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Abstract 
The optzcal floul constitutes one of the most widely 

adopted  representatzons to  define and characterzze the 
evolutzon of image features over time. In  order to  com- 
pute the velocity field, it is necessary to define a set of 
constraints on the temporal change of image features. 
In  this paper we consider the implications in using 
multiple constraints arising f rom multiple d a t a  points. 
The first step as the analysis o f  diflerential constraints 
and how they can be applied, locally, t o  compute the 
amage velocity. Thzs analysis allows to relate each con- 
straznt io a particular g r a y  Ietiel pattern. 
This approach is extended t o  multiple image points, 
allowang also the characterization of the temporal be- 
haviour of the image features and to  detect erroneous 
measurements due t o  occlusions, depth discontinuities 
or shadows. 

Several ezperzments are presented f rom real image 
sequences. 

1 Introduction 
The computation of the optical flow field has been 

studied since many years, and using different ap- 
proaches. There are many examples in the literature, 
where optical flow is computed by means of several 
constraint equations applied to many image points. 
Minimization and least, squares are the most widely 
applied mathematical tools to solve this kind of prob- 
lems. 
Not always the constraints are obtained by apply- 
ing the same equation to  multiple points, like in 
[ I ,  2, 3,  4,  5, 61, but also by defining multiple con- 
straints for each image point, either based on a set of 
differential equations [7, 8, 9, 10, 111, or obtained by 
applying the same set of equations to different func- 
tions which are related to  the local image brightness 
[ l a ,  13: 141. It is worth noting that many researchers 
have explicitly addressed the well known problem of 
occlusions, in the computation of smooth flow fields. 
Ben-Tzvi et al. [l] and also Bartolini et al. [2] de- 
fined algorithms to avoid the problems of classical least 
squares techniques, by finding the correct intersections 
of constraint lines in the velocity space with a method 
based either on the combinatorial Hough transform, 

or on a multi windowing technique. Variational tech- 
niques have been applied by Yesi [4]. Schnorr [15] 
proposed a method to deal with flow discontinuities, 
based on the decomposition of the image plane into 
disjoint sets. The minimization of the quadratic func- 
tional relative to the optical flow field, is performed 
on the basis of the hypothesized qualitative structure 
of the flow field within each set. 
Otte and Nagel [8] discuss a method, based on the 
least squares solution of an over-constrained system 
of linear equations, which relates flow discontinuities 
with the output of the x2 test. 

In a preceding paper, the flow constraint equations 
have been analyzed in terms of the response of the 
differential operators to different intensity patterns. 
This analysis allowed to  understand which is the best 
combination of constraints a t  a given image point. 
The aim of this paper is to extend this approach to 
the temporal domain, by considering multiple image 
points. This extension allows, not only to compute the 
optical flow, but also to verify the spatial coherence 
of the measurements, and consequently detect wrong 
hypotheses on the original constraints, like depth dis- 
continuities or shadows. 

2 Motion and optical flow 
It is now well known that the aperture problem is 

a “false problem” [16, 171. In fact, it can be easily 
overcome as soon as enough “structure” is present in 
the image brightness. Assuming the flow field to be 
locally constant, the time derivative of the gradient 
can be used, yielding two equations in the two velocity 
components: 

d 
-UE = 0‘ 
dt 

where E ( z , y . t )  is the image brighhess of the point 
(z,y) at time t .  Originally, Tetriack and Pastor [9] 
and also recently Tistarelli and Sandini [lo], consid- 
ered a locally constant flow model (not implying any 
particular movement of the objects in space), adding 
the brightness constancy equation [18] to obtain three 
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equations in two unknowns: 

d 
-E = 0 
dt 

with the assumption that the values of the spatial 
derivatives of the optical flow are equal to zero for 
all the image points. It is worth noting that this cor- 
responds to a first order approximation of the optical 
flow field with a locally constant vector field. 

3 Using multiple constraints 

itly: 
Considering equation (2) it can be rewritten explic- 

Instead of taking all three equations a t  the same 
time, it is possible to consider three equation pairs 
separately and study their stability. This is done sim- 
ply looking at  the matrices: 

This concept can be extended considering any set of 
functions of the image brightness [14, 13, 121. 

Every constraint defines a line in the velocity space 
( U ,  U), and the solution is defined by the intersection 
among the constraint lines. Each intersection, in the 
velocity space, is characterized by a particular moving 
gray level distribution. Therefore, the expected error 
applying a particular equation pair, is directly related 
to the local structure of the image brightness [19]. 

I t  is now evident that  not all the equations are “well 
tuned” to “sense” the temporal variation of every in- 
tensity pattern. But, rather, each equation is best 
suited to compute the motion of a particular intensity 
distribution [19]. 
In this approach, the most probable solution is ob- 
tained by discarding the intersection corresponding to 
the lowest determinant and computing the “center of 
mass” of the remaining intersection points, where the 
“mass” of each point is the value of the respective ma- 
trix determinant. The velocity is computed as: 

where NY = ba M . 2  - b:M;2 and NF = bf Mi1 - 
bt Mfl are the numerators of the expression for = 
(ui , vi), and Dj = det Mi. 

4 Integration of data from multiple 
points 

The application of multiple constraints can be ex- 
tended to multiple data points, by assuming the flow 
field to be locally constant. This can be performed 
either by applying a least squares estimator to the re- 
sulting set of equations, or by using the same method- 
ology applied to combine the constraints relative to 

each single pixel. The correct velocity vector is deter- 
mined, in the velocity space, as the center of mass of 
the cloud of intersections, relative to each pixel within 
the considered neighborhood. 

As a matter of facts, rarely the flow field will be 
constant, but this assumption is well approximated if 
the considered neighborhood is small compared to the 
size of the low-pass operator applied to blur the im- 
ages. Because the blurring is performed both in space 
and time, the final effect is to minimize the differences 
between neighbouring pixels, thus enforcing the local 
constancy assumption. 
What does happen if the flow field is not constant (or 
smooth)? 
The flow field is not constant whenever: 

the relative velocity between the observer and the 
scene has a rotational component; 

the relative velocity between the observer and the 
scene is only translational, but includes a compo- 
nent along the direction of the optical axis. 

the relative velocity between the observer and the 
scene has only a translational component with di- 
rection parallel to the image plane, but the im- 
aged scene is not constituted by one single planar 
surface parallel to the image plane. 

Even though the requirements to obtain a constant ve- 
locity field are difficult to meet, it is generally possible 
to locally approximate the optical flow with a constant 
vector field. In general, abrupt changes in the veloc- 
ity field are due to  depth discontinuities, occlusions 
and shadows. If the considered pixel, or region, cor- 
responds to a portion of surface in space under one of 
these conditions, then the flow field can not be com- 
puted locally, neither by considering few neighbouring 
pixel, nor by ap lyin only the constraints relative to 
one single pixel 715,$. 
The advantage of considering multiple pixels stems 
from the possibility to verify if the constancy of the 
flow field is a good approximation of the real flow field. 
In fact, if this is the case, the flow constraints relative 
to neighbouring points should define approximately 
the same velocity vector. 

It is possible to evaluate if the flow field is locally 
constant (or smooth), by analyzing the distribution of 
the intersection points of the constraint lines relative 
to all the pixels within the considered neighborhood. 
Each pixel will give rise to a set of constraints and, 
consequently, few intersection points will be selected 
in the velocity space. All the intersection points will 
form a cloud of points in the velocity space. If the ve- 
locity field is locally constant or smooth, a very small 
cloud is expected, because all the pixels will have the 
same velocity. On the other hand, if the cloud is large, 
or the intersection points are spread apart, then the 
pixels exhibit different velocities. 
In order to  analyze the distribution of the intersec- 
tion points, the modulus of the mean E( f) and of the 
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variance o(P) of the distribution have been defined: 

I - N-1 . N-1 
1 i =  A (7) 

N .(?) = [d; - ~1.1  
1 2=0 I i = O  

where N is the number of selected intersection points, 
V = ( U ,  v)  is the velocity vector computed from the 
set of intersection points, and V, = ( u i  , vi) is the ve- 
locity vector defined by each intersection point in the 
velocity space. The vector 6 represents the mean dis- 
tance of the set of intersection points from the top of 
the resulting velocity vector V .  
The value of E ( p )  defines how sparse are the inter- 
section points in the velocity space, but the variance 
r(?) defines the regularity of the distribution. The 
mean, seems to be the most important to determine 
whether there is a drastic change within the gray level 
structure. The variance does not convey the same in- 
formation, but it is not clear yet, to which extent it 
could be used to analyze the smoothness in the varia- 
tion of the image brightness over time. 
By setting a threshold on the value of E(?) it is pos- 
sible to determine if the velocity field is locally con- 
stant or, converseIy, if the current image location cor- 
responds to an occlusion or depth discontinuity or a 
moving shadow. 
4.1 Including linear variations of velocity 

By considering multiple pixels it is also possible to 
include a first order, non constant, term in the flow 
constraints (2). Linear variations of the optical flow 
can be expressed as [3]: 

+ 

- 
- 
-. 

By substituting this expression into (2) one obtains: 

E,a + EYp -Et 

E z r a  + E y z O  + Exur  + E y v x  1 - Etx (9) 
E z y ~ .  + E y y  P + E x ~ y  + E y v y  = - E t y  

where A, and Ay are the displacements between the 
reference point 20 = (zo, yo), where the velocity vec- 
tor is computed, and the point x' = (z,y), where the 
derivatives of the image intensity are computed. 
In this case, the constraint lines in the velocity space 
are parametrized by the derivatives of the optical flow. 
Therefore, every two points give one velocity estimate, 
where equation (9) are applied to one point and equa- 
tions (2) are applied to the second point. This is pos- 
sible because all the measurements are referred to the 

same velocity vector, a t  the same point on the image 
plane, while the derivatives of the image velocity are 
supposed to be locally constant. 
Considering a 3 x 3 neighborhood, 8 intersections can 
be computed by taking the constraints from the cen- 
tral pixel and, in turn, from every pixel out of the 8 
pixels around. The drawback of this approach is the 
increased complexity of the equations to be solved for 
each intersection. In fact, instead of a 2 x 2 matrix of 
coefficients Ma, we will obtain a 6 x 6 matrix for every 
set of pixels: 

where (U', vo)  = ?(GO), the derivatives of the image 
brightness E i k  are computed a t  the point 20 and the 
derivatives E' 
The optical hkow and its first order derivatives can 
be computed if the parameter matrix is not singular. 
This is verified if the intensity gradients at the image 
points x'o and fiJ are not null and not aligned. 

5 Experimental results 
In figure 1 to 3 several experiments, performed by 

computing the optical flow using multiple points, are 
shown. The parameters which have been set in the 
algorithm are the following: 

0 cS and at are the values of the standard deviation 
of the Gaussian kernel in space and time; 

0 A is the maximum allowed difference in the values 
of the highest determinants; 

0 'T is the threshold on the values of the denomina- 
tor computing the flow vectors; 

are computed a t  the point SI,. 

02 is the . value of the standard deviation of the 
aussian kernel used to smooth the X and Y com- 

ponent of the computed velocity field. 

In order to improve visibilit,y the flow vectors have 
been sub-sampled by taking one vector every 5, along 
the X and Y image coordinates. 

The first experiment, reported in figure 1, has 
been performed on the "laboratory" sequence. The 
sequence has been acquired from an active head 
equipped with two stereo cameras, mounted on a 
wheeled platform and moving inside our laboratory, 
while fixating a point on the table in the foreground. 
On top are the computed raw optical flow (left) and 
the optical flow smoothed with a Gaussian kernel with 
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p j  E 1.2 right). The optical flow has been obtained 
by thresh0 (l ding the vectors with a value of the mean 
E(p) exceeding 0.3 pixels. 
The parameters used for the computation are: us = 

In the middle, one original image is shown. On 
the right, an enlargement of the computed velocity 
vector, in the velocity space, at  two different posi- 
tions (marked with a cross on the original image), 
are shown. All the intersection points used to com- 
puted the vectors are also shown as small dots. On 
the bottom, are the computed mean (left) and vari- 
ance (right) for all the image points. The light gray 
indicates a zero value, all other values range from 1 
(dark) to 255 (white). As it can be noticed, most of 
the higher values of the mean and variance are at the 
image points corresponding to depth discontinuities. 

In figure 2 an experiment performed on the “mov- 
ing” sequence is shown. The sequence has been ac- 
quired inside a room, from a camera mounted on a 
mobile vehicle moving along a direction slightly in- 
clined with respect to the camera optical axis. The 
object on the right, in the foreground, is moving along 
a direction almost orthogonal to the trajectory of the 
vehicle. On top of figure 2 one original image (left) 
and the computed raw optical flow right) are shown. 

the vectors with a value of the mean E ( Q )  exceeding 
0.2 pixels. 
The parameters used for the velocity computation are: 

In the middle, the optical flow smoothed with a Gaus- 
sian kernel with standard deviation uj equal to 1 is 
shown. On the right, an enlargement of one computed 
velocity vector in the velocity space, corresponding to 
the position marked with a cross on the original im- 
age, is shown. All the intersection points used to com- 
pute the vector are also shown as small dots. On the 
bottom, are the computed mean (left) and variance 
(right) for all the image points. The light gray indi- 
cates a zero value, all other values range from 1 (dark) 
to 255 (white). It is worth noting that the area cor- 
responding to the moving object in the foreground, 
has very high values both for the mean and for the 
variance of the distribution of the intersection points 
in velocity space. High values in the mean are also 
reported along the depth discontinuities. 

The last experiment has been performed on an im- 
age sequence acquired from a camera mounted on a 
robot arm at the University of Karlsruhe. The cam- 
era was moving with a pure 3D translation toward 
the scene. The objects are static, with the exception 
of one light marble block, which is translating toward 
the left edge of the picture. The sequence is composed 
of 30 images with a resolution of 512x512 pixels and 
with 8 bits of resolution in intensity. The images have 
been reduced to 256x256 pixels by cropping a 256x256 
window around the moving marble block. 
On top of figure 3 the computed raw optical flow (left) 
and the optical flow smoothed with a Gaussian ker- 
nel with standard deviation cj equal to 1 (right) are 
shown. The optical flow has been obtained by thresh- 

2.5, ut = 1, A = 5%, T = 1. 

The optical flow has been obtaine 6 by thresholding 

U ,  = 2, U$ = 1, A = 5%, T = 0.9. 

olding the vectors with a value of the mean E(c) ex- 
ceeding 0.5 pixels. 
The parameters used for the computation are: us = 
2, ut = 1, A = 5%, r = 1. In the middle, one 
original image is shown. On the right, an enlargement 
of the computed velocity vector, in the velocity space, 
at  two different positions (marked with a cross on the 
original image), are shown. All the intersection points 
used to computed the vectors are also shown as small 
dots. On the bottom, are the computed mean (left) 
and variance (right) for all the image points. The light 
gray indicates a zero value, all other values range from 
1 (dark) to 255 (white). As it can be noticed, most of 
the higher values of the mean and variance are at  the 
image points corresponding to depth discontinuities 
or to occluding edges of the two blocks in the image. 
High values in the mean are also reported, on the lower 
left corner, within an area with uniform intensity. 

Figure 1: Computation of the optical flow by applying 
constraints from multiple points on the ‘‘laboratory’’ 
image sequence. 
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Figure 2: Computation of the optical flow by apply- 
ing constraints from multiple points on the image se- 
quence containing a moving object,. 

6 Conclusion 
In this paper we have addressed the problem of 

combining multiple constraints to compute the optical 
flow field from an image sequence. 

One of the main aspects which has been outlined in 
this paper is that the response of a given constraint! 
strictly depends on the local distribution of the im- 
age intensity. Therefore, the choice of the constraints 
to be applied should depend on the local structure of 
the image brightness and not only on the confidence 
associated to the measurement. In fact, there are ex- 
amples where the local image struct,ure does not, allow 
to apply a given constraint at all, or the information 
obtained is completely wrong. These observations lead 
to the conclusion that,  in order to compute the optical 
flow field from an image stream, the constraints to be 
applied to the image sequence should not be chosen 
only on the basis of t,he motmion to be detected, but 
also on the local image structure. In fact, it has been 
shown in the past, that, an abundance of equations 
can be written, depending on the motion constraints 

I 

I 

Figure 3: Optical flow computed by applying con- 
straints from multiple points on the “blocks” image se- 
quence. The sequence has been obtained by extracting 
a 256x256 window from the original 512x512 images. 

we are considering. 
Not all the equations are equally suitable for comput- 
ing the flow field at all image points. We have demon- 
strated, both analytically and with experiments, that 
the same equations applied to different brightness 
structures can give exact or wrong estimates. 
The complex nature of the real world! many times 
makes the assumptions for the velocity computation to 
fail. This is due to many phenomena, like occlusions! 
shadows, depth discontinuities or even an excessive ve- 
locity of the objects. These conditions can be detected 
by analyzing the behaviour of the image intensity dis- 
tribution along space and time. It has been shown 
that this is obtained by analyzing the distribution of 
the intersection points obtained from the constraint 
lines, in the velocity space, relative to neighbouring 
pixels. 
Two simple measurements, namely the mean and the 
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standard deviation of the distribution of the intersec- 
tions among the constraint lines, are devised to detect 
and possibly threshold the flow vectors corresponding 
to image points where some of the assumptions may 
be violated. 
Many experiments performed on real image sequences 
demonstrated the validity of the approach. 
As a matter of facts, other measurements could be 
used to characterize the distribution of the constraints 
in the velocity space. By applying different measure- 
ments other properties could be detected, and even- 
tually determine which assumption has been violated. 
In other words it could be possible to understand if the 
considered pixel corresponds to a shadow or an occlu- 
sion or a depth discontinuity and so on. This analysis 
could be usefully applied to  better understand the na- 
ture of the scene for successive vision tasks. 
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