2

• Example: with △x = △t = 1, the condition is c < 1
2

• Practically △x is fixed, △t must be chosen in order to respect the
CFL condition

1Courant-Freidrichs-Lewy
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Stability of discrete Heat equation (FTCS)
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Figure 27: α = 0.4, the scheme is stable
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Stability of discrete Heat equation (FTCS)
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Figure 28: α = 0.5, the scheme is locally unstable
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Stability of discrete Heat equation (FTCS)
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Figure 29: α = 0.6, the scheme is unstable
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Discrete Heat equation: implicit scheme

• Consider now a backward in time and centered in space scheme
(BTCS):

unj − un−1
j

△t
= c

unj+1 − 2unj + unj−1

△2
x

• Leads to the following scheme:

−αunj+1 + (1 + 2α)unj − αunj−1 = un−1
j (21)

• It is an implicit scheme that requires a matrix inversion:
AUn = Un−1 with A tri-diagonal

A =


1 + 2α −α 0 · · ·
−α 1 + 2α −α 0 · · ·

· · ·
· · · 0 −α 1 + 2α


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Discrete Heat equation: implicit scheme

• Error:
−αϵnj+1 + (1 + 2α)ϵnj − αϵnj−1 = ϵn−1

j

• Spectra analysis:

ξk
(
−αe i△k + (1 + 2α)− αe−i△k

)
= 1

ξk =
1

1 + 2α− 2α cos(△k)

=
1

1 + 4α sin2 k△
2

|ξk | < 1

• The scheme is unconditionally stable
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Discrete Heat equation: implicit scheme
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Figure 30: α = 0.6, the scheme remains stable
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Conclusion on discrete Heat equation

• Pro: the implicit scheme (BTCS) is always stable!

• Cons:
• require the inversion of a matrix (possibly huge for 2-D diffusion)
• practically the inversion of huge matrix relies on iterative algorithms

(that do not provide an exact solution)
• For non linear diffusion, the matrix depends on image configuration

and changes at each iteration

• Conclusion;
• if the CFL condition is verified, prefer explicit scheme (more

accurate)
• in other cases, use implicit scheme
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Perona & Malik diffusion: principle

• Founding work on non linear scale space come from
[Perona and Malik, 1990]: “Space scale and Edge Detection Using
Anisotropic Diffusion”

• The problem is formulated in an axiomatic way:
• causality principle
• edges are localized for all scales
• homogeneous regions are smoothed

• This leads to diffusion whose characteristics depend on local
configuration of image values

• Consequently: the PDE describing such a diffusion is no more linear
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Perona & Malik diffusion: formulation

• Consider the following PDE:

∂L

∂t
(x, t) = ∇ · (c(x, t)∇L(x, t)) x ∈ R2, t > 0 (22)

=
∂

∂x

(
c(x, t)

∂L(x, t)
∂x

)
+

∂

∂y

(
c(x, t)

∂L(x, t)
∂y

)
L(x, 0) = I (x) (23)

• The right member of (22) may write:

∂L

∂t
(x, t) = c(x, t)∇2L(x, t) +∇c(x, t).∇L(x, t)

• If c(x, t) = c then ∇c(x, t) = 0, and we retrieve the homogeneous
heat equation

• c : diffusion coefficient, ruling the "speed" diffusion
• c ≃ 0: no diffusion (stationary), image is locally preserved
• c is constant, homogeneous diffusion, image is locally smoothed
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Choice for c (1)

• According to Perona & Malik: choose c such as
• c(x, t) = 1 over homogeneous regions: strong smoothing
• c(x, t) = 0 over edges area: no smoothing

• Let E (x, t) be an oriented edge map at scale t:

E (x, t) =

{
Ke⃗(x, t) if x edge

0 otherwise

• e⃗ vector orthogonal to the edge
• K a contrast parameter representing the gray scale value difference

between regions adjacent to the edge

~e

K
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Choice for c (2)

• Typically choice: c(x, t) = g(∥E (x, t)∥), i.e. an isotropic diffusion
(doesn’t depend on the gradient orientation)

• E depends on L: equation (22) no more linear

• g is a fast decreasing function, for example:

 0
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1/(1+(x)**4)

• Perona & Malik’s choice for the edges map: E (x, t) = ∇L(x, t)
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Choice for g (1)

• The solutions of (22) verify the causality principle (derive from a
general theorem for parabolic PDEs, see P&M paper)

• Edges enhancement with increasing scale: in 1-D, Equation (22)
reduces to

∂L

∂t
=

∂

∂x

(
c
∂L

∂x

)
• Behavior of edges: ∂

∂t

(
∂
∂x

L
)
= ∂

∂x

(
∂
∂t
L
)
= ∂2

∂x2

(
c ∂

∂x
L
)

• we chose c = g(Lx )

• let’s denote ϕ(Lx ) = g(Lx )Lx (with Lx = ∂
∂x

L), ϕ is called “flux”

∂

∂t
Lx =

∂2

∂x2 ϕ(Lx)

=
∂

∂x
(Lxxϕ

′(Lx))

= Lxxxϕ
′(Ix) + L2

xxϕ
′′(Lx)
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Choice for g (2)

• Behavior of edges:

∂

∂t
Lx = Lxxxϕ

′(Lx) + L2xxϕ
′′(Lx)

• Let an edge such as Lx > 0, then Lxx = 0, and Lxxx < 0, and

∂

∂t
Lx = Lxxxϕ

′(Lx)

• Two cases:
1. ϕ′(Lx ) > 0 ⇒ ∂

∂t
Lx < 0: t 7→ Lx is a decreasing function:

attenuation of the edges with increasing scale
2. ϕ′(Lx ) < 0 ⇒ ∂

∂t
Lx > 0: enhancement of the edges with increasing

scale

• If ϕ increases: edges are enhanced and better localized
• But: the slope should be moderated in order to respect the Causality

Principle
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Choice for g (3)

• The choice of g is guided by the behavior of ϕ (ϕ(x) = xg(x)) to
obtain an enhancement of edges

• An admissible choice for ϕ, a decreasing function beyond a contrast
threshold K :
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Figure 31: Choice for ϕ, K is the absciss of maximal value

• if |Lx | > K ⇒ ∂
∂t
Lx > 0: edges are enhanced

• if |Lx | < K : edges are attenuated
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Choice for g (4)

• Tukey conductivity:
g(x) = e−(

x
K )

2

• Lorentz conductivity:

g(x) =
1

1 +
(
x
K

)1+α
α > 0

• Function close to 1 in the neighborhood of 0 and fast decreasing.
Inflection point at x = K .

• Then ϕ(x) = xg(x) ≈ x in the neighborhood of 0 and decreasing
beyond K

• Many other choices are possible
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Discretizing P&M equation (1)

• We denote L(x0 + i , y0 + j , k△t) = Lki,j , same for g (step space set
to 1: pixel unit)

• ∂
∂t L ≃ Lk+1

i,j −Lk
i,j

△t

• ∇ · (g∇L) = ∇g .∇L+ g∇2L

• ∇g and ∇L are approximated by a forward difference

• ∇2L = Lxx + Lyy is approximated by a centered difference

• g(x , y , t) = g(∥∇L(x , y , t)∥): g depends on the current time
iteration k
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Discretizing P&M equation (2)

• The right member writes:

gk
i,j(L

k
i,j+1 + Lki,j−1 + Lki+1,j + Lki−1,j − 4Lki,j)

+(gk
i+1,j − gk

i,j)(L
k
i+1,j − Lki,j) + (gk

i,j+1 − gk
i,j)(L

k
i,j+1 − Lki,j)

= gk
i,j(L

k
i−1,j − Lki,j) + gk

i,j(L
k
i,j−1 − Lki,j)

+gk
i+1,j(L

k
i+1,j − Lki,j) + gk

i,j+1(L
k
i,j+1 − Lki,j)

• Final numerical scheme (using P&M notation):

Lk+1
i,j = Lki,j +△t[CN · ∇NL+ CS · ∇SL+ CE · ∇EL+ CW · ∇W L]ki,j

with:

[∇NL]
k
i,j = Lki−1,j − Lki,j [∇EL]

k
i,j = Lki,j+1 − Lki,j

[∇SL]
k
i,j = Lki+1,j − Lki,j [∇W L]ki,j = Lki,j−1 − Lki,j

[CN ]
k
i,j = gk

i,j [CE ]
k
i,j = gk

i,j+1

[CS ]
k
i,j = gk

i+1,j [CW ]ki,j = gk
i,j
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Discretizing P&M equation (3): dual grid and simplification

• The function g = g(∇I ) should also be discretized. Contours can be
localized on the dual grid:

CN = g(∥∇Lki+ 1
2 ,j
∥) CE = g(∥∇Lki,j+ 1

2
∥)

CS = g(∥∇Lki− 1
2 ,j
∥) CW = g(∥∇Lki,j− 1

2
∥)

Lk
i+ 1

2 ,j
may be obtained by linear interpolation

• P&M simplify as:

CN = g(∥∇Nu
k
i,j∥) CE = g(∥∇Eu

k
i,j∥)

CS = g(∥∇Su
k
i,j∥) CW = g(∥∇W uki,j∥)
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Experimenting Perona & Malik diffusion

Figure 32: Original image
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Experimenting Perona & Malik diffusion

Figure 32: Lorentz conductivity, 10 iterations, K = 20
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Experimenting Perona & Malik diffusion

Figure 32: Lorentz conductivity, 30 iterations, K = 20
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Experimenting Perona & Malik diffusion

Figure 32: Lorentz conductivity, 100 iterations, K = 20
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Importance of parameter K

Figure 33: Lorentz conductivity, 100 iterations, K = 5
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Importance of parameter K

Figure 33: Lorentz conductivity, 100 iterations, K = 30
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Instability of the scheme

Figure 34: Lorentz conductivity, 100 iterations, K = 20,△t = 0.5
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Instability of the scheme

Figure 34: Lorentz conductivity, 10 iterations, K = 20,△t = 4
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Conclusion on P&M diffusion

• Isotropic diffusion guided by image configurations: image is
preserved over edges, elsewhere image is smoothed

• The scheme is explicit and then unstable for some choices of
parameters

• A semi-implicit and regularized scheme may be found in
[Catté et al., 1992]
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Anisotropic diffusion

• Isotropic diffusion: diffusion do not depends on the direction (but
direction of what?)

• Anisotropic: diffusion depends on the direction

• Physical principles:
• the same equations describe the diffusion of heat and the diffusion of

chemical species
• particles in a high concentration areas migrate to the lower

concentration area: diffusion has a direction
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Anisotropic diffusion: again inspired by physics

• Fick’s laws:
1. Flux is the direction of matter transport
2. Variation of heat or concentration (of a given chemical specie) is

equal to the balance of incoming and outgoing fluxes

• Mathematical formalization for u : R3 → R:
∂u

∂t
= −∇cdot(−D∇u︸ ︷︷ ︸

flux

) (24)

• D is a tensor of diffusion (a symmetric and positive definite matrix of
size 3 × 3)

t2

flux

gradient de température

flux

t1
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2-D anisotropic diffusion

• For an image: L : R2 → R, let’s consider:

∂L

∂t
= ∇ · (D∇L) (25)

• If D =

(
c 0
0 c

)
⇒ isotropic diffusion:

∂L

∂t
= ∇ · (cId∇L) = ∇ · (c∇L)

• D is symmetric positive definite, meaning that:

D = RΛRT with Λ =

(
λ1 0
0 λ2

)
andλ1,2 ≥ 0

• R is an orthogonal matrix representing a change of basis: from the
canonical basis to the basis of eigenvectors (v⃗1, v⃗2) of D

• R is a rotation mapping the canonical vector i⃗ to v⃗1, and j⃗ to v⃗2

• λ1,2 are the associated eigenvalues
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The tensor D

• D is a linear mapping; applied on v⃗1, it comes:

Dv⃗1 = RΛRT v⃗1 = RΛi⃗

= R

(
λ1 0
0 λ2

)(
1
0

)
= λ1Ri⃗

= λ1v⃗1

remember that RT = R−1

• and: Dv⃗2 = λ2v⃗2

• vectors in the direction of v⃗1 are scaled by λ1

• vectors in the direction of v⃗2 are scaled by λ2

• Any vector u⃗ writes u⃗ = c1v⃗1 + c2v⃗2 and then Du⃗ = λ1c1v⃗1 + λ2c2v⃗2
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How to choice D? A first try

• Idea: in the basis (v⃗1, v⃗2) one can control the diffusion in the
direction of image gradient and edges

• Get R as:

R =
1

∥∇L∥

(
Lx −Ly
Ly Lx

)
i.e. a rotation of angle the direction of ∇L

• but in Eq. (25) D applies on ∇L:

D∇L = RΛRT∇L = RΛi⃗ = λ1∇L

and then ∂L
∂t = λ1∇2L

• This is the linear isotropic diffusion! Bad idea!
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Edge Enhancing [Weickert, 1998]

• Consider ∇σL (gradient of u at scale σ > 0), the “local” gradient:

Dσ = RσΛR
T
σ

Rσ =
1

∥∇σL∥

(
Lσx −Lσy
Lσy Lσx

)
with Lσ. = L ⋆ ∂Gσ

∂.

• Let’s apply Dσ on ∇L:

Dσ =
1

∥∇σL∥2

(
λ1(u

σ
x )

2 + λ2(u
σ
y )

2 (λ1 − λ2)L
σ
x L

σ
y

(λ1 − λ2)u
σ
x L

σ
y λ2(L

σ
x )

2 + λ1(L
σ
y )

2

)

Dσ∇L =
1

∥∇σL∥2
(
λ1∇σL∇σL

T + λ2∇⊥
σ L∇⊥

σ L
T
)
∇L

with ∇⊥
σ L =

(
Ly
−Lx

)
• In the general case: ∇⊥

σ L
T∇L ̸= 0
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Edge Enhancing (2)

• Eigenvectors of Dσ:

v⃗1 =
∇σu

∥∇σu∥
and v⃗2 = v⃗⊥

1

• Expression of ∇L in the basis of eigenvalues of D:

∇L = c1v⃗1 + c2v⃗2

• with v⃗1.∇L = c1 and v⃗2.∇L = c2

• then: RT
σ ∇L =

(
v⃗T
1

v⃗T
2

)
∇L =

(
c1
c2

)

• and: Λ

(
c1
c2

)
=

(
c1λ1
c2λ2

)
and RT

σ

(
c1λ1
c2λ2

)
=
(
v1 v2

)(c1λ1
c2λ2

)
• finally:

Dσ∇L = c1λ1v⃗1 + c2λ2v⃗2
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Edge Enhancing (3)

• (c1, c2) characterizes ∇L

• (λ1, λ2) characterizes Dσ:
1. if σ close to 0: ∇σL → ∇L and c1 → 1 and c2 → 0: the diffusion is

almost isotropic, diffusivity is ruled by λ1

2. if σ is high, in general ∇σL is not colinear with ∇L and c2 ≫ 0: the
diffusion direction depends on values of λ1 and λ2

3. if λ1 = λ2, then D∇L = λ1(c1v⃗1 + c2v⃗2) = λ1∇L: the diffusion is
again isotropic!

4. if λ1 = 0 and λ2 ≫ 0, then ∇σL ⊥ ∇L: the diffusion direction is
oriented along edges, diffusion is not more isotropic

126



Edge Enhancing (4)

• to summarize:
• λ1 tunes diffusion in the direction of ∇σL

• λ2 tunes diffusion in the orthogonal direction of ∇σL

• if λ1 ≥ λ2, diffusion is closely isotropic
• if λ1 < λ2, diffusion is anisotropic

• Possible choice for λ1 et λ2 ([Weickert, 1998]):

• λ2 = e−
∥∇σL∥2

k2

• λ1 = 1
5λ2 ≪ λ2

⇒ diffusion is oriented along edges
• the diffusion is non linear w.r.t. to L (why?)
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Edge Enhancing (5)

∇σu

Smoothing direction

• image is smoothed along edges (high value of λ2) . . .

• . . . and not in the direction of ∇σL (λ1 ≃ 0)

• In homogeneous regions: λ1 ≃ 0, λ2 ≃ 0: no diffusion, image is
preserved
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Discretizing Edge Enhancing (1)

• Let D =

(
a b

b c

)

Lt = ∇ · (D∇L)

=
∂

∂x

(
a
∂L

∂x

)
+

∂

∂x

(
b
∂L

∂y

)
+

∂

∂y

(
b
∂L

∂x

)
+

∂

∂y

(
c
∂L

∂y

)
• Terms ∂

∂x

(
a ∂L
∂x

)
et ∂

∂y

(
c ∂L
∂y

)
had already been addressed by P&M

• Remains the crossed terms:
• b ∂u

∂y
≃ bi,j

Li,j+1−Li,j−1
2 = fi,j

• ∂
∂x

(
b ∂L

∂y

)
≃ fi+1,j−fi+1,j

2 =
1
4 (bi+1,j(Li+1,j+1 − Li+1,j−1)− bi−1,j(Li−1,j − Li−1,j−1))

• same discretization of the second crossed term

• These choices lead to a stable numerical scheme
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Discretizing Edge Enhancing (2)

• After factoring according to L terms, one finds:

Lk+1
i,j = Lki,j +△t

[
−bi−1,j + bi,j+1

4
Lki−1,j+1 +

ci,j+1 + ci,j
2

Lki,j+1

+
bi+1,j + bi,j+1

4
Lki+1,j+1 +

ai−1,j + ai,j
2

Lki−1,j

−ai−1,j + 2ai,j + ai+1,j + ci,j−1 + 2ci,j + ci,j+1

2
Lki,j

+
ai+1,j + ai,j

2
Lki+1,j +

bi−1,j + bi,j−1

4
Lki−1,j

+
ci,j−1 + ci,j

2
Lki,j−1 −

bi+1,j + bi,j−1

4
Lki+1,j−1

]
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Plugging Dσ into the numerical scheme

• Recall:

Dσ = RσΛR
T
σ

Dσ =
1

∥∇σL∥2

(
λ1(L

σ
x )

2 + λ2(L
σ
y )

2 (λ1 − λ2)L
σ
x L

σ
y

(λ1 − λ2)L
σ
x L

σ
y λ2(L

σ
x )

2 + λ1(L
σ
y )

2

)

• then:

a =
(
λ1(L

σ
x )

2 + λ2(L
σ
y )

2) /∥∇Lσ∥2

b = (λ1 − λ2)L
σ
x u

σ
y /∥∇Lσ∥2

c =
(
λ2(L

σ
x )

2 + λ1(L
σ
y )

2) /∥∇Lσ∥2
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Experimenting Edge Enhancing diffusion (1)

Figure 35: Comparaison Gaussian/P&M/Edge enhancing
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Experimenting Edge Enhancing diffusion (2)

Figure 36: Comparaison Gaussian/P&M/Edge enhancing

133



Edge Enhancing issue (1)

(a) Original image (b) Edge Enhancing
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Edge Enhancing issue (2)

• Why?

• How are gradients oriented?

• In a same neighborhood, gradients may be opposed and compensate
each other!

• How to fix that?
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Coherence Enhancing [Weickert, 1998]

• Need to diffuse along edges but not in an oriented way

• Compute the (non oriented) direction of an edge

• Let’s define the tensor S “local orientation”:

S =

(
S11 S12
S12 S22

)
=

(
LsxL

s
x ⋆ G

σ LsxL
s
y ⋆ G

σ

LsxL
s
y ⋆ G

σ LsyL
s
y ⋆ G

σ

)

• Applied on ∇L and −∇L, S gives the same value:(
LsxL

s
x ⋆ G

σ LsxL
s
y ⋆ G

σ

LsxL
s
y ⋆ G

σ LsyL
s
y ⋆ G

σ

)
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Coherence Enhancing (2)

• The tensor D is defined as follow:

D = R

(
c1 0
0 c2

)
RT

and R is formed by the eigenvectors of S

• Eigenvectors of S can be determined, D writes:

d11 =
1
2

(
c1 + c2 +

(c1 − c2)(s11 − s22)

α

)
d22 =

1
2

(
c1 + c2 −

(c1 − c2)(s11 − s22)

α

)
d12 =

(c2 − c1)s12
α

with α =
√
(s11 − s22)2 + 4s212
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Coherence Enhancing (3)

• Weickert chooses for c1 and c2:

c1 = max(0.01, 1 − e−(λ1−λ2)
2/k2

)

c2 = 0.02

with λ1 and λ2 the eigenvalues of S :

λ1 =
1
2
(s11 + s22 + α)

λ2 =
1
2
(s11 + s22 − α)
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Experimenting Coherence Enhancing (1)

(c) Original image (d) Coherance Enhancing
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Experimenting Coherence Enhancing (2)

• Artistic filtering?

Figure 37: “Route avec cyprès et Ciel étoilé”
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Experimenting Coherence Enhancing (3)

• Artistic filtering?

Figure 38: Exacerbed Van Gogh
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Experimenting Coherence Enhancing (4)

• color images:

Figure 39: independant diffusion on each channel 143



Inpainting [Tschumperle and Deriche, 2005]

Figure 40: Only missing pixels are written and not read
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Unblurring images?

• Gaussian blur ⇔ linear and isotropic diffusion
• Question: given Ln (blurred image), can one retrieve L0?
• May be yes! discretization of heat equation using a retrograde

scheme:

Lk+1 − Lk

△t
= ∇2Lk+1

Lk = Lk+1 −△t∇2Lk+1

(a) σ = 1 (b) 5 itérations (c) 10 itérations

Figure 41: Backward scheme of heat equation
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Gaussian unblurring (1)

(a) Blurred image (b) Unblurring
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Gaussian unblurring (2)

• The retrograde scheme is unstable:

Loading data ...

Figure 42: Instability after 32 iterations
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Gaussian unblurring (3)

• Example with a stronger blur:

Loading data ...

Figure 43: σ = 2, 28 iterations

149


cam-deflou2.mpg
Media File (video/mpeg)



Gaussian unblurring (4)

• But not too much!

Loading data ...

Figure 44: σ = 3: divergence after 15 iterations
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Conclusion on Gaussian unblurring

• The retrograde scheme of heat equation is unconditionally unstable
(easy to prove using spectral analysis, exercise to do)

• In a same time, unblurring image implies to enhance / create edges:
violation of the Causality Principle

• Rounding errors in the numerical retrograde scheme make appear
noise and are amplified with increasing time iterations

• On the contrary, diffusion processes are, by nature, stable and
regularizing: numerical errors or noise are smoothed out and
eventually disappear
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Image unblurring: shock filters (1)

• Let’s consider the following PDE:

Lt = − sign(∇2L)∥∇L∥ t > 0

L(x, 0) = I (x)

• Properties:
• in a neighborhood of a local maxima x0: ∇2L(x, t) < 0 ∀x ∈ V(x0):

Lt = ∥∇L∥

• in a neighborhood of a local minima x0: ∇2u(x, t) > 0 ∀x ∈ V(x0) :

Lt = −∥∇L∥

• These two cases are equivalent to morphological dilation or erosion

• See [Osher and Rudin, 1990]
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Image unblurring: shock filters (2)

• Discretization:

Lk+1
i − Lki = ∆t

[
− sign(∇2Lki )∥∇Lki ∥

]
• Variation:

Lt = − sign

(
∂L

∂η2

)
∥∇L∥

with η = ∇L
∥∇u∥ .

• [Alvarez and Mazorra, 1994]:

Lt = − sign

(
∂2v

∂η2

)
∥∇L∥

with v = Gσ ⋆ L and ∂
∂η derivative in the Gradient direction

• Anisotropic shock filter: [Weickert, 2003]
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To go further with non linear scale spaces (1)

• Unlike the continuous linear case, there are several nonlinear
continuous multiscale representations

• It also be possible to describe non linear spaces in an axiomatic way
The representation at scale t is obtained with a non linear operator
Tt such as:

• Lt = Tt(I ) (representation at scale t of image I )
• Tt has a semi-group structure
• Tt respects the Causality Principle
• Tt is differentiable w.r.t. t

• Let’s denote ∂T = limt→0
Tt(f )−f

t , the family (Tt(I ))t>0 is solution
of

Lt = ∂T (L)

L(., 0) = I
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To go further with non linear scale spaces (2)

• Alvarez et al characterized the solutions of the previous PDE, see
[Alvarez et al., 1993]

• Some interesting examples:
• if T is linear, the classic diffusion equation is retrieved
• if T commutes with a map F (., t) monotone increasing, then

solutions write:

Lt = |∇L|F
(
∇.

(
∇L

|∇L|

)
, t

)
this equation rules the dynamics of a snake evolving with a velocity
depending only on the curvature of iso-value lines (implicit snake
model)
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To go further with non linear scale spaces (3)

• Some interesting examples:
• Link with mathematical morphology: solutions of

Lt = |∇L|

Lt = −|∇L|

with L(x , 0) = I as initial condition are respectively dilatation and
erosion of image I with a structuring element tB (B disc of radius 1)
⇒ successive dilatation/erosion of an image have the structure of a
non linear scale space

• Regularization: models formalized by a cost function to minimize
and embedding a regularization term are equivalent to solve an
Alvarez et al’s PDE

• More details in http://pequan.lip6.fr/~bereziat/cours/
master/amo/amo-ss-cours3.pdf
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Proof Eq. (5)

• determine
∫
e−x2

dx :(∫
R

e−x2
dx

)2

=

(∫
R

e−x2
dx

)(∫
R

e−y2
dy

)
=

∫∫
R2

e−x2−y2
dxdy

• Change of variable (polar coordinate): x = r cos θ et y = r sin θ(∫
R

e−x2
dx

)2

=

∫
R+

∫ 2π

0
e−r2

∣∣∣∣∣ cos θ sin θ

−r sin θ r cos θ

∣∣∣∣∣ drdθ
=

∫ ∫ 2π

0
re−r2drdθ =

∫ 2π

0
dθ

∫
re−r2dr

= 2π
[
−1

2
e−r2

]r=+∞

r=0
= π
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Unicity of Gaussian kernel (1)

• Let L(t)(x) = L(x, t)

• In Fourier space, equation (11) writes

L̂(t)(w) = ĥt ⋆ I (w) = ĥt(w)Î (w)

L̂(t)(w)

Î (w)
= ĥt(w)

with w = (u, v) coordinate in Fourier space

• Parameter w is a frequency, then w−1 is a period (a length)

• Parameter
√
t measures a scale (a length)

• Two lengths, then w
√
t is without dimension

• Same for L̂(t)(w)

Î (w)

• Pi theorem ⇒ one can write ĥt(w) = Ĥ(
√
tw)

159



Unicity of Gaussian kernel (2)

• we then have: L̂(t)(w)

Î (w)
= Ĥ(w

√
t)

• I = L(0) then Ĥ(0) = 1.

• Semi-group: ĥt1(w)ĥt2(w) = ĥt1+t2(w) then:

Ĥ(w
√
t1)Ĥ(w

√
t2) = Ĥ(w

√
t1 + t2)

• Let H̃(wTw) = Ĥ(w), w ∈ R2, we have:

H̃((w
√
t1)

T (w
√
t1)) ×

H̃((w
√
t2)

T (w
√
t2)) = H̃((w

√
t1 + t2)

T (w
√
t1 + t2))

H̃(t1wTw)H̃(t2wTw) = H̃((t1 + t2)wTw)

H̃(v1)H̃(v2) = H̃(v1 + v2)

with v1 = t1wTw and v2 = t2wTw
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Unicity of Gaussian kernel (3)

• Conclusion: {
H̃(0) = 1
H̃(v1)H̃(v2) = H̃(v1 + v2)

• It’s the definition of the exponential function (u 7→ eαu)

• Then: Ĥ(w) = eαtw
Tw

• We choose α < 0 in order to have lim∞ Ĥ = 0

• The Fourier transform of an Gaussian function is a Gaussian
function (with α > 0)∫

R2
e−

xT x
αt e−iwxdx = e−αtwTw

• Normalization:
∫
R
e−x2/2tdx =

√
2πt, finally we choose α = 1

2

• Full proof available in the Lindeberg’s book [Lindeberg, 1994]
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