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Vector space (1)

▶ Field: (K,+, ·) a set with two operations (internal composition laws,
denoted + and ·)
In general and in this lecture K = R or C) and such as + is
commutative (∀λ, µ ∈ K, λ+ µ = µ+ λ), 0 is the neutral element
for + and 1 for ·
▶ internal law: ∀x , y ∈ K, x + y ∈ K
▶ neutral element: ∀x ∈ K, x + 0 = x

▶ Vector space: (E ,+, ·) is a vector space over the field K if:
▶ K is a field (two internal composition laws also denoted + and · by

abuse of language)
▶ + is an internal commutative law on E : E ×E → E (vector addition)
▶ · is an external law (left multiplication): K× E → E (also called

multiplication by a scalar) such as:
▶ · is distributive over + : ∀λ ∈ K, ∀v ,w ∈ E , λ · (v +w) = λ · v +λ ·w
▶ + is distributive over · : ∀λ, µ ∈ K, ∀v ∈ E , (λ+ µ) · v = λ · v + µ · v
▶ 1 is the left neutral element of ·: ∀v ∈ E , 1 · v = v

▶ An element v of E is a vector, in the remaining E is a vector space



Vector space (2)
▶ Vector subspace: F ⊂ E is a vector subspace of E if:

▶ F ̸= ∅
▶ ∀(λ, v ,w) ∈ K× F × F , λ · (v + w) = λ · v + λ · w ∈ F ,

▶ In other words: F is stable for linear combination
▶ Example of vector spaces:

▶ (Rn,+, ·), (RN,+, ·)
▶ The set of continuous functions from R into C is an C− vector

space (it is of infinite dimension)
▶ Scalar product: (or dot product, or inner product) the operation,

denoted ⟨., .⟩, such as:

E × E → R

(v ,w) 7→ ⟨v ,w⟩

is a scalar product if
▶ bilinear (linear on left, linear on right)
▶ symmetric: ⟨v ,w⟩ = ⟨w , v⟩
▶ positive: ⟨v , v⟩ ≥ 0
▶ definite: ⟨v , v⟩ = 0 ⇒ v = 0

▶ Norm: the scalar product defines the norm ∥v∥2 = ⟨v , v⟩



Scalar product

▶ A fundamental operation: it allows two vectors to be compared,
projecting one to another one

▶ Example of scalar product:
▶ in Rn: v = (v1, · · · , vn),w = (w1, · · · ,wn) and

⟨v ,w⟩ =
n∑

i=1

vi · wi

▶ for the set of complex summable (or integrable) functions on R:

⟨f , g⟩ =
∫
R

f (t)ḡ(t)dt

▶ Euclidean space: a vector space with a scalar product
▶ Hilbert space: an Euclidean space of infinite dimension (space of

functions)



Basis (1)

▶ A basis in E is a finite or countable (if E is of infinite dimension) set
of vectors of E : B = {b1, · · · , bn, · · · } satisfying two conditions:
▶ linear independence property (free family): no element of B is a

linear combination of others elements of B:
λ1b1 + · · ·+ λnbn = 0 ⇒ λ1 = · · · = λn = 0

▶ spanning property (spanning family): ∀v ∈ E ,∃λ1, · · · , λn, · · ·
such as v =

∑
i λibi

▶ Orthogonal basis: ⟨bi , bj⟩ = 0 ∀i ̸= j

▶ Orthonormal basis: ⟨bi , bj⟩ = 0 ∀i ̸= j and ⟨bi , bi ⟩ = 1 ∀i



Basis (2)

▶ Example in the Cartesian plane with the usual scalar product
▶ the set reduced to the canonical vector i⃗ =

(
1 0

)
: linearly

independent set
▶ {i⃗ , j⃗ , i⃗ + j⃗}: spanning set
▶ {2i⃗ , i⃗ + j⃗}: basis
▶ {2i⃗ , j⃗}: orthogonal basis
▶ {i⃗ , j⃗}: orthonormal basis (canonical basis)
▶

(
i⃗+j⃗√

2
, i⃗−j⃗√

2

)
: orthonormal basis

▶ Consequences (without formal proof)
▶ with a basis or a spanning set, one can represent any vector as

v =
∑

i λibi
▶ a linearly independent set can not represent all the vectors: for

example, impossible to represent j⃗ as a linear combination of i⃗ (they
are orthogonal)



Basis (3)
▶ Other consequences

▶ Redundancy: a spanning set which is not a basis is a redundant set:
there are too many vectors (at least one)

▶ Redundancy: the representation of a vector is no more unique. For
example with the spanning set {i⃗ , j⃗ , i⃗ + j⃗} and the vector 2 · i⃗ + j⃗ ,
one can exhibit two different linear combinations:

2 · i⃗ + j⃗ = 2 · i⃗ + 1 · j⃗ + 0 · (⃗i + j⃗)

= 1 · i⃗ + 0 · j⃗ + 1 · (⃗i + j⃗)

▶ Non orthogonal basis: the representation is unique but the
determination of coefficients λi is not easy. In general:

v =
∑
i

λibi ̸=
∑
i

⟨v , bi ⟩ bi

▶ Orthogonal basis: we have ⟨bi , bj⟩ = 0, i ̸= j and

v =
∑
i

〈
v ,

bi
∥bi∥

〉
bi

∥bi∥

determination of λi are direct with the scalar product.
▶ Use of an orthonormal basis simplifies calculus



Conclusion
▶ Goals of theses recalls? Find suitable spaces of representation. Then

find adapted basis.
▶ A well known example: Fourier Series! The T − periodic functions

may write as:

x(t) =
∑
n∈N

an cos

(
2πnt
T

)
+ bn sin

(
2πnt
T

)

an =
2
T

∫ T

0
x(t) cos

(
2πnt
T

)
dt bn =

2
T

∫ T

0
x(t) sin

(
2πnt
T

)
dt

▶ Alternative writing:

x(t) =
∑
k∈Z

cke
2iπkt
T (1)

ck =
1
T

∫ T

0
x(t)e

−2iπkt
T dt (2)

Here, we recognize the scalar product of a functional space:
ck =

〈
x , e

2iπkt
T

〉
and an orthonormal basis: {ϕk}k∈Z with

ϕk(t) = e
2iπkt
T
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Fourier Series (1)
▶ Representation of the periodic functions
▶ Coefficient ck are called Fourier coefficients
▶ The periodic function f is represented by the countable sequence

(ck)k∈Z
▶ Graphical interpretation:

Given the following
periodic signal:

We have 8 non null
Fourier coefficients:
cki = c−ki , i = 1, · · · , 4
describing the 4 modes
(pure frequencies) of this
signal

ck1 =
〈
x , e

2iπk1t
T

〉
ck2 =

〈
x , e

2iπk2t
T

〉

ck3 =
〈
x , e

2iπk3t
T

〉
ck4 =

〈
x , e

2iπk4t
T

〉



Fourier Series (2)

▶ Remark:
▶ x even function ⇒ ck = c−k

▶ x odd function ⇒ ck = −c−k

On the previous example: linear combination of 4 cosine functions
with various frequencies ⇒ even function.

▶ Exercises:
▶ show that the set {e

2iπkt
T }k∈Z is an orthonormal basis

▶ determine the Fourier coefficients of the function t 7→ cos(2π t
T
)

▶ determine the Fourier coefficients of the Sawtooth wave (use a
integration by parts to determine the integral of t 7→ te−2iπ kt

T )
▶ See also: BIMA lecture on Fourier Transform

https://www-master.ufr-info-p6.jussieu.fr/parcours/ima/bima/pdfs/l3-fourier1.pdf


Fourier Transform (1)
Definition

▶ Applied on non-periodic function, the Fourier Series formulae does
not work: T = +∞ and e2iπk t

T = 1, not a basis
▶ Extension to non-periodic functions: the Fourier Transform defined

by

X (f ) =

∫
R

x(t)e−2iπftdt, f ∈ R

▶ x must be an integrable function1. X is a continuous function on C
and is an element of a vector space:
▶ with the scalar product ⟨f , g⟩ =

∫
R
f (t)ḡ(t)dt

▶ with the orthonormal basis:
{
t 7→ e2iπft

}
f∈R, an element of the

basis is the function t 7→ e2iπft indexed by the real parameter f

1f belongs to L2(R) space



Fourier Transform (2)
Graphical interpretation

▶ Same interpretation as the Fourier Series but on a continuous range
of frequency

Given the following signal

8 non null values for the
Fourier transform:
X (fi ) = X (−fi ), i =
1, · · · , 4 describing the 4
modes of this signal

X (f1) =
〈
x , e2iπf1t

〉
X (f2) =

〈
x , e2iπf2t

〉

X (f3) =
〈
x , e2iπf3t

〉
X (f4) =

〈
x , e2iπf4t

〉



Fourier Transform (3)
Interpretation, reconstruction

▶ Interpretation:
▶ magnitude: |X (f )| =

√
X (f )X̄ (f ), or spectral amplitude, gives the

quantity of “pure” frequency f available in the signal x
▶ phase: ϕ(f ) = arctan

(
ℜ(X (j))
ℑ(X (f ))

)
, gives the shift with the basis

function e2iπft

▶ fundamental or null frequency, f = 0, is the integral of the signal:

X (0) =
∫
R

x(t)dt

▶ As with Fourier Series, reconstruction is possible:

x(t) =

∫
R

X (f )e2iπftdt



FS versus FT

Fourier Series Fourier Transform
x T-periodic functions x integrable function

ck =
1
T

∫ T

0
x(t)e−2iπ k

T tdt X (f ) =

∫
R

x(t)e−2iπftdt

k ∈ Z, ck ∈ C X : R→ C

x(t) =
∑

k∈Z cke
2iπ k

T t x(t) =
∫
R
X (f )e2iπftdf

▶ To summary:
▶ Fourier Series: periodic functions, countable orthonormal basis(

e2iπ k
T
t
)
k∈Z

▶ Fourier Transform: integrable functions, uncountable orthornormal
basis

(
e2iπft

)
f∈R



2-D Fourier Transform (1)
▶ An image is a non stationary function with a compact support, then

is a non periodic function, Fourier Series are not suitable
▶ The 2-D Fourier Transform (for images) is built by separability:

X (f , g) =

∫
R

∫
R

x(t, u)e−2iπ(ft+gu)dtdu (3)

=

∫
R

{∫
R

x(t, u)e−2iπftdt

}
e−2iπgudu (4)

▶ X : R2 → C, (f , g) is a couple of vertical and horizontal frequencies
▶ module of X (amplitude spectrum):

√
XX̄ , gives the amount of the

element basis contained in signal x
▶ basis: complex sinusoid ((f , g) 7→ e2π(ft+gu))

▶ phase of X : gives the phase change between signal x and the
element basis

▶ Signal x can be reconstructed from its spectrum X with the inverse
Fourier transform:

x(t, u) =

∫∫
R2

X (t, u)e2iπ(ft+gu)dfdg



2-D Fourier Transform (2)
Inverse Fourier transform: any image is a linear combinaision of basis images

▶ an element of the basis, (t, u) 7→ ϕf ,g (t, u) = e2iπ(ft+gu), is an
image!



2-D Fourier Transform (3)
Exemple sur des images

▶ module of spectrum: localize low and high frequencies, determine
predominant orientations



Fourier transform: some mathematical tools (1)
Property (1-D or 2-D)

▶ linearity: TF (αx + βy) = αX + βY

▶ scaling:

y(t) = x(αt)

Y (f ) =
1
α
X

(
f

α

)

▶ shift:

y(t) = x(t − t0)

Y (f ) = e−2iπft0X (f )

|Y (f )| = |X (f )|

▶ rotation (for 2-D FT):

y(t, u) = x(t cos θ + u sin θ,−t sin θ + u cos θ)

Y (f , g) = X (f cos θ + g sin θ,−f sin θ + g cos θ)



Fourier transform: some mathematical tools (2)
Fourier transform of some usual 1-D functions

▶ Rectangle function: Rect(t) =

{
1 si |t| ≤ 1

2
0 sinon

▶ TF [t 7→ Rect
( t
a

)
](f ) =

∫ a/2

−a/2
e−2iπftdt = a

sin(πaf )

πaf
= a sinc(πaf )

▶ Gaussian function:
▶ TF (t 7→ e−b2t2)(f ) =

√
π

|b| e
−π2 f 2

b2 , also a Gaussian function!

▶ standard deviation in the frequency domain is inversely proportional
to standard deviation in the time domain



Fourier transform: some mathematical tools (3)
Fourier transform of some usual 1-D functions

▶ Dirac delta function: δ. A generalized function (or distribution),
formally defined by:
▶ δ(x) = 0 ∀x ̸= 0
▶

∫
R
δ(x)dx = 1

▶ Can be seen as the limit of normal function: δ(t) = lim
a→0

1
a
Rect

( t
a

)

▶ Properties, for all function x
▶ x(t)δ(t − t0) = x(t0)δ(t − t0)
▶ x ⋆ δ(t − t0) = x(t − t0), and then x ⋆ δ(t) = x(t): δ neutral element

of convolution
▶ Fourier transform:

▶ FT (t 7→ δ(t − t0))(f ) = e−2iπft0

▶ FT (t 7→ e2iπf0t)(f ) = δ(f − f0)



Fourier transform: some mathematical tools (4)
Fourier transform of some usual 1-D functions

▶ Cosine function (Euler formulae):
FT [t 7→ cos(2πf0t)] = 1

2 (δ(f − f0) + δ(f + f0))

▶ Sine function: FT [t 7→ sin(2πf0t)] = i
2 (δ(f − f0)− δ(f + f0))



Fourier transform: some mathematical tools (5)
Convolution theorem

▶ Recall, convolution:

z(t) = x ⋆ y(t) =

∫
R

x(t − t ′)y(t ′)dt ′

▶ Any linear filtering time invariant can be expressed by a convolution
▶ Convolution theorem:

▶ if z = x ⋆ y then Z = X × Y
▶ if z = x × y then Z = X ⋆ Y

▶ Important tool for calculation of Fourier transform! (see the next
slide as an example)

▶ In 2-D (image), the convolution theorem still holds:

z(t, u) = x ⋆ y(t, u) =

∫
R

∫
R

x(t − t ′, u − u′)y(t ′, u′)dt ′du′

▶ Consequence: filtering in the frequency domain is strictly equivalent
to convolution in time (space) domain



Digitization and discrete Fourier transform (1)

▶ Practically: we analyze discrete signals and not real functions. A
discrete tool is needed: the Discrete Fourier Transform (DFT)

▶ Formalization:
1. the signal to analyze is windowed to obtain a bounded support

function:
▶ xL(t) = x(t) Rect(t/L)
▶ FT: XL(f ) = L X ⋆ sinc(πLf )

▶ Example with a basic signal (cosine, pure frenquency)



Digitization and discrete Fourier transform (2)

▶ Practically: we analyze discrete signals and not real functions. A
discrete tool is needed: the Discrete Fourier Transform (DFT)

▶ Formalization:
1. the signal to analyze is windowed: x(t) ⇒ xL(t) = x(t) Rect(t/L)
2. the windowed signal is sampled: a measure of this signal is done

each Ts time step (fs = 1
Ts

is the sampling frequency):
▶ xs(t) = xL(t)

∑
k∈Z

δ(t − kTs) (
∑

k δ(t − kTs): Dirac comb or train

impulse)
▶ Due to the windowing and the sampling frequency, we have

N = L/Ts measures
▶ Fourier transform: Xs(f ) = XL ⋆

∑
k∈Z

δ(f − k/Ts) (the Fourier

transform of Dirac comb is a Dirac comb). Hence:
Xs(f ) =

∑
k∈Z

XL(f − k/Ts)

⇒ Sampling implies a periodic spectrum (of period fs = 1/Ts)!



Digitization and discrete Fourier transform (3)
Sempling: Shannon theorem

Figure: Sampling implies a periodic spectrum

▶ Let X be a bounded frequency support and let fm be the maximal
frequency of X :

Theorem (Shannon)
If fs ≥ 2fm ⇔ Ts ≤ 1

2Tm, then the signal can be reconstructed without
loss



Digitization and discrete Fourier transform (4)
Échantillonnage: théorème de Shannon

▶ Spectrum overlapping if fm > fs/2 and limit case:

▶ Recontruction: XL is truncated with a Rectangle function, then an
inverse Fourier Transform is applied: Shannon interpolation formula



Digitization and discrete Fourier transform (5)
▶ Practically: we analyze discrete signals and not real functions. A

discrete tool is needed: the Discrete Fourier Transform (DFT)
▶ Formalization:

1. the signal to analyze is windowed:
▶ xL(t) = x(t) Rect(t/L)
▶ FT: XL(f ) = L X ⋆ sinc(πLf )

2. the windowed signal is sampled:
▶ xs(t) = xL(t)

∑
k∈Z

δ(t − kTs)

▶ FT: Xs(f ) =
∑
k∈Z

XL(f − k/Ts)

3. Xs is sampled at frequencies f = k
Nfs
, k = 0 · · ·N − 1:

▶ DFT(x)(k) = Xs

(
k

Nfs

)
, k = 0 · · ·N − 1

▶ DFT(x)(k) =

N−1∑
n=0

xs(n)e
−2iπ kn

N , k = −
N

2
· · ·

N

2
− 1

▶ Practically: we denote x(k) = x(kTs) as the k-th sample of signal
x , and the Discrete Fourier transform is defined as:

DFT(x)(k) = X (k) =
N−1∑
n=0

x(n)e−2iπ kn
N , k = −N

2
· · · N

2
− 1 (5)



Discrete Fourier transform
Properties, and 2-D DFT

▶ DFT 2-D:

X (k , l) =
N−1∑
n=0

M−1∑
m=0

x(n,m)e−2iπ( kn
N + lm

M )

▶ The DFT has the same properties than the continuous Fourier
transform:
▶ linearity, translation and rotation of the signal/image

▶ Practically, DFT is used for filtering discrete signal/image in the
frequency domain

▶ Inverse 2-D DFT:

x(n,m) =
N−1∑
l=0

M−1∑
k=0

X (k , l)e2iπ( kn
N + lm

M )



2-D discrete Fourier transform
Filtering in frequency domain vs time domain

▶ Filtering in the time
domain:

y(n,m) = x ⋆ h(n,m)
▶ Filtering in the frequency domain:

y(n,m) = TFD−1[X (u, v)×H(u, v)]



Filtering in the frequency domain

▶ Several types of filters:
▶ low-pass: low frequencies are kept, high frequencies are attenuated
▶ high-pass: low frequencies are attenuated, high frequencies are

attenuated
▶ band-pass: a range of frequencies is kept, others frequencies are

attenuated: allow an multi-scale analysis (scale=size of structures)
▶ See BIMA course (https://www-master.ufr-info-p6.jussieu.

fr/parcours/ima/bima/): lectures 3, 4, 5 and associated tutorial
and practical works.

https://www-master.ufr-info-p6.jussieu.fr/parcours/ima/bima/
https://www-master.ufr-info-p6.jussieu.fr/parcours/ima/bima/
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FT: limitations, issues (1)

▶ Compression, denoising: impossible to correctly represent edges (non
derivable functions): Gibbs ringing artifacts appear after removing
highest frequencies

▶ Visible in JPEG compression for example



FT: limitations, issues (2)

▶ In the Fourier space, structure size and orientation can be measured
but it is not possible to localize (translation invariant): a wave has a
period (size), an orientation (in 2-D), a phase, but not a localization.

▶ Two ways to represent a signal:
▶ representation in time (or spatial if image) domain:

x(t) =

∫
R

x(u)δ(t − u)du

=> this basis localizes in time, but not in frequency (it can’t see the
size of structures)

▶ representation in the frequency domain (inverse FT):

x(t) =

∫
R

X (f )e2iπftdf

=> this basis localizes in frequency but not in time



FT: limitations, issues (3)
▶ Representation in time domain: null resolution in frequency, infinite

resolution in time
▶ Representation frequency domain: infinite resolution in frequency,

null resolution in time

▶ Consider two signals:
▶ y(t) = sin(2πf1t) + sin(2πf2t)
▶ z(t) = sin(2πf1t)u(t) + sin(2πf2t)u(−t) with u(t) = 1 if t > 0 and

0 otherwise (Heavyside function)
y and z has the same spectrum!

▶ Need to analyze the signal both in time and in frequency domains!



Short Time Fourier Transform (1)
▶ Principe: perform a Fourier analysis on a window.

▶ first the signal is windowed, the window being localized in the time
domain, second a Fourier Transform is applied

▶ the STFT has two parameters:
▶ a parameter of time localization
▶ a parameter of frequency localization

▶ Other name: Windowed Fourier Transform



Short Time Fourier Transform (2)

▶ Definition:

STFT (x)(f , b) = X (f , b) =

∫
R

x(t)w̄(t − b)e−2iπftdt

with w an admissible window, i.e.
∫
R
|w(t)|2dt = 1

▶ Examples for w : Rectangle function, Triangle function, Gaussian
function, . . .

▶ The family of functions ϕf ,b(t) = w(t − b)e2iπft is spanning but
redundant set (two parameters f and b)
▶ STFT: ϕf ,b(t) = w(t − b)e2iπft : localization in frequency f and in

time b
▶ FT: ϕf (t) = e2iπft : localization only in frequency

▶ Reconstruction is available if w is an admissible window:

x(t) =

∫
R

∫
R

X (t, b)w(t − b)e2iπftdfdb

▶ Exercise: prove the reconstruction formula



Short Time Fourier Transform (3)
Example

▶ Time-varying frequency signal:

x(t) =
4∑

k=1

cos(2πfkt) Rect
(
t − tk
w

)



Short Time Fourier Transform (4)
Exemple

▶ Fourier transform of x : no localization in time!

X (f ) =
4∑

k=1

δ(f − fk) + δ(f + fk)

2
⋆ e−2iπftk sinc(wπf )



Short Time Fourier Transform (5)
Example: representation time-frequency

1 window: it is the standard Fourier
Transform, so no localization in time

2 windows: gain in time resolution



Short Time Fourier Transform (6)
Example: representation time-frequency

4 windows: gain in time resolution

8 windows: loss of frequency
localization and then frequency
resolution! why?

as the window
becomes smaller, the FT (sinc) is
lesser accurate



Short Time Fourier Transform (6)
Example: representation time-frequency

4 windows: gain in time resolution

8 windows: loss of frequency
localization and then frequency
resolution! why? as the window
becomes smaller, the FT (sinc) is
lesser accurate



Short Time Fourier Transform (7)
Example: representation time-frequency

16 windows: loss of frequency
resolution!

32 windows: loss of frequency
resolution!



Short Time Fourier Transform (8)
Example: representation time-frequency

▶ Conclusion: there is an optimal configuration to analyze the x signal
▶ with less than 4 windows: low time resolution but good frequency

resolution
▶ more than 4 windows: maximal time resolution, but low frequency

resolution résolution fréquentielle moins bonne
▶ 4 windows is the optimal in this case

▶ See Exercise 5 in tutorial works



Short Time Fourier Transform (9)
Limitations, issues

▶ Window length is a critical parameter:
▶ must be the same order of value than the period of the signal to be

analyzed
▶ but not so large, because the time resolution will be degraded

▶ Let us formally define the time and frequency resolution of a x
signal:

▶ < t >=
1
E

∫
R

t|x(t)|2dt, < f >=
1
E

∫
R

f |X (f )|2df

with E =

∫
R

|x(t)|2dt
▶ Time resolution (standard deviation, dispersion):

σt =

∫
R

(t− < t >)2|x(t)|2dt

▶ Frequency resolution (standard deviation, dispersion):

σf =

∫
R

(f− < f >)2|X (f )|2df

▶ small standard deviation ⇒ high localization ⇒ high resolution



Heisenberg uncertainty principle

▶ A general principle apply to any waves (and more):
▶ impossible to localize both in time and in frequency with a infinite

precision a signal
▶ time and frequency resolution are bounded: σtσf ≥ 1

4π

Figure: Left: Gaussian signal (red) and its spectrum, right: Cosine
signal and its spectrum

▶ The bound is reached with the Gaussian function!



Heisenberg boxes

1. Time and frequency resolution can be represented using the
Heisenberg boxes:

2. Here: σt and σf are constant.
3. Too large window: impossible to analyze non stationary signals (loss

of localization in time)
4. Too small window: loss of localization in frequency
5. Idea of wavelets: analyze in time and frequency more suitable (i.e.

Heisenberg boxes of various size), and design of an orthonormal
basis (STFT is not a basis)
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Continuous wavelet transform (CWT): definition

▶ E = L2(R) set of real function squared integrable (a vector space)
▶ Let x ∈ E be a signal, the continuous wavelet transform is a

function (a, b) 7→ g(a, b) defined by:

g(a, b) =
1√
a

∫
R

x(t)ψ̄a,b(t)dt = ⟨x , ψa,b⟩

such as a ̸= 0 and:

ψa,b =
1√
a
ψ

(
t − b

a

)
where ψ is called mother wavelet

▶ Functions ψa,b are translated/dilated version of ψ
▶ b: position (localization in time), a: scale (analog of the period of

Fourier analysis)



Mother wavelet
▶ ψ must be admissible:

▶ has a bounded support
▶ is of mean null (

∫
ψ = 0)

▶ be oscillating |ψ| ̸= ψ
▶ ψ ∈ E (squared integrable)
▶ ψ(t) ∈ R or C

▶ Examples:

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Ondelette de Morlet y=exp(−x*x/2)*cos(5*x)

(a) Mexican hat: (b) Morlet wavelet

Ψ(t) = (1 − t2)e
(− t2

2 )
Ψ(t) = eiat e

−t2
2σ2

(c) Meyer wavelet (d) Biorthogonal spline wavelet



CWT versus STFT
▶ Similarity:

▶ Both are redundant analysis (projection onto redundant spanning
families)

▶ Both localize in time and in frequency domains:
▶ STFT: ϕf ,b = w(t − b)e2iπft

▶ CWT: ψa,b(t) =
1√
a
ψ
(

t−b
a

)
▶ Difference:

▶ STFT: has a fixed resolution in time and in frequency (Heiseinberg
boxes have the same size)

▶ CWT: has a variable resolution in time and in frequency
▶ Interpretation for the CWT:

▶ allow a multiscale analyze: the support in the time domain is more or
less large (the mother wavelet is dilated at various size)

▶ Let σa,b
t et σa,b

f be the respective time and frequency resolution of
ψa,b:
▶ σa,b

t = aσ1,0
t

▶ σa,b
f = 1

a
σ1,0
f

with σ1,0
t and σ1,0

f the time and frequency resolution of mother
wavelet ψ



Heisenberg boxes

▶ Recall: Heinsenberg incertitude principle, σtσf ≥ 1
4π , boxes have a

minimal area

Figure: Heisenberg box of FT
Figure: Heisenberg box of CWT



CWT: interpretation

Wavelet as a multi-scale analysis tool
▶ Findings:

1. low frequencies are less localized in time: a low frequency signal has
a long period and is almost stationary

2. high frequencies are better localized in time (small period) and non
stationary, their localization in time are important for analysis

▶ Wavelets: a frequency is analyzed at a suitable time resolution:
1. low frequency (scale a is large): low time resolution, high frequency

resolution
2. high frequency (scale a is small): high time resolution, low frequency

resolution

There is a compromise between time and frequency resolution
(Heisenberg)



Reconstruction

▶ Formally:

x(t) =
1
Cψ

∫
R

∫
R

a−2g(a, b)ψa,b(t)dadb

with

Cψ =

∫ +∞

0

|ψ(f )|2

f
df

▶ If Cψ <∞ (admissibility condition), reconstruction is possible
▶ The family is redundant: practically, reconstruction is costly, but:

▶ a countable set of values for (a, b) 7→ g(a, b) is sufficient to
reconstruct x ,

▶ practically, a continuous wavelet transform is not suitable for discrete
signal: a discrete formulation of wavelet is requested
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Reducing redundancies: Dyadic wavelets
▶ The continuous wavelet transform is sampled using a dyadic

position:
▶ a = 2−j

▶ b = k × 2−j , k = 0, · · · , 2j − 1
▶ j ∈ N is the time resolution (or representation scale)
▶ ψa,b(t) =

√
2jψ(2j t − k) = ψj

k(t) has a support of length 2−j and a
position at k

▶ For j fixed, ψj
k(t) functions have disjoint and contiguous supports.

Let ψ be a mother wavelet with support on [0, 1]:
▶ j = 0: k = 0. Only one function for this scale, ψ0

0(t) = ψ(t)
▶ j = 1: k = 0 or 1. Two functions for this scale:

▶ position 0: ψ1
0(t) =

√
2ψ(2t) with support on [0, 1

2 ]
▶ position 1: ψ1

1(t) =
√

2ψ(2t − 1) with support on [ 12 , 1]
▶ j = 2: k = 0, 1, 2, 3, 4 functions:

▶ position 0: ψ1
0(t) =

√
2ψ(4t), support on [0, 1

4 ]
▶ position 1: ψ1

1(t) =
√

2ψ(4t − 1), support on [ 14 ,
1
2 ]

▶ position 2: ψ1
2(t) =

√
2ψ(4t − 2), support on [ 12 ,

3
4 ]

▶ position 3: ψ1
3(t) =

√
2ψ(4t − 3), support on [ 34 , 1]

▶ . . .



Dyadic wavelets

▶ Redundancy is reduced: (a, b) ∈ R2 ⇒ (j , k), j ∈ N, 0 ≤ k < 2j :
countable family

▶ We obtain a discrete sequence of coefficients:

g j
k =

〈
x , ψj

k

〉
▶ Reconstruction:

x(t) =
∑
j∈N

j∑
k=0

g j
kψ

j
k(t)

▶ Remark: this transform applies on continuous signal (x is continuous
as well the elements of the family, t 7→ ψj

k(t)). We do not yet have
a discrete transform.



Dyadic wavelets transform versus FT, STFT

(a) Localization in time domain
(b) Localization in frequency domain (FT)
(c) Localization in time and frequency domains (STFT)
(d) Localization in scale and time domains (dyadic wavelet)
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Multiresolution analysis (1)
Motivations

▶ Dyadic wavelets: the family is not redundant but the basis is not
orthogonal (eg:

〈
ψj
k , ψ

j+1
2k

〉
̸= 0)

▶ Multiresolution analysis: formalism to build wavelet orthornormal
basis

▶ Principle: project the signal into nested vector subspaces



Multiresolution analysis (2)
Definition

▶ A multiresolution analysis of E = L2(R) is a sequence of subspaces
(V j)j∈Z such as:

1. information contained in resolution j is also contained in resolution
j + 1: ∀j ∈ Z V j ⊂ V j+1

2. intersection of all V j is empty:
⋂
j∈Z

V j = lim
j→−∞

V j = ∅

3. union of all V j is E :
⋃
j∈Z

V j = lim
j→+∞

V j = E

4. resolution j derives from resolution j + 1 by a dilation of factor 2:
∀j ∈ Z f ∈ V j ⇔ f (2.) ∈ V j+1

5. it exists a function ϕ ∈ E such as the family (ϕ(.− k))k∈Z is an
orthonormal basis in V 0

▶ Consequences:
▶ from 4. and 5. it comes: ∀k ∈ Z f ∈ V j ⇔ f (.− k2j) ∈ V j . In

other words (ϕ(.− k2j))k∈Z is a basis in V j

▶ from 3.: one can reconstruct a signal x ∈ E from its projections into
V j

▶ ϕ is known as scaling function (or wavelet father)
▶ V j are known as the approximation subspaces



Multiresolution analysis (3)
scaling function: one example

1. Consider ϕ(t) = 1 on [0, 1[, null otherwise
2. This is Haar scaling function
3. What does V 0 represent?, V j?

▶ E = L2(R), scalar product: ⟨f , g⟩ =
∫
R

f (t)ḡ(t)dt

▶ suppose ϕ(t − k) is a basis in V 0 then if f ∈ V 0,
f (t) =

∑
k∈Z

⟨f , ϕ(.− k)⟩ϕ(t − k) =
∑
k

ckϕ(t) with

ck =

∫
R

f (t)ϕ̄(t − k)dt =

∫ k+1

k

f (t)dt

▶ then V 0 is the space of functions constant on intervals [k, k + 1[
▶ and then V 1 is the set of functions constant on intervals

[k/2, (k + 1)/2[ if condition 4 holds.
▶ and then V j is the set of functions constants on intervals

[2−jk, 2−j(k + 1)[
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Multiresolution analysis (3)
scaling function: one example

1. Consider ϕ(t) = 1 on [0, 1[, null otherwise
2. This is Haar scaling function
3. What does V 0 represent?, V j?
4. Is Haar scaling function admissible to perform a multiresolution

analysis of E = L2(R)?

▶ condition 5. is true: ϕ(.− k) is an orthonormal basis in V 0, easy to
verify

▶ condition 1. (V j ⊂ V j+1): if f ∈ V j then f constant on intervals
[2−jk, 2−j(k + 1)[, and also constant on intervals
[2−(j+1)k, 2−(j+1)(k + 1)[ and we conclude f ∈ V j+1

▶ conditions 2. and 3. intuitively: integral of a function may be
approximated by piecewise constant functions (integral definition in
sense of Riemann)

▶ condition 4. (transition j to j + 1): similar proof than for condition
1, f (2.) is a dilatation of f by a factor 2, then f (2.) ∈ V j+1

5. Haar scaling function is an admissible solution for a multiresolution
analysis of E (see Ex 6 tutorial works)
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Multiresolution analysis (4)
Projection into V j

▶ Let ϕ be an admissible scaling function in E = L2(R)

▶ Let’s define: ϕjk(t) =
√

2jϕ(2j t − k), then:
▶

(
ϕj
k

)
k∈Z

is an orthonormal basis in V j

▶ derives from conditions 4. and 5.

▶ Given x ∈ E , its projection into V j is:

x j(t) = (Pjx)(t) =
∑
k

s jkϕ
j
k(t)

with:
s jk =

〈
x , ϕjk

〉
V j

=

∫
R

√
2jx(t)ϕ(2j t − k)dt

we recognize a scalar product for V j

▶ s jk are the approximation coefficients at resolution j

▶ Subspaces V j are dyadic spaces



Multiresolution analysis (5)
Complementary subspaces (1)

▶ Last step: obtain an orthonormal basis
▶ Fundamental idea: as V j ⊂ V j+1 then

∃W j such as V j+1 = V j ⊕W j

W j is known as the details subspace for resolution j
▶ W j is a complementary subspace

orthogonal to V j in V j+1

▶ We call wavelets (or details functions) the set of functions
(
ψj
k

)
k∈Z

spanning W j and pairwise orthogonal
▶ Having an orthonormal basis in V j and in W j , we have an

orthonormal basis in V j+1 :
(
ϕjk

)
k∈Z

⋃(
ψj
k

)
k∈Z

and

x j+1(t) =
∑
k∈Z

s jkϕ
j
k(t)︸ ︷︷ ︸

projection into V j

+
∑
k∈Z

d j
kψ

j
k(t)︸ ︷︷ ︸

projection into W j

▶ d j
k =

〈
x , ψj

k

〉
are known as the details coefficients



Multiresolution analysis (5)
Complementary subspaces (2)

▶ Recursively we have:

V j+1 = V j ⊕W j = V j−1 ⊕W j−1 ⊕W j

= V 0 ⊕W 0 ⊕W 1 ⊕ · · · ⊕W j−1 ⊕W j

x j+1(t) =
∑
k

s0
kϕ

0
k(t) +

j∑
i=0

∑
k

d i
kψ

i
k(t)

▶ Basis in V j+1 contains:
▶ that of V 0

▶ that of W 0, W 1, up to W j

▶ j → +∞ :

▶ E = L2(R) = V 0
+∞⊕
i=0

W j

▶ x(t) =
∑
k

s0
kϕ

0
k(t) +

+∞∑
i=0

∑
k

d i
kψ

i
k(t)



Multiresolution analysis (5)
Complementary subspaces (3)

▶ Subspaces V j are also nested when j < 0: · · · ⊂ V−1 ⊂ V 0

▶ Then:

E = V 0
+∞⊕
i=0

W j

= V−1 ⊕W−1
+∞⊕
i=0

W j

= V−j ⊕W−j ⊕ · · · ⊕W−1
+∞⊕
i=0

W j

=
+∞⊕

j=−∞

W j

x(t) =
+∞∑

j=−∞

∑
k

d j
kψ

j
k(t)



Multiresolution analysis (6)
Conclusion

▶ The multiresolution analysis allows to build a basis of orthogonal
wavelets

(
ψj
k

)
▶ Subspaces V j have a dyadic basis

(
ϕjk

)
derived from the scaling

function ϕ (also named father wavelet): ϕjk(t) =
√

2jϕ(2j t − k)

▶ Complementary subspaces W j also have a dyadic basis derived from
the mother wavelet ψ: ψj

k(t) =
√

2jψ(2j t − k)

▶ Issue: choose ψ
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Haar wavelet (1)

▶ E = L2([0, 1[), x : E → R

▶ Scaling function (Haar):

ϕ(t) =

{
1 0 ≤ t < 1
0 otherwise

▶ Bases of subspaces V j : ϕjk(t) =
√

2jϕ(2j t − k):

ϕjk(t) =

{√
2j k

2j ≤ t < k+1
2j

0 otherwise

▶ We conclude that:
▶ V 0 is the set of constant functions on [0, 1[, spanned by ϕ0

0
▶ V 1 is the set of constant functions on [0, 1

2 [ and [ 12 , 1[, spanned by
ϕ1

0 and ϕ1
1

▶ V j is the set of constant functions on [ k
2j ,

k+1
2j [, k = 0, · · · , 2j − 1

▶ V−1 do not make sense



Haar wavelet (2)

▶ The mother wavelet can be chosen as:

ψ(t) =


1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

0 otherwise

▶ And for other wavelets: ψj
k(t) =

√
2jψ(2j t − k):

ψj
k(t) =


√

2j k
2j ≤ t < k

2j +
1

2j+1

−
√

2j k
2j +

1
2j+1 ≤ t < k+1

2j

0 otherwise



Haar wavelet (3)
▶ V 2 = ϕ2

0 ⊕ ϕ2
1 ⊕ ϕ2

2 ⊕ ϕ2
3 = ϕ1

0 ⊕ ϕ1
1 ⊕ ψ1

0 ⊕ ψ1
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Fonctions de Haar ψ
0,1

 et ψ
1,1

▶ Easy to verify that (tutorial work):
▶

〈
ψj

k , ψ
j
k′

〉
= 0 k ̸= k ′

▶
〈
ψj

k , ψ
j′

k

〉
= 0 j ̸= j ′



Haar wavelet (4)
Transition from resolution j + 1 to j (compression)

▶ ϕjk scaling functions: approximation at resolution j

▶ ψj
k wavelet functions: details at resolution j

▶ By definition of ϕjk and ψj
k , we have:

ϕjk =
ϕj+1

2k + ϕj+1
2k+1√

2
ψj
k =

ϕj+1
2k − ϕj+1

2k+1√
2

(6)

▶ And: x j+1(t) =
2j−1∑
k=0

s jkϕ
j
k(t) +

2j−1∑
k=0

d j
kψ

j
k(t) =

2j+1−1∑
k=0

s j+1
k ϕj+1

k (t)

▶ We derive:

s jk =
s j+1
2k + s j+1

2k+1√
2

d j
k =

s j+1
2k − s j+1

2k+1√
2



Haar wavelet (5)
Transition from resolution j to j + 1 (decompression)

▶ Inversion of system (6)

ϕj+1
2k =

ϕjk + ψj
k√

2
ϕj+1

2k+1 =
ϕjk − ψj

k√
2

▶ We have: x j+1(t) =
2j−1∑
k=0

s jkϕ
j
k(t) +

2j−1∑
k=0

d j
kψ

j
k(t) =

2j+1−1∑
k=0

s j+1
k ϕj+1

k (t)

▶ We derive:

s j+1
2k =

s jk + d j
k√

2
s j+1
2k+1 =

s jk − d j
k√

2
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The discrete wavelet transform (1)
▶ Haar: scaling and details functions or coefficients at a given

resolution derive from a linear combination of scaling and wavelet
functions or coefficients at the superior resolution.
This can be generalized...

▶ V 0 ⊂ V 1:
▶ then ϕ(t) ∈ V 0 ⇒ ϕ(t) ∈ V 1

▶ then ∃h(n) such as ϕ(t) =
∑

n h(n)ϕ
1
n(t)

▶ then ϕ(t) =
√

2
∑

n h(n)ϕ(2t − n)

▶ This holds for any V j−1 ⊂ V j and generalizes as follow:
▶ ϕj−1

k (t) ∈ V j−1 ⇒ ϕj−1
k (t) ∈ V j

▶ ϕj−1
k (t) =

∑
n h(n)ϕ

j
n+2k(t) =

√
2j
∑

n h(n)ϕ(2
j t − n − 2k)

▶ Consequence on approximation coefficients:
▶ s j−1

k =
〈
x , ϕj−1

k

〉
▶ s j−1

k =
∑

n h(n)
〈
x , ϕj

n+2k(t)
〉

▶ s j−1
k =

∑
n h(n)s

j
n+2k =

√
2
∑

n′ h(n
′ − 2k)s jn′

▶ s j−1
k = h∗ ⋆ s j(2k) (with h∗ the mirror filter of h)

▶ ϕ↔ h



The discrete wavelet transform (2)

▶ Same discussion on details subspaces W j

▶ W 0 ⊂ V 1:
▶ ψ(t) ∈ W 0 ⇒ ψ(t) ∈ V 1

▶ ∃g such as ψ(t) =
∑

n g(n)ϕ
1
n(t) =

√
2
∑

h g(n)ϕ(2t − n)

▶ Superior resolutions:
▶ ψj−1

k (t) =
∑

n g(k)ϕ
j
n+2k(t) =

√
2j
∑

n g(n)ϕ(2
j t − n − 2k)

▶ Consequence on details coefficients:
▶ d j−1

k =
〈
x , ψj−1

k

〉
▶ d j−1

k =
∑

n g(n)
〈
x , ϕj

n+2k

〉
▶ d j−1

k =
∑

n g(n)s
j
n+2k

▶ d j−1
k = g∗ ⋆ s j(2k)

▶ ψ ↔ g

▶ Reconstruction:

s j+1
k =

∑
n

s jnh(k − 2n) +
∑
m

d j
mg(k − 2m)



The discrete wavelet transform (3)
Link between ϕ and h

▶ Build an orthonormal basis, two ways: choose ϕ (see Haar scaling
function), or choose h

▶ Indeed:
▶ ϕ and h are linked (V 0 ⊂ V 1): ϕ(t) =

√
2
∑

n h(n)ϕ(2t − n)
▶ Apply FT on previous equation, introduce ω = 2πf , denote

Φ = FT (ϕ), and H(ω) =
∑

n h(n)e
−inω

▶ We have:

Φ(ω) =
1√
2
Φ
(ω

2

)
H
(ω

2

)
=

+∞∏
j=1

1√
2
H
( ω

2j

)
▶ Then H can be derived from Φ and reciprocally
▶ H is a low-pass filter. Indeed:

▶ H(0) =
√

2Φ(0)/Φ(0/2) =
√

2 (Φ(0) ̸= 0 because
∫
ϕ(t)dt can not

be null)
▶ from relation between Φ and H, it can been shown that

|H(ω)|2 + |H(ω + π)|2 = 2, then H(π) = 0



The discrete wavelet transform (4)
Link between ψ and g , and h!

▶ Similarly, we have (W 0 ⊂ V 1): ψ(t) =
√

2
∑

n g(n)ϕ(2t − n) then:

Ψ(ω) =
1√
2
Φ
(ω

2

)
G
(ω

2

)
=

+∞∏
j=1

1√
2
G
( ω

2j
)

▶ G is a high-pass filter:
▶ G(0) = 0 as Ψ(0) =

∫
ψ(t)dt = 0 by definition (oscillating)

▶ Again: |G(ω)|2 + |G(ω + π)|2 = 2 and then G(π) =
√

2
▶ Moreover, one can prove that:

▶ G(ω) = −Λ(ω)H̄(ω + π) with Λ verifying this two conditions:
Λ(ω + 2π)± Λ(ω) = 0

▶ A solution is Λ(ω) = −e−iω

▶ Finally g can be derived from h:

G (ω) = −e−iωH̄(ω + π)

g(n) = (−1)nh(1 − n) (7)

▶ g is the conjugate and mirror filter of h



The discrete wavelet transform (5)
Cascade algorithm with mirror and conjugate filters

▶ The DWT is efficiently implemented using a series of low and
high-pass filtering and sub-sampling (due to dyadic nature of MRA)

▶ low-pass filtering: low frequencies are captured with accurate
frequency resolution, but poor time resolution

▶ high-pass filtering: high frequencies are captured with poor
frequency resolution but an accurate time resolution



Other wavelet transforms (1)
Shannon wavelet

▶ We only know Haar wavelet: h(n) =
(
1 1

)
, and g(n) =

(
1 −1

)
(Important: do not forget to divide by

√
2 in practice!)

▶ Shannon wavelet (dual of Haar):
▶ Haar: ϕ(t) = Rect(t) ⇒ Φ(f ) = sinc(πf )
▶ Shannon: ϕ(t) = sinc(πt) ⇒ Φ(ω) = Rect(ω)
▶ We derive H(ω) then h: h(n) = sinc

(
nπ
2

)
▶ then G(ω) from g(n) = (−1)nh(1 − n) = (−1)n sinc

(
(1−n)π

2

)
▶ then Ψ(ω) and finally ψ(t) = cos(πt)−sin(2πt)

πt



Other wavelet transforms (2)
Daubechies wavelet (1)

▶ Motivation: build a basis with n null moments and compact support
▶ ψ has n null moments if:∫

R

tkψ(t)dt = 0 ∀k = 1, · · · , n

▶ In other words:
〈
ψ(t), tk

〉
= 0, the mother wavelet is orthogonal to

polynomials of degree ≤ n

▶ Interest: the more a wavelet function has null moments, the more
the signal representation is sparse. Essential property for
compression.

▶ Properties of wavelet basis having many null moments:
▶ the scaling function better approximates smooth signals
▶ the wavelet function is dual: it better captures signal discontinuities



Other wavelet transforms (3)
Daubechies wavelet (2)

▶ Daubechies with 4 null moments (denoted D4 or db2 with Matlab)
▶ Filters h et g are of length 4
▶ If h = (h0, h1, h2, h3) then g = (h3,−h2, h1,−h0) (eq.(7))
▶ Constraints to determine the coefficients:

▶ ψ of null mean ⇒ h3 − h2 + h1 − h0 = 0
▶ ψ with 4 null moments ⇒ h3 − 2h2 + 3h1 − 4h0 = 0
▶ ⟨ψ(t), ψ(t − 1)⟩ = 0 ⇒ h1h3 + h2h0 = 0
▶ ∥ϕ∥ = 1 ⇒ h0 + h1 + h2 + h3 = 2

▶ We find: h0 = 1+
√

3
4 h1 = 3+

√
3

4 h2 = 3−
√

3
4 h3 = 1−

√
3

4



Other wavelet transforms (3)
Daubechies wavelet (3)

Figure: Daubechie scaling and wavelet functions with 4 null moments (db2)
and 6 null moments (db3)
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2-D DWT for images

▶ 2-D Haar decomposition for a 2-D signal
▶ Two approaches:

▶ the standard decomposition: 1-D DWT on one direction (lines), than
1-D DWT on the other direction (columns)

▶ non standard decomposition: the 1-D DWT is alternated on lines
and columns

▶ both approaches lead to two specific 2-D Haar bases
▶ Advantages:

▶ standard: only 1-D transforms
▶ non standard, faster: 8

3 (n
2 − 1) operations against 4(n2 − n) for

standard one



2-D DWT: standard decomposition (1)

▶ Basis of the Haar standard decomposition is a tensor product
between the 1-D bases:

Ψj,j′

k,k′(x , y) = ψj
k(x)ψ

j′

k′(y)

▶ Algorithm:
1. apply a DWT on each line to obtain an intermediary image, repeat

up to the finest resolution j = 0.
2. then, apply a DWT on each column of this image, repeat up to the

finest resolution
▶ we obtain an unique approximation coefficient and a set of details

coefficients for all resolutions



2-D DWT: standard decomposition (2)



2-D DWT: standard decomposition (3)

Figure: Haar standard basis



2-D DWT: non standard decomposition (1)

▶ Principle: perform an MRA of L2(R2)

▶ Let’s define V j = V j ⊗ V j

▶ The details spaces are W j such as V j+1 = V j ⊕W j

▶ Then, we have:

V j+1 = V j+1 ⊗ V j+1

= (V j ⊕W j)⊗ (V j ⊕W j)

= (V j ⊗ V j)⊕ (W j ⊗ V j)⊕ (V j ⊗W j)⊕ (W j ⊗W j)

= V j ⊕W j

▶ Basis of W j : ψj
k(x)ϕ

j
k′(y), ϕ

j
k(x)ψ

j
k′(y), ψ

j
k(x)ψ

j
k′(y), k, k ′ ∈ Z



2-D DWT: non standard decomposition (2)

The DWT is alternated on lines
and columns:

1. one iteration of 1-D DWT
on each lines

2. one iteration of 1-D DWT
on each column

3. repeat stages 1. and 2. on
approximation image up to
resolution j = 0



2-D DWT: non standard decomposition (3)

Figure: Base non standard de Haar 2-D



2-D DWT: Examples with Matlab2

[S1,H1,V1,D1] = dwt2(X,’haar’);
imagesc([S1,H1;V1,D2])

[S2,H2,V2,D2] = dwt2(S1,’haar’);
imagesc([[S2,H2;V2,D2],H1;V1,D1])

2Python: use PyWavelets package
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Application: compression (1)

▶ Famous application (JPEG2000)
▶ JPEG compression (Fourier based): suppression of high frequencies

⇒ edges are degraded (Gibbs phenomena)
▶ Suitable wavelet basis for edges representation: Haar (the Haar

scaling function is basically an edge)



Application: compression (2)

▶ Principle: keep only the biggest details coefficients
▶ We apply an threshold:

Image Reconstruction with error: 1%
a threshold value of 10

▶ 47% of details coefficients are zero (hence lesser than 10)
▶ without compression: 10% are zero



Application: compression (3)

Image Reconstruction with error: 4.3 %
a threshold value of 40

▶ 89% of the details coefficients are zero.
▶ Drawback (Haar): high compression rate makes appear blocs in the

image



Application: denoising (1)

▶ Y image acquisition having an additive noise B

▶ Retrieve X such as
Y = X + B

▶ Practically, we look for an operator D minimizing the reconstruction
error:

E (∥X − D(Y )∥) =
N∑
i=1

E (X (i)− D(Y )(i))2 (8)

▶ Many methods! Depending on the noise characteristics
▶ If B centered Gaussian, a wavelet filtering gives good results
▶ Method:

▶ projection on a wavelet basis (encoding)
▶ hard threshold: details coefficients lesser than threshold S are

nullified
▶ soft threshold: details coefficients lesser than threshold S are

nullified, other are attenuated
▶ How to choose S ?



Application: denoising (2)

▶ An optimal value minimizing (8) with respect to B be Gaussian of
standard deviation σ:

S = σ
√

2 lnN

▶ Estimation of σ?
σ̂ =

Ms

0, 6745

with Ms median value of details coefficients at the finest resolution
▶ Wavelet basis?

▶ Haar
▶ Daubechies
▶ others: curvelets, ridgelets, . . .



Application: denoising (3)

Image Gaussian noise

Haar Daubechies (db3)



Other applications

▶ 3-D mesh: approximation of a volume by decomposition on Haar
wavelets

▶ Pattern recognition: for example, faces characterization, by
projection on a wavelets basis

▶ Texture characterization and modeling
▶ Image watermarking: the trademark is projected on a wavelets basis,

highest coefficients are retained and added to image details
coefficients

▶ Sparse representation: wavelets allow sparse representations i.e.
having a minimal number of coefficients
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