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Content

Part 1: Fourier Transform, Short Time Fourier Transform
Recall: vector space espaces and important properties to know



Vector space (1)

> Field: (K, +,-) a set with two operations (internal composition laws,
denoted + and )
In general and in this lecture K = R or C) and such as + is
commutative (VA, p € K, A + =+ A), 0 is the neutral element
for + and 1 for -
» internal law: Vx,y e K,x+y e K
» neutral element: Vx € K, x +0 = x

» \ector space: (E,+,) is a vector space over the field K if:
» K is a field (two internal composition laws also denoted + and - by
abuse of language)
» + is an internal commutative law on E: E x E — E (vector addition)
> . is an external law (left multiplication): K x E — E (also called
multiplication by a scalar) such as:
> . is distributive over + : VA € K,Vv,w € E,A-(v+w)=A-v+A-w
> + is distributive over - : VA, p € K,Vv € E,(A4+p)-v=X-v4+pu-v
» 1 is the left neutral element of - Vv € E;1-v=v
» An element v of E is a vector, in the remaining E is a vector space



Vector space (2)
» Vector subspace: F C E is a vector subspace of E if:
> F#£D
> VA v,w) eKXFXFA-(v+w)=XA-v+A-weF,
» In other words: F is stable for linear combination
» Example of vector spaces:
> (R",+,), (RN, +,)
» The set of continuous functions from R into C is an C — vector
space (it is of infinite dimension)
» Scalar product: (or dot product, or inner product) the operation,
denoted (., .), such as:

ExXE — R
(v,w) = (v,w)

is a scalar product if
» bilinear (linear on left, linear on right)
> symmetric: (v, w) = (w, v)
» positive: (v,v) >0
» definite: (v,v)=0=v =0
» Norm: the scalar product defines the norm ||v||? = (v, v)



Scalar product

» A fundamental operation: it allows two vectors to be compared,
projecting one to another one

» Example of scalar product:

» inR™ v= (v, - ,Va),w=(wa, - ,w,) and

n
(v, w) :Zv,--w,-
i—1

» for the set of complex summable (or integrable) functions on IR:
(r.e) = [ FoE(d
R

» Euclidean space: a vector space with a scalar product

> Hilbert space: an Euclidean space of infinite dimension (space of
functions)



Basis (1)

> A basis in E is a finite or countable (if E is of infinite dimension) set
of vectors of E: B ={by, -, by, -} satisfying two conditions:
» linear independence property (free family): no element of B is a
linear combination of others elements of B5:
Mbi+ -+ XAbp=0=2>A1=--- =X, =0
» spanning property (spanning family): Vv € E; 3Ny, -+, Apy -+
such as v =), \ib;
» Orthogonal basis: (b;, bj) =0 Vi#j
» Orthonormal basis: (b;, b;) =0 Vi#jand (b;, b)) =1 Vi



Basis (2)

» Example in the Cartesian plane with the usual scalar product

> the set reduced to the canonical vector i = (1 0): linearly
independent set

{I_;J_: F—i—f}: spanning set

{2i,7+j}: basis

{2i,j}: orthogonal basis

{i,j}: orthonormal basis (canonical basis)

ETRNETAY i
(\/5, \/§> orthonormal basis

» Consequences (without formal proof)

vVVvyVvVYVYYy

> with a basis or a spanning set, one can represent any vector as
vV = Zi )\,‘b,‘

» a linearly independent set can not represent all the vectors: for
example, impossible to represent fas a linear combination of F(they
are orthogonal)



Basis (3)
» Other consequences
» Redundancy: a spanning set which is not a basis is a redundant set:
there are too many vectors (at least one)
» Redundancy: the representation of a vector is no more unique. For
example with the spanning set {ljf, /?—J—f} and the vector 2 - I?—|—_]T:
one can exhibit two different linear combinations:

=

274 = 2-741-J40-(7+))
= 1-740-j41-(+))

» Non orthogonal basis: the representation is unique but the
determination of coefficients ); is not easy. In general:

v=> Abi#Y (v, b)b;

» Orthogonal basis: we have (b;, bj) = 0,i # j and

bj bj
v = v,
Z< IIbiII> 16|

i

determination of \; are direct with the scalar product.

» Use of an orthonormal basis simplifies calculus



Conclusion

>

>

Goals of theses recalls? Find suitable spaces of representation. Then
find adapted basis.

A well known example: Fourier Series! The T — periodic functions
may write as:

2mnt . [ 2mnt
x(t) = Za,,cos <T>+b,,sm( - >
nelN
2 (7 2mnt 2 [T _(2mnt
a, = 7/0 x(t)cos( T )dt b,,:7/0 x(t)sm( T )dt
Alternative writing:
x(t) = Y et (1)
kET.
1 T —2jmkt
o = —/ x(t)e™ T dt (2)
T Jo

Here, we recognize the scalar product of a functional space:
2imkt

Ck = <x, e’ T > and an orthonormal basis: {¢k}kez with

2imkt

¢k(t) =e T
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Part 1: Fourier Transform, Short Time Fourier Transform

Fourier transform



Fourier Series (1)

» Representation of the periodic functions
» Coefficient ¢, are called Fourier coefficients

» The periodic function f is represented by the countable sequence
(ck)kez

» Graphical interpretation:
Given the following

iodic signal: AT A AT NN
periodic signal: A 1 ‘
| ‘i\ {\ {\ /\ J(‘ H \‘/\/\\’\f\‘/
e/‘\ﬂ ’(\A it i \ / \ / Ry 1l “/ | ‘\‘) U \/ f’ \‘/
U /W\ Vo U VYUY
| ‘\M ‘\M { 2imky t 2imkat
: W‘J“ V \)‘ vy Chy = <x e T Chy = (Xx,€° T >
- Tl ‘W ‘(\ /“f
We have 8 non null il \ \ \H\/\HH I‘ \
Fourier coefficients: ;“\HH‘\‘ ‘H\MW\‘\‘ i H HHH‘HH‘ ‘Mm
C = Cokpi=1,---,4 5\\\\/‘\/\/‘\‘“ H} “H‘)H‘H}‘M “
describing the 4 modes ;
frequencies) of thi _ (o (e
gipgunr;al requencies) of this Chs <x,e > ke <x,e >



Fourier Series (2)

» Remark:
» x even function = ¢, = c_
» x odd function = cx = —c_«
On the previous example: linear combination of 4 cosine functions
with various frequencies = even function.
» Exercises:

2i ki . .
» show that the set {e" T t}kez is an orthonormal basis
> determine the Fourier coefficients of the function t — cos(27+)
» determine the Fourier coefficients of the Sawtooth wave (use a

. . . . oinkt
integration by parts to determine the integral of t — te =27 Tt)

» See also: BIMA lecture on Fourier Transform


https://www-master.ufr-info-p6.jussieu.fr/parcours/ima/bima/pdfs/l3-fourier1.pdf

Fourier Transform (1)

Definition

» Applied on non-periodic function, the Fourier Series formulae does
not work: T = 400 and 2™ 7 =1, not a basis

» Extension to non-periodic functions: the Fourier Transform defined
by

X(f) :/ x(t)e 2™ fdt, f € R
R

> x must be an integrable function!. X is a continuous function on C
and is an element of a vector space:

> with the scalar product (f,g) = [}, f(t)&(t)
» with the orthonormal basis: {t — ez”rft}feR, an element of the

basis is the function t — €™ indexed by the real parameter f

1f belongs to L?(R) space



Fourier Transform (2)

Graphical interpretation

» Same interpretation as the Fourier Series but on a continuous range

of frequency
Given the following signal

/\

N“
W%V\/

8 non null values for the
Fourier transform:

X(f) = X(—f),i =
1,---,4 describing the 4
modes of this signal

T T
T
\/\/ NI

WA RN
X(fz) <X eZ'ﬂf t>

1 ”MHW

1l
A

X(ﬂ;) <X eZTFft>



Fourier Transform (3)

Interpretation, reconstruction

» Interpretation:
> magnitude: |X(f)| = 1/X(f)X(f), or spectral amplitude, gives the
quantity of “pure” frequency f available in the signal x

» phase: ¢(f) = arctan (993(());8))))) gives the shift with the basis

function ™"

» fundamental or null frequency, f = 0, is the integral of the signal:
X(0) = / x(t)dt
R

» As with Fourier Series, reconstruction is possible:

x(t) = /R X(F)e2if



FS versus FT

Fourier Series Fourier Transform
x T-periodic functions x integrable function
1 (7 . .
o= [ xe i | X(h) = [ x(e "ot
T Jo R
ke€Z,ceC X:R—->C
x(t) = ey kT x(t) = [y X(f)e?df

» To summary:
» Fourier Series: periodic functions, countable orthonormal basis
(eZiwét)
. keZ . .
» Fourier Transform: integrable functions, uncountable orthornormal

basis (ez"’”{t)fe]R



2-D Fourier Transform (1)

» An image is a non stationary function with a compact support, then
is a non periodic function, Fourier Series are not suitable

» The 2-D Fourier Transform (for images) is built by separability:

X(f,g) = /R/Rx(t,u)efz"”(f”g”)dtdu (3)

/R { /}R (t, u)e‘zi”ftdt} ey ()

> X :R2— C, (f,g) is a couple of vertical and horizontal frequencies
» module of X (amplitude spectrum): vV XX, gives the amount of the
element basis contained in signal x
> basis: complex sinusoid ((f,g) — e27(ft+gv))

> phase of X: gives the phase change between signal x and the
element basis

» Signal x can be reconstructed from its spectrum X with the inverse
Fourier transform:

x(t,u) = // X(t, u)e?™(ft+en) didg
RZ



2-D Fourier Transform (2)

Inverse Fourier transform: any image is a linear combinaision of basis images

> an element of the basis, (t,u) — ¢r 4(t, u) = e?™(+8Y) is an

LR
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e 2Z 2

~
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2-D Fourier Transform (3)

Exemple sur des images

» module of spectrum: localize low and high frequencies, determine
predominant orientations




Fourier transform: some mathematical tools (1)
Property (1-D or 2-D)
> linearity: TF(ax+ fBy) =aX + Y

» scaling:
y(t) = x(at)
1 f
Y(f) = —-x(L
0 - x(%)
> shift:
y(t) = x(t-t)
Y(f) = e ?mX(f)
YOI = XA
» rotation (for 2-D FT):
y(t,u) = x(tcos®+ usinf, —tsinf + ucosb)

Y(f,g) X(fcosf + gsinf,—fsinf + gcosf)



Fourier transform: some mathematical tools (2)

Fourier transform of some usual 1-D functions

. 1 si |tf{<i
| 4 : = -2
Rectangle function: Rect(t) { 0 sinon
t a2 . in(raf
> TF[t - Rect (£ )](F) = / e-2integy — oSNTA) )
a —a/2 mwaf
f(I)‘l F(¥)p
TF
9
N 1/a N
a VAN V4 "

» Gaussian function:
_p2¢2 T _x2f2 . .
> TF(t—e "T)(f) = ‘—\bF'e 52, also a Gaussian function!
» standard deviation in the frequency domain is inversely proportional
to standard deviation in the time domain



Fourier transform: some mathematical tools (3)

Fourier transform of some usual 1-D functions

» Dirac delta function: ¢. A generalized function (or distribution),
formally defined by:
> §(x)=0 Vx#0
> [Ro(x)dx =1

. . o1 t
» Can be seen as the limit of normal function: §(t) = lim = Rect <7)
a—0 a a

4la

2/a

J ‘ I__>
a4 t
a8 a2

» Properties, for all function x
> x(t)d(t — to) = x(to)d(t — to)
> x*d(t—to) = x(t — to), and then xx0(t) = x(t): & neutral element
of convolution
» Fourier transform:
> FT(t— 5(t —to))(f) = e 2o
> FT(t+— 2™ (f) =5(f — f)



Fourier transform: some mathematical tools (4)

Fourier transform of some usual 1-D functions

» Cosine function (Euler formulae):
FT[t = cos(2nfyt)] = 3(3(f — fo) + 6( + fy))

X(f)

5(f+f) 5(f-f)
T Cos(mt)
> O

\/ \/ & t f
> Sine function: FT[t — sin(2nfyt)] = 5(6(f — fo) — (f + fo))




Fourier transform: some mathematical tools (5)

Convolution theorem

» Recall, convolution:

z(t) = xxy(t) = /Rx(t— t)y(t")dt’

» Any linear filtering time invariant can be expressed by a convolution
» Convolution theorem:

> ifz=xxythenZ=XxY

> ifz=xxythenZ=Xx*xY

» Important tool for calculation of Fourier transform! (see the next
slide as an example)

» In 2-D (image), the convolution theorem still holds:

z(t,u) = xxy(t,u) = / / x(t =t u—u)y(t,u)dt' d
RJR

» Consequence: filtering in the frequency domain is strictly equivalent
to convolution in time (space) domain



Digitization and discrete Fourier transform (1)

» Practically: we analyze discrete signals and not real functions. A
discrete tool is needed: the Discrete Fourier Transform (DFT)
» Formalization:

1. the signal to analyze is windowed to obtain a bounded support
function:

> x;(t) = x(t) Rect(t/L)
> FT: X/ (f) = L X xsinc(wLf)

» Example with a basic signal (cosine, pure frenquency)
AN ezp |||

b, bl

I T
T T

=l
2|~

N,H
2|
Zhe

NI
2=



Digitization and discrete Fourier transform (2)

» Practically: we analyze discrete signals and not real functions. A
discrete tool is needed: the Discrete Fourier Transform (DFT)

» Formalization:
1. the signal to analyze is windowed: x(t) = x;(t) = x(t) Rect(t/L)
2. the windowed signal is sampled: a measure of this signal is done
each T time step (f; = Tis is the sampling frequency):
> xs(t) = x (t) > 6(t — kTs) (3, 6(t — kTs): Dirac comb or train
KEZ
impulse)
» Due to the windowing and the sampling frequency, we have

N = L/ Ts measures
» Fourier transform: Xs(f) = X, = > 6(f — k/Ts) (the Fourier
kEZ

transform of Dirac comb is a Dirac comb). Hence:

Xs(f) = k%:ZXL(f —k/Ts)

= Sampling implies a periodic spectrum (of period f; = 1/Tj)!



Digitization and discrete Fourier transform (3)

Sempling: Shannon theorem

‘ ’ ‘ Multiplication

At
m Convolution l !

Figure: Sampling implies a periodic spectrum

» Let X be a bounded frequency support and let f,, be the maximal
frequency of X:

Theorem (Shannon)

Iffg > 2 Ts < %Tm, then the signal can be reconstructed without
loss



Digitization and discrete Fourier transform (4)

Echantillonnage: théoréme de Shannon

» Spectrum overlapping if 7, > £;/2 and limit case:

» Recontruction: X is truncated with a Rectangle function, then an
inverse Fourier Transform is applied: Shannon interpolation formula

My o b




Digitization and discrete Fourier transform (5)

» Practically: we analyze discrete signals and not real functions. A

discrete tool is needed: the Discrete Fourier Transform (DFT)
» Formalization:
1. the signal to analyze is windowed:
> x;(t) = x(t) Rect(t/L)
> FT: X (f) = L X xsinc(wLf)
2. the windowed signal is sampled:
> xs(t) = x.(t) > 6(t — kTs)
KEZ

> FT: Xs(f) = kZZXL(f — k/Ts)
€

3. X is sampled at frequencies f = NL@ k=0---N—-1:

K
> DFT(x)(K) = Xs [ —— ) ,k=0---N—1
(x)(k) S(Nfs)’
N—1
o N N
> DFT(x)(k) = 2 = D
(0 = 3 xlme 7R k= 5

» Practically: we denote x(k) = x(kTj) as the k-th sample of signal
x, and the Discrete Fourier transform is defined as:

N—1
DFT(x)(k) = X(k) = 3 x(n)e =24  k = _g . g 1 (s)

n=0



Discrete Fourier transform
Properties, and 2-D DFT

> DFT 2-D:

=
|

1M—

._l

X —2/'71'(%'-‘1-%)

Il
o

n m=0

» The DFT has the same properties than the continuous Fourier
transform:

» linearity, translation and rotation of the signal/image
» Practically, DFT is used for filtering discrete signal/image in the
frequency domain
» Inverse 2-D DFT:
N—1M—
(n,m) = X(k i+

/=0 k=0

._.
55
N—r



2-D discrete Fourier transform

Filtering in frequency domain vs time domain

» Filtering in the time
domain:

y(n,m) = x % h(n, m) » Filtering in the frequency domain:

y(n,m) = TFD_I[X(U, v)x H(u, v)]

The Convolution Operation Sequence
Sha

Image filtrée

—__

Destination _
g Tmage~ ‘ =<0
Pixel _
\ —



Filtering in the frequency domain

» Several types of filters:
> low-pass: low frequencies are kept, high frequencies are attenuated
> high-pass: low frequencies are attenuated, high frequencies are
attenuated
» band-pass: a range of frequencies is kept, others frequencies are
attenuated: allow an multi-scale analysis (scale=size of structures)

» See BIMA course (https://www-master.ufr-info-p6.jussieu.
fr/parcours/ima/bima/): lectures 3, 4, 5 and associated tutorial
and practical works.


https://www-master.ufr-info-p6.jussieu.fr/parcours/ima/bima/
https://www-master.ufr-info-p6.jussieu.fr/parcours/ima/bima/
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Part 1: Fourier Transform, Short Time Fourier Transform

Short time Fourier Transform



FT: limitations, issues (1)

» Compression, denoising: impossible to correctly represent edges (non
derivable functions): Gibbs ringing artifacts appear after removing
highest frequencies

» Visible in JPEG compression for example



FT: limitations, issues (2)

» In the Fourier space, structure size and orientation can be measured
but it is not possible to localize (translation invariant): a wave has a
period (size), an orientation (in 2-D), a phase, but not a localization.

» Two ways to represent a signal:
> representation in time (or spatial if image) domain:

x(t) = / x(u)o(t — u)du
R
=> this basis localizes in time, but not in frequency (it can't see the

size of structures)
> representation in the frequency domain (inverse FT):

x(t) = /]R X(F)e¥ ™ df

=> this basis localizes in frequency but not in time



FT: limitations, issues (3)

» Representation in time domain: null resolution in frequency, infinite
resolution in time

» Representation frequency domain: infinite resolution in frequency,
null resolution in time

f

(a) DIRAC (b) FOURIER

t >

» Consider two signals:
> y(t) =sin(2nfit) + sin(2nfat)
> z(t) =sin(2rfit)u(t) + sin(2rfat)u(—t) with u(t) =1if t > 0 and
0 otherwise (Heavyside function)
y and z has the same spectrum!

» Need to analyze the signal both in time and in frequency domains!



Short Time Fourier Transform (1)

» Principe: perform a Fourier analysis on a window.
> first the signal is windowed, the window being localized in the time
domain, second a Fourier Transform is applied
» the STFT has two parameters:
» a parameter of time localization
> a parameter of frequency localization

T
AL

High frequencies

Low and high
frequencies

Low frequencies

» Other name: Windowed Fourier Transform



Short Time Fourier Transform (2)

» Definition:
STFT(x)(f, b) = X(f, b) = / X(£)i(t — b)e~ 2"t
R
with w an admissible window, i.e. J"R \w(t)[2dt = 1

» Examples for w: Rectangle function, Triangle function, Gaussian
function, ...

» The family of functions ¢r p(t) = w(t — b)e?™ ™ is spanning but
redundant set (two parameters f and b)

> STFT: ¢rs(t) = w(t — b)e* " : localization in frequency f and in
time b _
> FT: ¢¢(t) = e¥™ . localization only in frequency

» Reconstruction is available if w is an admissible window:
x(t) = / / X(t, b)w(t — b)e* ™ dfdb
RJ/R

» Exercise: prove the reconstruction formula



Short Time Fourier Transform
Example

(3)

i




Short Time Fourier Transform (4)

Exemple

» Fourier transform of x: no localization in time!

12000

10000

8000

G000

4000

2000

4

X(f) _ Z 6(f - fk) + 5(f + fk) N

e 2™ sinc(wrf)



Short Time Fourier Transform (5)

Example: representation time-frequency

05 1 15

05 1 15 2 25

1 window: it is the standard Fourier

L 2 windows: gain in time resolution
Transform, so no localization in time



Short Time Fourier Transform (6)

Example: representation time-frequency

200

45

4 windows: gain in time resolution

1 2 3 4 5 5 7 8

8 windows: loss of frequency
localization and then frequency
resolution! why?



Short Time Fourier Transform (6)

Example: representation time-frequency

4 windows: gain in time resolution

1 2 3 4 5 5 7 8

8 windows: loss of frequency
localization and then frequency
resolution! why? as the window
becomes smaller, the FT (sinc) is
lesser accurate



Short Time Fourier Transform (7)

Example: representation time-frequency

200

2 4 6 g 10 12 14 16

16 windows: loss of frequency 32 windows: loss of frequency
resolution! resolution!



Short Time Fourier Transform (8)

Example: representation time-frequency

» Conclusion: there is an optimal configuration to analyze the x signal

» with less than 4 windows: low time resolution but good frequency
resolution

» more than 4 windows: maximal time resolution, but low frequency
resolution résolution fréquentielle moins bonne

» 4 windows is the optimal in this case

» See Exercise 5 in tutorial works



Short Time Fourier Transform (9)

Limitations, issues

» Window length is a critical parameter:
» must be the same order of value than the period of the signal to be

analyzed
» but not so large, because the time resolution will be degraded

» Let us formally define the time and frequency resolution of a x
signal:

> <t>= %/ t|x(t)[dt, < f >= %/ fIX(F)[df
R R

with E:/ Ix()[2dt

R
» Time resolution (standard deviation, dispersion):
2 2
o= [ (1= < >0t
R
» Frequency resolution (standard deviation, dispersion):
or = / (F— < £ >)X(F)2dF
R

» small standard deviation = high localization = high resolution



Heisenberg uncertainty principle

» A general principle apply to any waves (and more):
» impossible to localize both in time and in frequency with a infinite
precision a signal
» time and frequency resolution are bounded: o:of > ﬁ

Figure: Left: Gaussian signal (red) and its spectrum, right: Cosine
signal and its spectrum

» The bound is reached with the Gaussian function!



Heisenberg boxes

1. Time and frequency resolution can be represented using the
Heisenberg boxes:

o

16, {1 o f

1q, g1 5
[ S R IIM%

g,y @1 g, Wi

o M t

2. Here: o; and of are constant.

3. Too large window: impossible to analyze non stationary signals (loss
of localization in time)

4. Too small window: loss of localization in frequency

5. ldea of wavelets: analyze in time and frequency more suitable (i.e.
Heisenberg boxes of various size), and design of an orthonormal
basis (STFT is not a basis)
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Part 2: Wavelets
Continuous wavelets



Continuous wavelet transform (CWT): definition

> E = [2(RR) set of real function squared integrable (a vector space)

» Let x € E be a signal, the continuous wavelet transform is a
function (a, b) — g(a, b) defined by:

g(a,b) = \i[ /R X(£)ab(£)dt = (x, 10 0)

such as a # 0 and:

1 t—>b
Z/Ja,b:\/Ew( 2 )

where v is called mother wavelet
» Functions 1, are translated/dilated version of v

» b: position (localization in time), a: scale (analog of the period of
Fourier analysis)



Mother wavelet

» 1) must be admissible:
has a bounded support
> is of mean null ([ =0)
> be oscillating |¢| # ¢
» i € E (squared integrable)
> Y(t) eRor C

v

» Examples:
//’ \\\ )

(a) Mexican hat: (b) Morlet wavelet

2 =2
w(t) = (1 — tz)e(’?) W(t) = ete202
(c) Meyer wavelet (d) Biorthogonal spline wavelet
18 L . o . 1
(‘ 05
_ v‘\\‘\‘"u o 0
25, ‘\’ U‘ 05
45 - 2 [ 2 il
4




CWT versus STFT
» Similarity:
» Both are redundant analysis (projection onto redundant spanning

families)
» Both localize in time and in frequency domains:

> STFT: ¢r = w(t — b)e?ft
> CWT: g (t) = L (552)
» Difference:
» STFT: has a fixed resolution in time and in frequency (Heiseinberg
boxes have the same size)
» CWT: has a variable resolution in time and in frequency
» Interpretation for the CWT:

» allow a multiscale analyze: the support in the time domain is more or
less large (the mother wavelet is dilated at various size)

> Let a?’b et U?’b be the respective time and frequency resolution of
'l/}a,b:
1,0

,b
> a'ta = ao’t
b 1,0
> ;P =1,

f a f
with a,}’o and cr}’o the time and frequency resolution of mother
wavelet 1)



Heisenberg boxes

» Recall: Heinsenberg incertitude principle, o;0¢ > ﬁ, boxes have a
minimal area
(o]
(0]
16, o | 5, £l Su
v [or e ;
16, () | 5
B il
., O £y 1 s |z
o ¥, o
M Al
0 R VARV ;

Figure: Heisenberg box of FT

Figure: Heisenberg box of CWT



CWT: interpretation

Wavelet as a multi-scale analysis tool
» Findings:
1. low frequencies are less localized in time: a low frequency signal has
a long period and is almost stationary
2. high frequencies are better localized in time (small period) and non
stationary, their localization in time are important for analysis
» Wavelets: a frequency is analyzed at a suitable time resolution:
1. low frequency (scale a is large): low time resolution, high frequency
resolution
2. high frequency (scale a is small): high time resolution, low frequency
resolution
There is a compromise between time and frequency resolution
(Heisenberg)



Reconstruction

» Formally:

x( Cw/ / g(a, b)i, p(t)dadb

- [T,

with

f

» If Cy < oo (admissibility condition), reconstruction is possible
» The family is redundant: practically, reconstruction is costly, but:
> a countable set of values for (a, b) — g(a, b) is sufficient to
reconstruct x,

» practically, a continuous wavelet transform is not suitable for discrete
signal: a discrete formulation of wavelet is requested
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Reducing redundancies: Dyadic wavelets

» The continuous wavelet transform is sampled using a dyadic

position:
> 3:2_j
> b=kx27, k=0,---,2 -1

> j € N is the time resolution (or representation scale)

> 1, p(t) = V2(2t — k) = 1 (t) has a support of length 27 and a
position at k

> For j fixed, ¥ (t) functions have disjoint and contiguous supports.
Let w be a mother wavelet with support on [0, 1]:
=0: k =0. Only one function for this scale, 1/3(t) = v(t)
=1: k=0 or 1. Two functions for this scale:
> position 0: ¥3(t) = v/2¢(2t) with support on [0, %]
> position 1: ¥}(t) = v/2¢(2t — 1) with support on [%, 1]
> j=2: k=0,1,2,3, 4 functions:
position 0: 13(t) = v/2¢(4t), support on [0, 4]
> position 1: ¥} (t) = v/21(4t — 1), support on [4, 2
> position 2: ¥3(t) = /21 (4t — 2), support on [27 3
> position 3: ¥3(t) = v2¢(4t — 3), support on [ ,1]

v



Dyadic wavelets

» Redundancy is reduced: (a, b) € R? = (j, k),j € N,0 < k < 2:
countable family

» We obtain a discrete sequence of coefficients:
gt = (o)
» Reconstruction: ;
x(t) =) el
JEN k=0

> Remark: this transform applies on continuous signal (x is continuous
as well the elements of the family, t — 1/} (t)). We do not yet have
a discrete transform.



Dyadic wavelets transform versus FT, STFT

P ' ~ 4
o = T
] = = .
< g g
) w
Time (sec) ” Time (sec) Time (sec) Time (sec)
(a) (b) (©) (d)

(a) Localization in time domain

(b) Localization in frequency domain (FT)

(c) Localization in time and frequency domains (STFT)

(d) Localization in scale and time domains (dyadic wavelet)
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Multiresolution analysis (1)

Motivations

» Dyadic wavelets: the family is not redundant but the basis is not
orthogonal (eg: <¢L7 2J,Cl> #0)

» Multiresolution analysis: formalism to build wavelet orthornormal
basis

» Principle: project the signal into nested vector subspaces




Multiresolution analysis (2)

Definition

> A multiresolution analysis of E = L?(IR) is a sequence of subspaces
(V)jew such as:

1.

information contained in resolution j is also contained in resolution
j+1VvjezZ Vicvytt

. intersection of all V/ isempty: | V/ = Ilim V/ =0

JEZ j——o0

~unionofall VisE: J VW= lim VI=E

JEZ j—+oo
resolution j derives from resolution j + 1 by a dilation of factor 2:
VieZ feVief(2)e vt
it exists a function ¢ € E such as the family (¢(. — k))kez is an
orthonormal basis in V°

» Consequences:

>

>

from 4. and 5. it comes: Vk € Z f € % & f( - k2) e V. In
other words (¢(. — k2’))kez is a basis in V/

from 3.: one can reconstruct a signal x € E from its projections into
Vi

> ¢ is known as scaling function (or wavelet father)

» V/J are known as the approximation subspaces



Multiresolution analysis (3)

scaling function: one example

1. Consider ¢(t) =1 on [0, 1], null otherwise
2. This is Haar scaling function
3. What does V° represent?, Vi?



Multiresolution analysis (3)

scaling function: one example

1. Consider ¢(t) =1 on [0, 1], null otherwise
2. This is Haar scaling function
3. What does V° represent?, Vi?

> E = [*(R), scalar product: {f,g) :/ f(t)g(t)dt
R
> suppose ¢(t — k) is a basis in V° then if f € V°,

F(t) =D (F,0(.— k) ¢(t — k) =D ck(t) with
keZ K
k+1
= / F(8)3(¢t — K)dt = / F(t)dt
R K
> then VO is the space of functions constant on intervals [k, k + 1]
» and then V! is the set of functions constant on intervals
[k/2, (k 4+ 1)/2][ if condition 4 holds.
» and then V/ is the set of functions constants on intervals
277k, 27 (k 4+ 1)]



Multiresolution analysis (3)

scaling function: one example

Consider ¢(t) =1 on [0, 1], null otherwise
This is Haar scaling function
What does VO represent?, VJ?

Is Haar scaling function admissible to perform a multiresolution
analysis of E = L?(R)?

Hw o=



Multiresolution analysis (3)

scaling function: one example

Consider ¢(t) =1 on [0, 1], null otherwise
This is Haar scaling function
What does VO represent?, VJ?

Is Haar scaling function admissible to perform a multiresolution
analysis of E = L?(R)?
> condition 5. is true: ¢(. — k) is an orthonormal basis in V°, easy to
verify
» condition 1. (V/ C V/*1): if f € V/ then f constant on intervals
[277k,27/(k 4 1)[, and also constant on intervals
[270 g 27U (k 4 1)[ and we conclude f € VI+?
> conditions 2. and 3. intuitively: integral of a function may be
approximated by piecewise constant functions (integral definition in
sense of Riemann)
» condition 4. (transition j to j + 1): similar proof than for condition
1, f(2.) is a dilatation of f by a factor 2, then f(2.) € V/*?

5. Haar scaling function is an admissible solution for a multiresolution
analysis of E (see Ex 6 tutorial works)

=



Multiresolution analysis (4)

Projection into VJ

> Let ¢ be an admissible scaling function in E = L?(IR)
> Let's define: ¢ (t) = V2¢(2t — k), then:
(q&’k) is an orthonormal basis in V/
kez
» derives from conditions 4. and 5.

» Given x € E, its projection into V7 is:
X(t) = (Px)(t) =D _ sl (1)
K

with:

s = <x,¢l,;>vj = /}R V2x(t) (2t — k)dt

we recognize a scalar product for V/
> s{{ are the approximation coefficients at resolution j

» Subspaces V/ are dyadic spaces



Multiresolution analysis (5)
Complementary subspaces (1)
» Last step: obtain an orthonormal basis
» Fundamental idea: as V/ C V1 then

IW/ such as VIt = vig Wi

W/ is known as the details subspace for resolution j

» WY is a complementary subspace
orthogonal to VJ in Vitl

» We call wavelets (or details functions) the set of functions (WL)
ke

spanning W/ and pairwise orthogonal
» Having an orthonormal basis in V/ and in W/, we have an

orthonormal basis in V/*1 : ((bjk)k z U (w‘l‘)k z and
c S
Xt () = Zsigbf,;(t) + Zdi#(t)
kET keZ

projection into VJ  projection into W/

> o = <x,1/){(> are known as the details coefficients



Multiresolution analysis (5)

Complementary subspaces (2)

» Recursively we have:

Vit Vi @ Wi = vi—1 @ wi—t o w4

= VieWloW'e---oWlew
J
) = D o)+ ) dii(t)
k i=0 k

» Basis in VT contains:
» that of V° _
> that of W°, W, up to W/

> j— +oo:

+oo )
» E=L*R)=V°P W
i=0

> x(6) = D seok(e) + 3D divi(e)



Multiresolution analysis (5)

Complementary subspaces (3)

» Subspaces V9 are also nested when j < 0: ---Cc V=1 c VO

» Then:
+oo
E = VOEB wi
i=0
—+o0
= View'pw
i=0
+o0
= ViewJe . .ow'Pw
i=0

— ég W/
x(t) = 0 diyl(t)

j=—o0 k



Multiresolution analysis (6)

Conclusion

» The multiresolution analysis allows to build a basis of orthogonal

wavelets (z/}f()

» Subspaces V/ have a dyadic basis (gzﬁ’k) derived from the scaling

function ¢ (also named father wavelet): ¢ (t) = V2/¢(2/t — k)

» Complementary subspaces W/ also have a dyadic basis derived from
the mother wavelet 1: 1 (t) = V2/1h(2t — k)
» Issue: choose v
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Haar wavelet (1)

> E=1%([0,1]), x: E— R
» Scaling function (Haar):

dﬂ_{10<t<1

0 otherwise
> Bases of subspaces V/: ¢/ (t) = V2p(2t — k):

i k k+1
W):{@ 2t

0 otherwise

» We conclude that:

> VO is the set of constant functions on [0, 1], spanned by ¢3

> V! is the set of constant functions on [0, [ and [}, 1[, spanned by
¢5 and ¢1

» V\/ is the set of constant functions on [2%, %[ k=0,---,2 -1

» V=1 do not make sense



Haar wavelet (2)

» The mother wavelet can be chosen as:

1 0<t<}
Pt)=4q-1 3<t<1
0 otherwise

» And for other wavelets: wf((t) = V2p(2t — k):

' V2 k<< kg L
= VT k<<
0 otherwise



Haar wavelet (3)
> V=50 07003 D5 = ¢ & d1 © Yg DYy

Fonctions de Haar Wy, ety

> Easy to verify that (tutorial work):
> (Vv ) =0k #K
> (vl ) =0j £



Haar wavelet (4)

Transition from resolution j 4 1 to j (compression)

> q&’k scaling functions: approximation at resolution j

> w{( wavelet functions: details at resolution j

» By definition of q’)’k and w;( we have:
i+1 i+1 j+1 i+1
o = P2k + o1 W = P2k~ Dok
g V2 g V2
21 o 21 o 2 . .
> And: XTH(E) = Y s @l () + Y dii(t) = Y s ()
k=0 k=0 k=0
» We derive:
i+1 j+1 i+1 i+1
J_ TSy _ % ~Swn
k = k=

V2 V2



Haar wavelet (5)

Transition from resolution j to j + 1 (decompression)

» Inversion of system (6)

vl g _ -
2k \@ 2k+1 \/5

21 o 21 o 2i+1_1 . .
> We have: x4 (e) = 3 sfol(6) + 3 dhul(t) = 3 o7 (1)
k=0 k=0 k=0
» We derive: ' _ '
J_Stdh n s
2k T ﬁ 2k+1 — \@
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The discrete wavelet transform (1)

» Haar: scaling and details functions or coefficients at a given
resolution derive from a linear combination of scaling and wavelet
functions or coefficients at the superior resolution.

This can be generalized...

> VO c vt
> then #(t) € V° = ¢(t) € V*
> then 3h(n) such as ¢(t) = >, h(n)¢h(t)
> then ¢(t) =23, h(n)p(2t — n)
» This holds for any V/=! C V/ and generalizes as follow:
> G eV g () eV _
> dk_l(t) = Zn h(”)‘ﬂnuk(t) = \/272,, h(n)¢(2't — n — 2k)
» Consequence on approximation coefficients:
=)
> sl =5, h(n) (x, 0 a(1))
> =3, h(n)shp = VZYS,, h(n —2K)s),
> s/ = h* x $/(2k) (with h* the mirror filter of h)
> p<<>h



The discrete wavelet transform (2)

» Same discussion on details subspaces W/
> WO c vi:
> (t) € WO = y(t) e V!
> g such as ¥(t) = 30, g(n)dn(t) = V232, g(n)g(2t — n)

» Superior resolutions:

> () = 32, 8(K)Da(t) = V2 32, g(n)d(2t — n — 2k)
» Consequence on details coefficients:

A <X,¢{:1>

> 4 =3, 8(n) (x. @)

> =3, 8(n)sh 0
> ¢t = g* % 5(2k)

> perg

» Reconstruction:

sf;’Ll:Zthk 2n) —I—Z ) g(k —2m)



The discrete wavelet transform (3)
Link between ¢ and h

» Build an orthonormal basis, two ways: choose ¢ (see Haar scaling
function), or choose h
» Indeed:
> $ and h are linked (V° C V1): ¢(t) = V23, h(n)p(2t — n)
» Apply FT on previous equation, introduce w = 27f, denote
¢ = FT(¢), and H(w) = >, h(n)e ™
> We have:

1 w w =1 w
o) =5 (5)H(3) = vl (5)
» Then H can be derived from & and reciprocally
» H is a low-pass filter. Indeed:
> H(0) = v29(0)/®(0/2) = V2 (®(0) # 0 because [ ¢(t)dt can not
be null)

» from relation between ® and H, it can been shown that
|H(w)]? + |H(w + m)|> = 2, then H(7) =0



The discrete wavelet transform (4)
Link between %) and g, and h!

> Similarly, we have (W° C V1): o(t) = 23, g(n)¢(2t — n) then:

+o0
o= Lo (2)6() =TT 5o ()
» G is a high-pass filter:

> G(0) =0 as W(0) = [(t)dt =0 by definition (oscillating)
> Again: |G(w)|]? + |G(w + 7)|* = 2 and then G(7) = /2
» Moreover, one can prove that:
> G(w) = —A(w)H(w + ) with A verifying this two conditions:
NMw+271) £ A(w) =0
> A solution is A(w) = —e™ ™

» Finally g can be derived from h:

Gw) =

—e “H(w + 7)

g(n) = (=1)"h(1—n)

» g is the conjugate and mirror filter of h



The discrete wavelet transform (5)
Cascade algorithm with mirror and conjugate filters

» The DWT is efficiently implemented using a series of low and
high-pass filtering and sub-sampling (due to dyadic nature of MRA)

Level 3
coefficients

@—
coefficients

Level 1
g
x[n} gl @ coefficients

» low-pass filtering: low frequencies are captured with accurate
frequency resolution, but poor time resolution

» high-pass filtering: high frequencies are captured with poor
frequency resolution but an accurate time resolution

A
Level 3 Lewel 2 Level 1

a2 fn

frequency



Other wavelet transforms (1)

Shannon wavelet

> We only know Haar wavelet: h(n) = (1 1), and g(n) = (1 —1)
(Important: do not forget to divide by v/2 in practice!)
» Shannon wavelet (dual of Haar):
» Haar: ¢(t) = Rect(t) = ®(f) = sinc(nf)
Shannon: ¢(t) = sinc(rt) = ®(w) = Rect(w)
We derive H(w) then h: h(n) = sinc (%)
then G(w) from g(n) = (—=1)"h(1 — n) = (—1)"sinc (%)
then W(w) and finally o) (t) = <=(r—sn(r)

Tt

>
>
>
>




Other wavelet transforms (2)

Daubechies wavelet (1)

» Motivation: build a basis with n null moments and compact support

» ) has n null moments if:
/ thp(t)dt =0 Vk=1,---,n
R

> In other words: (¥(t), tk) = 0, the mother wavelet is orthogonal to
polynomials of degree < n

» Interest: the more a wavelet function has null moments, the more
the signal representation is sparse. Essential property for
compression.

» Properties of wavelet basis having many null moments:

» the scaling function better approximates smooth signals
> the wavelet function is dual: it better captures signal discontinuities



Other wavelet transforms (3)

Daubechies wavelet (2)

Daubechies with 4 null moments (denoted D, or db2 with Matlab)

|
> Filters h et g are of length 4
> H: h = (ho7 hl, h2, h3) then 8 = (h3, —hg, hl, —ho) (eq(?))
» Constraints to determine the coefficients:

» ) of null mean = hs — ho + hy —ho =0

» ) with 4 null moments = hs — 2ha +3h1 —4ho =0

> (p(t),9(t —1)) = 0= hihs + haho = 0

> H¢H=1=>ho+h1+h2+h3=2

» We find: hy = 1+4‘/§ hy = 3+4\/§ hy = 3_4\/5 hs = 1_4

S




Other wavelet transforms (3)

Daubechies wavelet (3)

2

Figure: Daubechie scaling and wavelet functions with 4 null moments (db2)
and 6 null moments (db3)
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2-D DWT for images

» 2-D Haar decomposition for a 2-D signal
» Two approaches:
» the standard decomposition: 1-D DWT on one direction (lines), than
1-D DWT on the other direction (columns)
» non standard decomposition: the 1-D DWT s alternated on lines
and columns
» both approaches lead to two specific 2-D Haar bases
» Advantages:
» standard: only 1-D transforms
> non standard, faster: £(n® — 1) operations against 4(n” — n) for
standard one



2-D DWT: standard decomposition (1)

» Basis of the Haar standard decomposition is a tensor product
between the 1-D bases:

Wi (x, ) = L ()0 (y)

» Algorithm:

1. apply a DWT on each line to obtain an intermediary image, repeat
up to the finest resolution j = 0.

2. then, apply a DWT on each column of this image, repeat up to the
finest resolution

» we obtain an unique approximation coefficient and a set of details
coefficients for all resolutions



2-D DWT: standard decomposition (2)

transform rows

procedure StandardDecomposition(C: array [1. A 1. w] of reals)
for row «— L to i do
Decomposition(Clrow, 1. w]y
end for
for col « 1 to wdo
Decomposition(CT1. . h. cof])
end for
end procedure

transform
columns




2-D DWT: standard decomposition (3

= = E [
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Figure: Haar standard basis



2-D DWT: non standard decomposition (1)

vvyyvyy

AV An -

v

Basis of W/:

Principle: perform an MRA of L2(IR?)
Let's define V/ = Vi @ V/
The details spaces are W/ such as Vi1 = Vi g Wi

Then, we have:

\/j+1®\/j+1

(Vew)e (Vew)

(VieV)e (W e V)e (Ve W)e (W e W)
View

L) G (), S ) (v), UL () (v), kK €T



2-D DWT: non standard decomposition (2)

tansform rows

E“ The DWT is alternated on lines
and columns:

1. one iteration of 1-D DWT
on each lines

transform

colurms 2. one iteration of 1-D DWT
on each column

procedure Noast aJquaDec:mp\sn.n(C array [1.k 1. }] of reals)

3. repeat stages 1. and 2. on
a3 3 Sk <o : approximation image up to
for row « 1 to hdo . .
resolution j =0

DecompositioaStep(Clrow, 1. ])
end for
for col +
Decon
end for
hh/2
end while
end procedure

 do
siticnStep(CL.. h. col])




2-D DWT: non standard decomposition (3)
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Figure: Base non standard de Haar 2-D



2-D DWT: Examples with Matlab?

[S1,H1,V1,D1] = dwt2(X,’haar’);
imagesc([S1,H1;V1,D2])

[S2,H2,V2,D2] = dwt2(S1,’haar’);
imagesc([[S2,H2;V2,D2] ,H1;V1,D1])

2Python: use PyWavelets package
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Application: compression (1)

» Famous application (JPEG2000)

> JPEG compression (Fourier based): suppression of high frequencies
= edges are degraded (Gibbs phenomena)

> Suitable wavelet basis for edges representation: Haar (the Haar
scaling function is basically an edge)

i =N
Jpeg 2000




Application: compression (2)

» Principle: keep only the biggest details coefficients
» We apply an threshold:

Reconstruction with error: 1%
a threshold value of 10

» 47% of details coefficients are zero (hence lesser than 10)

» without compression: 10% are zero



Application: compression (3)

Reconstruction with error: 4.3 %
a threshold value of 40

» 89% of the details coefficients are zero.

» Drawback (Haar): high compression rate makes appear blocs in the
image



Application: denoising (1)

» Y image acquisition having an additive noise B

» Retrieve X such as
Y=X+B

» Practically, we look for an operator D minimizing the reconstruction
error:

N
E(IIX =D()I) =ZE - D(Y)())? (8)

» Many methods! Depending on the noise characteristics

> If B centered Gaussian, a wavelet filtering gives good results
» Method:

> projection on a wavelet basis (encoding)

» hard threshold: details coefficients lesser than threshold S are
nullified

» soft threshold: details coefficients lesser than threshold S are
nullified, other are attenuated

» How to choose S ?



Application: denoising (2)

» An optimal value minimizing (8) with respect to B be Gaussian of

standard deviation o:
S=0V2InN
» Estimation of ¢?
M;
0,6745

with M; median value of details coefficients at the finest resolution

> Wavelet basis?

» Haar
» Daubechies
» others: curvelets, ridgelets, ...

6’:



Application: denoising (3)

Gaussian noise

Daubechies (db3)



Other applications

» 3-D mesh: approximation of a volume by decomposition on Haar
wavelets

» Pattern recognition: for example, faces characterization, by
projection on a wavelets basis

» Texture characterization and modeling

» Image watermarking: the trademark is projected on a wavelets basis,
highest coefficients are retained and added to image details
coefficients

» Sparse representation: wavelets allow sparse representations i.e.
having a minimal number of coefficients
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