ELF044 ($!444tttt{t{@{{((( Qtd/lib/ld-linux.so.2GNU%& $% # " !  P !%|(CEK8qX4vr{p ! +vvncfrp2s&;8$9 k$Fhw4|&D=F @}1 }L }8 }5, S|Llibgfortran.so.2__gmon_start___Jv_RegisterClasses_init_gfortran_runtime_error_finilibm.so.6sqrtatan2expacoslogasinlibgcc_s.so.1libc.so.6_IO_stdin_usedfflushstrcpyexitsprintffopenputstime__stack_chk_failputcharreadstdoutsscanfstderrcreatclosefprintf__libc_start_mainwrite_edata__bss_start_endGLIBC_2.0GLIBC_2.4GLIBC_2.1Y ii Iii Sii ]ii Ip| }"@}|||||||| | | | | ||||||||||||||||US[<t^=X[5x|%||%|h%|h%|h%|h%|h %|h(%|h0%|h8p%|h@`%|hHP%|hP@%|hX0%|h` %|hh%|hp%|hx%|h%|h%|h%|h%|h%|h%|h%|hp%|h`%|hP%|h@%|h01^PTRhKhKQVhU=D}t |ҡ|uD}ÐU{tt ${ÐL$qUWVSQ@@BLe M1=F   @>~@?$LD$$L@$M$M$N$PN$Nt$Nh$N\$$OP$tOD$O8$P,$\P $P$P$(Q$lQ$Q$Q$R$DR$|R$R$R$@S$S$Sx$Tl$LT`$tTT$TH$U<$DU0$T@D$$U$UDž(LD$$Uc@;|$ LD$D$U$L D$$LLD$$}D$}D$L$U8^\$$V}lWWL~LL}X}\}$unkn@ownDžDžtWDž|DžDžh L<Dž8 VDž4<84(u?LD$WD$U$tWD L0Dž,VDž(0,((LdD$D$V$;L`D$D$V$ LD$D$U$Džمdم`s $VDž$م`مd鋅P$d$ٝ L$Dž [VDž$ (L\D$D$V$LXD$D$V$LD$D$U$~Džم\مXs $`V9Dž$مXم\鋅P$d$ٝLDžVDž(u9LD$$$lWL DžVDž (unLD$dD$U$LD$t.,D$U$}5LDžVDž(u5LD$D$U$2LDžVDž(uL?LDžVDž(uLLDžVDž(uLoLDžVDž(u}LDžVDž(uX}LDžVDž(u\}7LDžVDž(ueL|D$D$U$2|t#|t$V$$yLDžVDž(u7LD$D$U$tLDžVDž(u7LD$D$U$YLDžVDž(u5LD$hD$U$VL|DžxVDžt|xt(u~cLpDžlVDžhplh(LD$H}D$U$\LD$L}D$U$-LD$P}D$U$L D$T}D$U$ =LD$D$$V $@; Lu~t tWt,مم`مd\$\$ \$$$Wt,ممXم\\$\$ \$$lW^D$T$$W>D$$W(|D$$ X)ljD$$*XD$$:XD$$MXLuK|LT$L$\$D$ D$}D$`X$.,MS|LT$L$\$t$D$ D$}D$X$.,D$$.,u D$.,$X$fD$.,$XuK|LT$L$\$D$ D$}D$X$.,OS|LT$L$\$t$D$ D$}D$Y$.,D$$.,LLu D$.,$X$hD$.,$XuK|LT$L$\$D$ D$}D$`X$.,LS|LT$L$\$t$D$ D$}D$X$.,D$$.,u D$.,$,Y$eD$.,$PYuK|LT$L$\$D$ D$}D$X$.,NS|LT$L$\$t$D$ D$}D$Y$.,D$$.,LLu D$.,$lY$gD$.,$PY~uK|LT$L$\$D$ D$}D$Y$.,CS|LT$L$\$t$D$ D$}D$Y$.,D$$.,Pt, Pt, u D$.,$X$\D$.,$XuK|LT$L$\$D$ D$}D$Y$.,ES|LT$L$\$t$D$ D$}D$Z$.,D$$.,pWpWu D$.,$X$^D$.,$X@}$-uK|LT$L$\$D$ D$}D$Y$.,5S|LT$L$\$t$D$ D$}D$Y$.,D$$.,Pt, Pt, u D$.,$,Y$ND$.,$PYuK|LT$L$\$D$ D$}D$Y$.,7S|LT$L$\$t$D$ D$}D$Z$.,D$$.,pWpWu D$.,$lY$PD$.,$PY$Džd+Z`Dž\d`\(D$$$:pb~pD$D$.,$~¡b~b~pD$D$W$R¡b~b~pD$D$M$&¡b~b~pD$D$xW$¡b~b~pD$D$W$¡b~b~pD$D$ $¡b~b~WuEzC u2z0.,MuzWxWuz~$4Z1.,W\$ \$$lZMxW\$ \$$Z}W \$ \$$Z[$MٽJJ fH٭H۝D٭JDtxW٭H۝D٭JD DžIt i( pL$D$$$¡b~b~ 9|$D$$Z{ tD$T$$Z\b~D$$ZG@}$p.,dtO|L0LT$L$\$t$ D$D$ [$C|LLL$\$T$ D$D$&[$D$:[$@.,.,D$D$<[$~$MM.,D$D$Z[$N.,$M|WLD$ D$LD$j[$D$T$D$MD$ dD$t.,D$R$ t.,d $ H}P}¡|t.,L}T}¡}dH}|)ȣH}L}})ƉL}P}~ T}7$p[jT}P}D$T$$[$oP}|¡H} |)9+T}}¡L} })9$[}L} |H}L$D$$[AT}P}D$T$$\"T}L}¡}+P}H}¡|+L$D$$\$f$,\*}L} |H}L$D$$[T}P}D$T$$\kLLdt.,D$T$\$D$`$R{g\}ttd5t.,LT$L$D$M\$ t$D$R$ 'dt.,D$ T$D$`$RlL5d=t.,D$$D$ T$L$\$D$WD$ 9t$|$$`$L\WD$D$a\D$ D$D$9$(LD$ D$D$W$+TD$ D$D$9$3-LD$ D$D$W$/$DžX+ZTDžPXTP(;$f\WD$$hD$ lD$pD$tD$xD$D$ D$D$9$/$o\مpمtمx\$\$ \$$\~مhمl\$ \$$\\@}$Xd$\$/]$\مdt.,\$D$T$ D$ D$W$9#م\$$C]WD$$hD$ lD$pD$tD$xD$D$ D$D$ $C.$o\مpمtمx\$\$ \$$\#مhمl\$ \$$\@}$LمL\$D$ D$}D$S]$.,D$$.,.,.,u D$.,$X|$D$.,$X\W.,D$D$a\D$ D$D$ $%م؅ٝم`م$\ZtWu $u~| dt.,L0D$,D$(T$$$D$ D$/,L$\$D$`t, D$ WD$9t$$}$p]Pt, D$D$a\D$ D$D$/,$#pWD$ D$D$`t, $&|P||}}Pt, D$ D$D$/,$(pWD$ D$D$`t, $)$DžL+ZHDžDLHD( $]fD$$hD$ lD$pD$tD$xD$D$ D$D$/,$|*$o\مpمtمx\$\$ \$$\\مhمl\$ \$$\:K\$\$] $\mمdt.,\$D$T$ D$ D$`t, $/,م\$$C]WD$$hD$ lD$pD$tD$xD$D$ D$D$ $.)$o\مpمtمx\$\$ \$$\مhمl\$ \$$\}مL\$D$ D$}D$]$.,D$$.,.,.,u D$.,$Xt$D$.,$XTWd t.,.,D$D$a\T$ L$D$ $م؅ٝمXم$\R$]F@}$Y$|WMp.,¡|W9|W.,D$D$]$|WM)ȋ.,D$D$]$t|WM)ƉP$d$@^.,\$D$^$:|WM)ljP$d$H^.,\$D$ ^$.,$cUe3tY[^_]aUEEiEE+EiEE b~D$L$$@EEiEE@}qED$T$T$=EiEEE|D$ED$$=Ei ‹Ei( ¸ ‹EEiEE+‰L$|D$$Q=MċE]iEi MȋE]iEi ]MċE]iEiĪ MȋE]iEiĪ ]EUMiEЉEUMiEЉD$E$E ]EEwEEE0bwEE|U);E#E}U )Ɖ;E}u $`Ͼ}2}L}ЉE |H}ЉEE؉EE؉E]ȋEU‹EMiEiÙ ,b Ѓb]ȋEU‹EMiEiÙĪ ,b ЃEME}NjuȋEU‹E]iEiƙ؋ ŨEME}NjuȋEU‹E]iEiƙ؋Ī ŬEi‹EiP¸M‹EEiEE@}qL$D$ ẺD$D$p$M4EED$ED$ ED$ED$$a>E؉EE؉E~]ȋEU‹EMiEiÙĪ ]ȋEU‹EMiEiÙ \$\$ ED$ED$$R`譻EE;EvEE;E\ED$$8az$E;EQEE;E4E|U)lj;E E}U );EX}ED$E D$ ED$D$xa$.,ӹD$$.,߹E}u D$.,$X貺$FD$.,$a蒺Ei  D$D$a\E4D$ E0D$T$E$:E(Dž+ZDž(Ei  D$$ED$ ED$ED$ED$ED$E4D$ E0D$T$$ $aEEE\$\$ \$$\脹EE\$ \$$\hED$$M\$$aCE\$$a0@}$賸EĉEԋEȉEċEԉEȃ}th9ECE}L}ЉE|H}ЉEEi( u$}MċE]iEi؋ Ei( u$}MċE]iEi؋Ī DEiPM]EUiE+EiPM]EUiE+ȃEiPM]EUiE+ȃEiPM]EUiE+ȃ Ei( U$E,b!Ѓu/Ei( U$ED,b!ЃtEED$ED$$ bE|U)Ɖ;E1E}U )lj;EČ [^_]UVS@E]E]ELE6Ei( ]uEi( MUBDDE}D~E}D~}L}ЉE|H}ЉEkEi( UE8b!Ѓu3Ei( UED8b!ЃEiEEE E؉D$ ED$ED$$EEwTEi( M]Ei( UE‰ًEi( M]Ei( UEDDhEi( MUBыEi( MUBD3Ei( MUBыEi( MUBDE|U);E~E}U);EN@[^]U8EE$EEEEE]EE;E |E]E]EztE$ϳ]E]EEEU8}u$Džplpمٝlpمw?lppllpمw?lpplpp;ll;مإP$d$ٝمٝdمإP$d$ٝمٝh\`م\مdۅٝTم`مhۅٝXDžlDžpم`مhۅlٝم\مhۅpٝlp؍مٝlp؍مٝpp;Ell;مصٝمصٝDžl]DžpAlplpDpp~ll~DžlDžp\م`مhۅlٝم\مdۅpٝمإمإɋlpD@مإمإɋlpYAP@مإمإɋlpX@Hpp;ll;j@LDžlxDžp\lplplpص6Dpp~ll{D$ D$D$D$(EUe3tT\[^_]UEED$ED$ E D$D$E$E E w(UEUEȉUċEUẺqE EE E U EUEUEȉUċEUẺEEEĉEEEċEȉEẺEȋEEEUED$ ED$ED$E؉D$ED$T$ ED$E D$E$`V$e5$0e)E E \$ \$$Ze薕EE\$ \$$nezEE\$ \$$e^}t $e輕$e谕E@E\$ \$$eE@E\$ \$$eEE@ɋE@E\$$eƔED$$f賔E\$$ f蠔$8fEEE\$\$ \$$[fq$|fՔEEE\$\$ \$$[fBEE@]EE@EE@ɋE@8gɋE$苓E@g]E]ЋEE@]EE@EE@ɋE@8gɋE$E@g]E]ԋE@EЋE\$$蚓]E]E$]E]E$谓]E]E$蚓]E]E$Ē]E]$fOEHgPg\$$f輒EE\$ \$$Ze蠒EE\$ \$$ne脒EE\$ \$$ehUED$ ED$ED$E؉D$ED$T$ ED$EЉD$E$E\$$ f$8fvEEE\$\$ \$$[f$|fGEEE\$\$ \$$[f贑$fU E $g@}$ U8EEE@ɋEE@]؋EEɋEE$运]E@E@ɋE@E@$萐M}$蒐Xg`g]EE(E(hgwE(lgwEEEɋE@EEUEEɋE@EEE EEUEE EEEɋEE$膏]EE E pgwEEE@ɋE@E@EUEE@ɋE@E@EE E@EUEE E@EEɋEE$袎]EE$E$pgwE}2~EEUVS33s?E؋EEE؉E{E؉E^EEEEEEEиEԋE؉EE؉E]drEM EUiE] EE MEEUiE]ċ]drEM EUiEEE ]EEUMiE]EME]EME]ԃEE;E4EE;EUMЍEЉE+UE+MЍEԉ0EE;EEE;EyEܸEEEEEEEE؉E&E؉E EEEEEE]uUMلUMل0ٜ8E;E)E;EE;EE;EUMل8exgu%EUEEP$d$Ew,UMل8ExgwCUMȋ8E܋EEEEEUEEP$d$]UMل8EwUMȋ8EUMل8EwUMȋ8EUMل8EwUMȋ8EEE;EEE;EU EU$EEEEEE؉EE؉EEEEEEEU]uEEUEEMȋ8UUEEwNUUEuz'UUEE܋EEEEEE;E.EE;EEgw C E?E>EEESE>EkTUMEDEDEkTUEE]EE;E|EE;E|Euz$g赁$ف} =E>E>E>E=EEESE>EkTUMEDEDEkTUEE]EE;E|EE;E|Euz7$g$E D$$,h^$$Xh趀EFE%EkTUE\$$bhEE;E|$ ;EE;E|UWVSEEEEExE}~@}$wx${yE8iw AEE8iw AE  EEmEUݜŨEGM]EU݄ŨEUDEUD ݜŨE}~E}~E}vEE~EM UEUEM ]EU EEU݄ŨEUDٝمE}~EE;EvE}_}$hw$hwE @E E@E\$\$\$ \$$ivE @E E@E\$\$\$ \$$ivĜ[^_]UWVSL EٝمٝEE@j]EHjٽ f٭۝٭P$d$Pj٭]٭EEP$d$]EP$d$][]EݝEMEE$>u܍ٝمٜEE]E]E;E}$XiuE\$ \$$i^uE*$iuEEEE؋E؉EKEi]UEMiEP$d$EEلE]؃EE;E~EUiEE؉HEEU);EiEE;ENED$$iut@}$sEEEEjE؋E؉E3EEUiEلHEEلE]؃EE;E~ŋEUiEE؉EEU);EEEU);EdED$$is@}$1sEEEE&EEEidr] u}EiMEUiEfP$d$EUiEلiEEidrM EUiEEw"EidrM EUiEЋEEidrM EUiEEw"EidrM EUiEЋEEEU);EEEU);E$irEE\$ \$$j#r@}$qEEEEEi]u}EidrM EUiEeٽ f٭۝٭P$d$EeXj٭ߝ٭iE؈8EEU);EEEEU);E!E}L [^_]UWVSEyEdEOEidr] u}EiMEUiEfP$d$iEEE;E|EE;E|E}~[^_]USELE2Mԋ]؋UԉUE؋؉EE ;EEE ;EEwEEEEEE ؉EE ؉EE E܉EE EEUMلexju%E܉U܋EEP$d$Ew"UMلEwCUMȋEE܉U܋EEP$d$]E܉EEEEE;E "EE;E E U‹E MЍEED$ED$\$EԉD$$\jnEE;E}Ĕ[]USEQE7Mԋ]؋EԍUE؋؉PEE ;EEE ;EEEEEEEE ؉EE ؉EE E܉EE EEUMلPeju%E܉U܋EEP$d$Ew,UMلPEjwCUMȋPEE܉U܋EEP$d$]E܉EEEEE;E EE;E E U‹E MЍPEUEEED$ED$ED$\$EԉD$$jelEE;E\[]U(EEEEEi( UEjuzEi( UEDjuzdEi( UEDEi( UEDɋEi( UE‹Ei( UEE]EEE;E :EE;E E$j]EÐUSTE x Dž x щ$E$((x( Dž((x(҉,E,00x0 Dž00x0Љ4EEEE4DžQ)Ékd)‰Džgfff)ȉEEE}~GE@E8@98}8< @<USL]]؋EREuEEEEyE)щʋEƒEEyE)ӉڋEƒEEEEE9EHUE ЋUEE]؋EEEEU9UEuE]tEEgfffE)É؉EUЉ)‰ЉE}t[MME]9]8UE ЋUEE]؋E9EEuȋEEE]E)؍ EgfffE)Mĉ]}UE ЋUEE؋UE ЋUEUE ЋUEUE ЋUEUE ЋUE]؃Em_E]EЃL[]UXEEh}]EEBh}]ЋEE‰EE}t $jG}Bt/}9Bt^}B}B$k[GUE }JEE9Bh}]؋UE h}zUE }EEB6EEEEBUE EUE ]ЋUE ]lUE }woUE Es7UE EM}]ЋUE ]UE uE]EMM]}EP$d$]MUEEE)ȍ}EM}~BUE EUE E]ЋEEmE]EEE;EEM]EU(EEuEEEEyE)щʋEƒEEyE)щʋEƒEEEEE9E=EUE ɋE UE]MEUEɋE UE EȋUE EЋEEEEM9MEeEEEE9EEUE ɋE UE]MEUEɋE UE EȋUE EЋM9MEuyU(E ]EE wE]EE ]EuzEE]]EuɋE uM]]؋E%t hk]EM]EuEE uE]EE wE]E Es Euz E]EEE EUS$EEtkEE‰EUEEE}EE}ME UEɋEȋEEmˋEEgfffE)É؉EUЉ)‰ЉE}tXMME]9]5ME UEɋEȋE9EEuˋEEE]E)؍ EgfffE)M]}ME UEɋEȋME UEɋEȋME UEɋEȋME UEɋEȋME UEɋEȃEmT$[]US [-C -B -T1 -T2 -P1 -P2 -PR1 -PR2 -PRI -PRL -n -N -w -i -NL -s -SUB ] Use 2 images starting with stem.center_image - directory where images are - directory where the flow fields are stored-C - correct velocity data provided and error analysis will be performed on it-B - Input binary images-specify dimensions not necessary for rasterfiles-T1 - threshold the step 1 velocities using the smallest eigenvalue of the step 1covariance matrix at each position-T2 - threshold the step 2 velocities using the smallest eigenvalue of the step 2 covariance matrix at each position-P1 - do not perform step 1 of the compuatation, instead read the previously computed step 1 velocities and covariance matrices-P2 - do not perform step 2 of the compuatation, instead read the previously computed step 2 velocities and covariance matrices If -P2 is used but -P1 is not the program terminates after step 1-PR1 - print thresholded flow fields for step 1-PR2 - print thresholded flow fields for step 2-PRI - print flow fields after each iteration - These flow fields occupy a LOT of ddisk space-PRL - print the laplacian images-n - neighbourhood size (2n+1) in step1 computation (default 2)-N - maximum displacement in pixels (-u,-v <= N <= u,v) (default and maximum value is/can be 4)-w - window size (2w+1) for step 2 computation [currently must be 1 or 2] (default is 1)-i - number of iterations for step 2 (default 10)-s - specify the distance of the adjacent left and right frames from the central frame - default is 1-NL - use the original images as input-SUB - compute velocity for a subset of the images compute flow for a subarea starting at (x,y) and of size (size_x,size_y) Note: you must take offsets into account!-C, -B, -T1, -T2, -P1, -P2, -n, -N, -w, -i, -PR1, -PR2, PRI, -PRL, -NL and -SUB can be in any order and are optional%d arguments Command line:%s %d: %s : %s SMALL: %f -S1-T1%fError: threshold ranges for step1 are wrong - no thresholding done-T2Error: threshold ranges for step2 are wrong - no thresholding done-C-B-s-P1-NL-PR1-PR2-PRI-PRL-wFatal error: w must be 1 or 2-n-N-i-P2-SUBFatal error invalid %dth argument: %s Step 1 velocities are thresholded for tau=%f to %f in increments of %f Step 2 velocities are thresholded for tau=%f to %f in increments of %f Velocity Range: -%d <= u,v <= %d n=%d neighbourhood size for SSD surface calculation w=%d window size for step 2 Left image: %d Central image: %d Right image: %d %s/singh.step1.%sF-n-%d-w-%d-N-%d%s/singh.step1.%sF-n-%d-w-%d-N-%d-s-%dError creating file %s. File %s opened for output %s/singh.step1.%sC-n-%d-w-%d-N-%d%s/singh.step1.%sC-n-%d-w-%d-N-%d-s-%dFatal error: file %s does not exit File %s opened for input Fatal error: file %s does not exist %s/singh.step2.%sF-n-%d-w-%d-N-%d%s/singh.step2.%sF-n-%d-w-%d-N-%d-s-%d%s/singh.step2.%sC-n-%d-w-%d-N-%d%s/singh.step2.%sC-n-%d-w-%d-N-%d-s-%dunknownFatal error: something wrong with correct velocity dataActual y: %f Actual x: %f Size y: %f Size x: %f Offset y: %f Offset x: %f File %s opened and read Size of correct velocity data: %d %d --- %d bytes read %s.%stime-n-%d-w-%d-s-%d%s.%stime-n-%d-w-%dwThe time data is in file: %s Start time: %d %s/%sFatal error: subarea too small - must be at least 6*6Subarea specified: %d*%d Fatal error: subarea parameters incorrectStarting Coordinates: %d,%d Size: %d * %d Too big by %d,%d Subset of image sequence used Outputing flow dataFull Step 1: Error Analysis PerformedAverage Error: %f Standard Deviation: %f Density: %f Minimum Angle Error: %f Maximum Angle Error: %f -----------------------------------------------------Step 1 Thresholding Threshold: %f %s/singh.step1.%sF-tau-%4.2f Outputing flow data for step 2 Step 2:Step 2 Thresholding%s/singh.step2.%sF-tau-%4.2f Processing Finished End time: %d End Time in seconds: %d End Time in minutes: %f End Time in hours: %f ?N@ @%s%dFatal error - not enough roomRequired size: %d times %d File %s read -- %d bytes File %s does not exist in read_image_files. laplacian.%s%dFile %s written -- %d bytes File %s does not exist in write_image_files. Computing Velocity Information via step 1...Processing rows for step 1:%3d @Error Analysis Performed at start of step 2Minimum Angle Error: %f Maximum Angle Error: %f Computing velocity information via step 2Performing Initialization...FIRST i=%d j=%d k=%d l=%d vel for k=%d l=%d: %f,%f Fatal error: computed velocity undefined during initialization Initialization complete for step 2Iteration %d Convergence detected - iterative calculations are stoppedSECOND i=%d j=%d k=%d l=%d Fatal error: computed velocity undefined during iteration %d %s/singh.iteration.step2.%sF-%d File %s opened Error Analysis PerformedL2norm of difference: %14.9f Maximum individual velocity difference: %f Velocity at %d,%d undefined Bh㈵>B Fatal error: full velocity file not opened %s velocities output: %d bytes Number of positions with velocity: %d Number of positions without velocity: %d Percentage of %s velocities: %f BY@ Fatal error: covariance file not opened Full velocity covariance matrices output: %d bytes Velocities input: %d bytes Full velocity covariance matrices input: %d bytes BY@ERROR in PsiER()... r=%8.4f v=%8.4f nva=%8.4f nve= %8.4f va=(%f,%f) ve=(%f,%f) i=%d j=%d qh?f@-DT! @4CERROR in PsiEN() v1: %f ve: %f nve: %f nva: %f n: %f %f ve: %f %f va: %f %f :0yE>f@-DT! @B Fatal error: n not DIM in jacobi ?B? ********************************************Fatal error: eigenvalue/eigenvector erroreigenvalues: %f %f eigenvector1: %f %f eigenvector2: %f %f Eigenvalues/eigenvectors are swapped from original order A:%12.6f %12.6f Determinant of A: %f nrot: %d Angle between two eigenvectors: %f degrees Difference length for eigenvector1Difference: %f %f Length: %f Difference length for eigenvector2 Using Anandan's calculation:Angle of rotation: %f degrees Original eigenvalues set to infinity******************************************** @?4C-DT! @f@DAT! @BB??ư>B M MI%12.8f %12.8f %12.8f %12.8f Determinant: %f & .>Fatal error: sum of Gaussian coefficients is zero Fatal error: window size not 1 or 2: w=%d Weights:%8.5f Ierr=%d DI[0][0]: %f DI[1][1]: %f Fatal error: Pseudo-inverse of J wrongThe identity matrix:%6.3f Diagonal(s) greater than 10 J JI%12.8f %12.8f %12.8f %12.8f AH.?qh?-C6? Computing Laplacian as a center-surround filter...sigma1=%f sigma2=%f Image #%d - column convolution completed Image #%d - row convolution completed Gaussian images subtractedMinimum value: %f Maximun value: %f ' @@@C%dth minimum: %f at %d,%d ?%dth minimum: %f at %d,%d SSDmag: %d ?BAssigned label is not a target label (in file 'svddouble.f', at line 629)Assigned label is not in the list (in file 'svddouble.f', at line 629)@Y , |LHo|  g t|L4oԆoo{rˆ҈"2BRbr‰҉"{ ?u I=']CGCC: (GNU) 4.2.1 (Ubuntu 4.2.1-5ubuntu4)GCC: (GNU) 4.2.1 (Ubuntu 4.2.1-5ubuntu4)GCC: (GNU) 4.2.1 (Ubuntu 4.2.1-5ubuntu4)GCC: (GNU) 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)GCC: (GNU) 4.2.1 (Ubuntu 4.2.1-5ubuntu4)GCC: (GNU) 4.2.1 (Ubuntu 4.2.1-5ubuntu4)GCC: (GNU) 4.2.1 (Ubuntu 4.2.1-5ubuntu4)GCC: (GNU) 4.2.1 (Ubuntu 4.2.1-5ubuntu4)$,"|L$XL!u_IO_stdin_used5TTYlintvLOK'/build/buildd/glibc-2.6.1/build-tree/i386-libc/csu/crti.S/build/buildd/glibc-2.6.1/build-tree/glibc-2.6.1/csuGNU AS 2.18] /build/buildd/glibc-2.6.1/build-tree/i386-libc/csu/crtn.S/build/buildd/glibc-2.6.1/build-tree/glibc-2.6.1/csuGNU AS 2.18% $ > $ > $ > 4: ; I?  &IU%U%# init.cP /build/buildd/glibc-2.6.1/build-tree/i386-libc/csucrti.S,!/!=Z!gg//|L(!/!=Z!zP /build/buildd/glibc-2.6.1/build-tree/i386-libc/csucrtn.SX !!!L!!!/build/buildd/glibc-2.6.1/build-tree/glibc-2.6.1/csuGNU C 4.2.1 (Ubuntu 4.2.1-5ubuntu4)short unsigned intshort int_IO_stdin_usedlong long unsigned intunsigned charinit.clong long int,N|LLX\LL.symtab.strtab.shstrtab.interp.note.ABI-tag.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rel.dyn.rel.plt.init.text.fini.rodata.eh_frame.ctors.dtors.jcr.dynamic.got.got.plt.data.bss.comment.debug_aranges.debug_pubnames.debug_info.debug_abbrev.debug_line.debug_str.debug_ranges#(( 5HH41o||D; `C  gKoLXoԆ`g 44p LL y,,0t\\00 L|L|Lpkpt{t|{|{{p|pt|t||0 } @  gP%o- 0H+@H9$ #< f(H| Ԇ4 L , \ 0 |LLpkt{|{{{p|t|| } t{,|{:{G` ]D}l|s x{{pk{PL h}}}}t|t{-t{@{I| T f* }}}4v}r}dK ~9I  ~D0 pdh0l6pA P d D  nLu|L{va td]< E5  8 | H}  !s , >dCvSp.,cr|{L t.,]A .,d.,.,@ | fL}.," 3T}9.,A0 G_ Z/, j9 n }pE2&4G ^ E 8|R lW /$A2  GKZ W9i>y opWvtW|xW0 |WWd kɶ $WWWP}  }X}(\}8FTe@}q ht xb~ b~?f +Z3 `,Wa Ls L=F @}L!L( Y :Ld@MG4Y Md`M lMri }M 3      }`} &  d}  T Pt, "H )`t, + 2JL I=F U, Z, `D init.cinitfini.ccrtstuff.c__CTOR_LIST____DTOR_LIST____JCR_LIST____do_global_dtors_auxcompleted.6030p.6028frame_dummy__CTOR_END____DTOR_END____FRAME_END____JCR_END____do_global_ctors_auxsingh.csvddouble.fzero.2209one.2204cutlo.2202cuthi.2199_GLOBAL_OFFSET_TABLE___init_array_end__init_array_start_DYNAMICdata_startwrite_image_filescompute_big_n_minimumsOFFSET_YBINARYsprintf@@GLIBC_2.0open@@GLIBC_2.0PRINT_FLOWS2creat@@GLIBC_2.0path2__libc_csu_finiPREVIOUS2dswap_calc_startasin@@GLIBC_2.0pic_yMAX_NUMBER_OF_ITERATIONStime4fd_correct__gmon_start___Jv_RegisterClassesinverse22_fp_hw_finiputchar@@GLIBC_2.0write@@GLIBC_2.0add22int_size_xfilenamedaxpy_fdf1drotg_PsiENPsiERL2normEXTRA_OFFSET_X__libc_start_main@@GLIBC_2.0check_eigen_calcSTEPcomp_eigennormal_velocitiesSccIread@@GLIBC_2.0temporal_offsetexp@@GLIBC_2.0OFFSET_X_IO_stdin_usedlaplacianpic_xdnrm2_outnameactual_xtime3threshold_velocities__data_startcompute_SSD_surfacefflush@@GLIBC_2.0sqrt@@GLIBC_2.0EXTRA_OFFSET_Yfpinput_velocitiesCUT_Yfd_velsadd21output_covariancesfull_velocitiesUccstderr@@GLIBC_2.0acos@@GLIBC_2.0TAUfopen@@GLIBC_2.1cos@@GLIBC_2.0dscal_calc_mean_and_covariance1SccI_Ucc_gfortran_runtime_error__dso_handleinpicCORRECT_VELOCITIEScompute_n_minimumsstrcpy@@GLIBC_2.0comp1__libc_csu_initprintf@@GLIBC_2.0ddot_fdcov2STEP2size_ybigL2normtime2actual_ycalc_statisticsclose@@GLIBC_2.0read_image_filesfprintf@@GLIBC_2.0time@@GLIBC_2.0offset_xSAMPLESccCUT_X__bss_startPRINT_ITERATIONSPRINT_LAPLACIAN__stack_chk_fail@@GLIBC_2.4atan2@@GLIBC_2.0Uacompute_weightsno_bytesSsumcomp2SsumIcalc_mean_and_covariance2fpicoutput_velocitiesPRINT_FLOWS1rotateLAPLACIAN_endstdout@@GLIBC_2.0log@@GLIBC_2.0puts@@GLIBC_2.0PREVIOUS1fdcov1input_covariancespath1size_xsscanf@@GLIBC_2.0innameheader_intstime1make_floatSncorrect_velocitiesCOUNT_SINGULARthreshold_velocityoffset_ySUBSET_edataPRINT1old_inverse22sin@@GLIBC_2.0exit@@GLIBC_2.0int_size_yPRINT11Unmult21fdf2dsvdc_Sjacobi__i686.get_pc_thunk.bxFILE_NUMBERmain_initdrot_