Master IMA, VISION
Optical flow estimation from a sequence of images

Dominique.Bereziat@lip6.fr
2023-2024
Sorbonne Université
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Guided regularizations

Large displacements

Illumination changes and occlusion

Alternatives approaches

Evaluation

Appendix
The regularization term (a L_2 norm on velocity gradient) is a smoothing process:

$$E(w) = \int_{\Omega} (\nabla I \cdot w + l_t)^2 dx + \int_{\Omega} \alpha \| \nabla w \|^2 dx$$

(1)

Gradient: $\nabla E(w) = 2 \nabla I (\nabla I \cdot w + l_t) - 2 \alpha \Delta w$

Let’s consider the family $(w_\tau)_{\tau \geq 0}$ of functions defined by:

$$w(x, 0) = 0 \quad x \in \Omega$$

$$\frac{\partial w_\tau(x, t)}{\partial \tau} + \alpha \Delta w_\tau(x, t) = \nabla I (\nabla I \cdot w_\tau(x, t) + l_t)$$

(2)

Stationary solutions of (2) (i.e. do not depend on τ) are solution of $\nabla E(w) = 0$ (as $\frac{\partial w_\tau}{\partial \tau} = 0$)

$w_\infty = \lim_{\tau \to \infty} w_\tau$ is a stationary solution
Equation (2) is called Euler-Lagrange equation associated to the problem of minimizing E (Eq. (1))

This is a diffusion equation (see my lecture in TADI on scales spaces) with a forcing term (right member of Eq. (2))

Discretization of Eq. (2)) leads to a Gauss-Seidel method (iterative method for matrix inversion, similar to Horn and Schunk numerical scheme (see Eqs. (8,9) in previous lecture)

Avoid the smoothing effect induced by diffusion: use non-linear diffusion (guided or not by the image values)
Oriented regularization: [Nagel, 1987]

- Idea: to preserve velocity map discontinuities avoid smoothing along edges contours
- Regularizing term in Horn and Schunck cost function is rewritten as:

$$E_{\text{regul}} = \int_\Omega \alpha \text{tr} \left((\nabla w)^T \nabla w \right) dxdy$$

- Indeed:

 - $$\nabla w = \begin{pmatrix} \nabla u \\ \nabla v \end{pmatrix} = \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix}$$
 - $$\nabla w^T \nabla w = \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix} \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix} = \begin{pmatrix} u_x^2 + u_y^2 & \ldots \\ \ldots & \vdots & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \end{pmatrix}$$
 - $$\text{tr}(\nabla w^T \nabla w) = u_x^2 + u_y^2 + v_x^2 + v_y^2$$
Nagel oriented regularization (cont’d)

- Nagel considers the following norm:

\[
E_{\text{regul}} = \int_{\Omega} \alpha \text{tr} \left((\nabla w)^T V \nabla w \right) \, dx \, dy
\]

with \(V \) a 2 \(\times \) 2 matrix such as:

\[
V = \frac{1}{\|\nabla I\|^2_2 + 2\delta} W
\]

\[
W = \begin{pmatrix}
I_y^2 + \delta & -I_x I_y \\
-I_x I_y & I_x^2 + \delta
\end{pmatrix}
\]

- Parameter \(\delta \) allows \(V \) to be invertible: \(\delta = 0 \Rightarrow \det(W) = 0 \)
- \(W \) is divided by a normalization term
Nagel oriented regularization (cont’d)

- With $\delta > 0$, V is always well defined
- In the following, consider $\delta = 0$
 - W writes:
 $$
 W = \begin{pmatrix}
 -l_y \\
 l_x
 \end{pmatrix}
 \begin{pmatrix}
 -l_y & l_x
 \end{pmatrix} = U^T U
 $$
 with $U = \begin{pmatrix}
 l_y & l_x
 \end{pmatrix}$
 - The regularization term now writes:
 $$
 \int_\Omega \text{tr} \left((U \nabla w)^T (U \nabla w) \right) \, dx
 $$
 - and after expansion:
 $$
 \int_\Omega \text{tr} \begin{pmatrix}
 (-l_y u_x + l_x u_y)^2 & \cdots & (-l_y v_x + l_x v_y)^2
 \end{pmatrix} \, dx
 $$
Nagel oriented regularization (cont’d)

- Interpretation:
 - if ∇u and ∇v have the same direction than ∇I, the regularization is close to zero
 - In this case: no diffusion, no smoothing, discontinuities of w are preserved
 - Velocity map is smoothed except along edges

- Alternative writing:

$$E_{\text{regul}}(w) = \int_\Omega \frac{\alpha}{\|\nabla I\|^2 + 2\delta} \left[(-l_y u_x + l_x u_y)^2 + (-l_y v_x + l_x v_y)^2 \right. $$
$$\left. + \delta(\nabla u^2 + \nabla v^2) \right] dxdy$$

a combination of an uniform smoothing and an oriented diffusion tuned by δ and guided by image configuration

- Two parameters drive the regularization: α and δ
Nagel oriented regularization (cont’d)

• Associated Euler-Lagrange equations:

\[\begin{align*}
 u^{k+1} &= \eta(u^k) - l_x \frac{l_x \eta(u^k) + l_y \eta(v^k) + l_t}{\alpha + l_x^2 + l_y^2} \\
 v^{k+1} &= \eta(v^k) - l_y \frac{l_x \eta(u^k) + l_y \eta(v^k) + l_t}{\alpha + l_x^2 + l_y^2}
\end{align*}\]

with:

\[\eta(f) = \bar{f} - 2l_x l_y f_{xy} - q \nabla f\]

\[q = \frac{1}{l_x^2 + l_y^2 + 2\delta} \nabla l^T \left[\begin{pmatrix} l_{yy} & -l_{xy} \\ -l_{xy} & l_{xx} \end{pmatrix} + 2 \begin{pmatrix} l_{xx} & l_{xy} \\ l_{xy} & l_{yy} \end{pmatrix} \right]\]
Nagel oriented regularization: results

Figure 1: Hamburg’s Taxi sequence, $\delta = 10$, $\alpha = 25$
Figure 2: Animation
Figure 3: Hamburg’s Taxi sequence, \(\delta = 10, \alpha = 1 \)
Figure 4: Animation
Nagel oriented regularization: concluding remarks

• Allow discontinuities
• Nagel regularization is a non linear diffusion (see TADI, scales spaces)
• Another non linear diffusion schemes, guided by image configurations, are possible:
 • isotropic diffusion [Alvarez et al., 1999]:
 \[E_{\text{regul}} = \int \phi(|\nabla I|) ||\nabla w||^2 dx, \text{ with } \phi \text{ decreasing function} \]
 • ...
• Norms can also depends only on velocity map configuration (flow-guided)...
\(L_1 \) versus \(L_2 \) norms

- The quadratic term strongly penalizes discontinuities
• Consider the minimization problem:

\[E(w) = \int_{\Omega} (\nabla I \cdot w + I_t)^2 dx + \alpha \int_{\Omega} \left(\sqrt{u_x^2 + u_y^2} + \sqrt{v_x^2 + v_y^2} \right) dx \]

\(L_1 \)

• Gradient of \(L_1 \):

\[
\frac{\partial L_1}{\partial u} = -\frac{\partial}{\partial x} \left(\frac{u_x}{\sqrt{u_x^2 + u_y^2}} \right) - \frac{\partial}{\partial y} \left(\frac{u_y}{\sqrt{u_x^2 + u_y^2}} \right)
\]

\[
\frac{\partial L_1}{\partial v} = -\frac{\partial}{\partial x} \left(\frac{v_x}{\sqrt{u_x^2 + u_y^2}} \right) - \frac{\partial}{\partial y} \left(\frac{v_y}{\sqrt{u_x^2 + u_y^2}} \right)
\]
L_1 regularization

- Euler-Lagrange equations associated to Cohen’s cost function can be approximated using numerical scheme proposed in Perona and Malik [Perona and Malik, 1990], or Rudin et al. [Rudin et al., 1992], see my lecture on scales spaces (TADI)

- L_1 norm is a particular case of a norm family writing $\Psi(\|\nabla f\|)$ with Ψ a monotone increasing real function

- L_2 norm: $\Psi(s) = s^2$, L_1 norm: $\Psi(s) = |s| = \sqrt{s^2}$

- Huber L_1 norm (a smooth and derivable L_1 norm):

 $$\Psi(s) = \begin{cases}
 z^2/(2\mu) & \text{if } |z| \leq \mu \\
 |z| - \mu/2 & \text{otherwise}
 \end{cases}$$

- alternative writing: $\Psi(s) = \sqrt{s^2 + \epsilon}$

- Geman-McClure norm: $\Psi(s) = \frac{s^2}{\mu^2 + s^2}$

- Lorentz norm: $\Psi(s) = \log(1 + \frac{s^2}{\sigma^2})$
Figure 5: Geman (green), Lorentz (red), L_1 (blue)

- Geman and Lorentz norms don’t penalize discontinuities
Robust norms

- General formulation:

\[E(w) = \int_{\Omega} \psi_1(\nabla I \cdot w + I_t)^2 \, dx + \alpha \int_{\Omega} \psi_2(\|\nabla w\|)^2 \, dx \]

- Assume \(\psi^1 \) and \(\psi^2 \) derivable:

\[
\nabla E(w) = \nabla I \psi'_1(\nabla I \cdot w + I_t) - \alpha \nabla \cdot \left(\frac{\nabla w}{\|\nabla w\|} \psi'_2(\|\nabla w\|) \right)
\]

- A robust norm for the data term: robust to noise as it don’t penalize large deviation to optical flow constraint

- Issue: introducing non linear terms lead to a non convex optimization problem
Non convex optimization: [Zach et al., 2007]

- Consider the non convex cost function:

\[
E(w) = \int_{\Omega} (|\nabla I \cdot w + I_t| + \alpha \|\nabla w\|) \, dx
\]

(3)

- Idea: transform the non convex optimization problem into a series of convex optimization problems

- Introduce the auxiliary variable \(w' \) and the new cost function:

\[
E_{\theta}(w, w') = \int_{\Omega} \left(|\nabla I \cdot w' + I_t| + \frac{1}{2\theta} \|w - w'\|^2 + \alpha \|\nabla w\| \right) \, dx
\]

- When \(\theta \) tends to zero, \(E_{\theta} \) becomes an approximation of (3) and \(w' \) tends to \(w \)

- \(E_{\theta} \) can be decoupled into two convex optimization problems
• Minimize $E_{\theta}(w, w')$ w.r.t. to w and w' is equivalent to alternatively minimize the two following convex problems:

1. w' fixed, find w minimizing:

$$\int_{\Omega} \left(\frac{1}{2\theta} \| w - w' \|^2 + \alpha \| \nabla w \| \right) dx$$ \hspace{1cm} (4)

2. w fixed, find w' minimizing:

$$\int_{\Omega} \left(| \nabla l \cdot w' + l_t | + \frac{1}{2\theta} \| w - w' \|^2 \right) dx$$ \hspace{1cm} (5)

• Problem (4) has been studied by Rudin et al. [Rudin et al., 1992] in a context of image denoising

• Problem (5) can be solved in a direct way
Zach et al. method: results

- Numerical schemes are available in [Chambolle, 2004]
- Source code: http://www.ipol.im/pub/art/2013/26

Figure 6: Horn & Schunck, Nagel, Zach
Zack et al. deal with a non convex optimization, solved using the split Bregman technique.

- L_1 norm on ∇w allows to reconstruct velocity map with discontinuities.
- L_1 norm on data term: robust to noise and lack of contrast (black taxi velocity better estimated).
- In practical case: the convergence is fast.
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Guided regularizations

Large displacements

Illumination changes and occlusion

Alternatives approaches

Evaluation

Appendix
Large displacements

- The linear optical flow constraint

\[\nabla I \cdot w + I_t = 0 \]

is an approximation of the non linear transport equation

\[I(x + w\delta t, t + \delta t) = I(x, t) \]

- In practical case, only available for small displacements (\(\|w\|\delta t < 2 \))
- \(\delta t \) is given by experimental condition, it is not an hyper parameter
- How to deal with large displacements?
 - For instance: can we try to solve the non linear optical flow equation?
 - and is it possible in a variational framework?
Yes! if we can determine the gradient of

\[E_{\text{data}}(w) = \int_{\Omega} (I(x + w\delta t, t + \delta t) - I(x, t))^2 dx \]

Gâteau derivative:

\[
\lim_{\gamma \to 0} \frac{E_{\text{data}}(u + \gamma f, v) - E_{\text{data}}(u, v)}{\gamma}
\]

Previous expression contains a term in \(\gamma f \) that tends to zero (limit): one can introduce a linear Taylor expansion without error.

Finally we can derive:

\[
\frac{\partial E_{\text{data}}}{\partial w}(x) = 2\delta t \nabla I(x + w\delta t, t + \delta t)[I(x + w\delta t, t + \delta t) - I(x, t)]
\]

It is not magic: \(I(x + w\delta t, t + \delta t) \) is not explicitly given and obtained by approximation.
Large displacements: solving non linear optical flow equation

- $\delta t = 1$: minimize $\int_{\Omega} (I(x + w, t + 1) - I(x, t))^2 + \alpha \|\nabla w\|^2 \, dx$
- Euler-Lagrange associated equations:
 \[
 \frac{\partial w}{\partial \tau} = \nabla I(x + w, t + 1)[I(x + w, t + 1) - I(x, t)] - \alpha \Delta w
 \]
- Approximated by an Euler scheme:
 \[
 \frac{\partial w}{\partial \tau}(k\lambda) \simeq \frac{w^{k+1} - w^k}{\lambda}
 \]
 and a semi-implicit scheme1:
 \[
 w^{k+1} + \lambda \Delta w^{k+1} = w^k + \alpha \lambda \nabla I(x + w^k, t + 1)[I(x + w^k, t + 1) - I(x, t)]
 \]
- Need to evaluate $I(x + w^k, t + 1)$ and $\nabla I(x + w^k, t + 1)$ using bilinear interpolation2

1Due to numerical considerations, see my TADI lecture on scales spaces
2x + w^k do not belong to the spatial grid
Large displacements: multi-resolution approaches
[Anandan, 1989, Black and Anandan, 1991]

- Principle of multi-resolution/multi-grid approaches:
 - from data, build a hierarchy of resolution (as a series of low-pass filter and 2×2 subsampling),
 - start from the lowest resolution, compute a first guest
 - from a coarse resolution to the next finer: compute an accurate solution

- Applied to optical flow estimation: at each resolution the hypothesis of small displacements (linear optical flow) holds:
 1. At the coarsest resolution (image of size 2×2): the linear optical flow equation is correct (at most displacement of one pixel)
 2. From a resolution to the next fine: the upsampled optical flow is refined with a 2×2 local estimation
Large displacements: building the pyramid of resolutions

- \(I(x, y, t) \) original image (level 0, finest resolution): \(I^0(x, y, t) \)
- level \(k \) to level \(k + 1 \):
 \[
 I^{k+1}(x, y, t) = \downarrow (I^k \ast G_\sigma)(x, y, t)
 \]
- \(\downarrow \): 2 × 2 downsampling operator (keep 1 pixel over 4)
- Anti-aliasing filter: Gaussian smoothing with standard deviation of \(\sigma = 2 \)
- \(\Omega^k \) spatial domain of level \(k \) verifying:
 \[
 \Omega^N \subset \cdots \subset \Omega^{k+1} \subset \Omega^k \subset \cdots \subset \Omega^0
 \]
- Minimal resolution, level \(N \): an image reduced to 2 × 2 pixels
- We have \(N = \log_2 |\Omega| - 1 \).
Pyramid of resolutions (here two levels):

\[w^0 = \uparrow w^1 + dw^0 \]
Large displacements: compute velocity at level \(k \) from level \(k+1 \)

- Notation: \(w^k \) velocity at level \(k \)
- \(dw^k \): increment of velocity computed at level \(k \) such that:

\[
\uparrow w^{k+1} + dw^k = w^k
\]

with \(\uparrow \) the \(2 \times 2 \) upsampling operator

- Non linear optical flow constraint at level \(k \):

\[
D^k(x, t) = I^k(x + w^k dt, t + dt) - I^k(x, t)
= I^k(x + (\uparrow w^{k+1} + dw^k) dt, t + dt) - I^k(x, t)
= 0
\]

- \(w^{k+1} \) is given (estimation at coarse resolution), \(dw^k \) explains velocity difference between levels \(k+1 \) and \(k \): \(2 \times 2 \) upsampling, so \(|du^k|, |dv^k| < 2 \), the linear optical flow is an admissible approximation
Large displacements: compute velocity at level k from level $k+1$ (cont’d)

- We write:
 \[l^k(x + (\uparrow w^{k+1} + dw^k)dt, t + dt) = l^k((x + \uparrow w^{k+1} dt) + dw^k dt, t + dt) \]

- First order Taylor expansion of l^k at point $x + \uparrow w^{k+1} dt$:
 \[l^k((x + \uparrow w^{k+1} dt) + dw^k dt, t + dt) \simeq l^k(x + \uparrow w^{k+1} dt, t + dt) + \nabla l(x + \uparrow w^{k+1}, t + dt) \cdot dw^k dt \]

- D^k becomes:
 \[D^k(x, t) = l^k(x + \uparrow w^{k+1} dt, t + dt) - l^k(x, t) \]
 \[+ \nabla l^k(x + \uparrow w^{k+1} dt, t + dt) \cdot dw^k dt \]
 \[= 0 \]
Large displacements: compute velocity at level k from level $k+1$ (cont’d)

- Let’s introduce the shifted image difference between level k and $k+1$:

$$l_{\text{shift}}^k(x, w^{k+1}, t) = l^k(x + w^{k+1} dt, t + dt) - l^k(x, t)$$

- Equation $D^k = 0$ writes:

$$\frac{1}{dt} l_{\text{shift}}^k(x, w^{k+1}, t) + \nabla l^k(x + w^{k+1} dt, t + dt) \cdot dw^k = 0 \quad (6)$$

- Eq. (6) is called *incremental optical flow equation*, it is of same nature that the linear optical flow equation ($\frac{\partial l}{\partial t} + \nabla l \cdot w = 0$) with a shifted spatial gradient and a shifted temporal gradient as data.

- dw^k can be obtained with one of the optical flow methods previously studied, for instance (Horn & Schunk, Lucas & Kanade...), see:
 - global approach: [Proesmans et al., 1994]
 - local approach: [Bergen et al., 1992]
Large displacements and multiresolution approaches: algorithm

1. Build the pyramid of resolution I^k
2. Coarse level N: $w^N = 0$, estimation of dw^N
3. Level k: estimation of dw^k from w^{k+1} and I^k by solving:
 \[
 \frac{1}{dt} I_{\text{shift}}^k(x, \uparrow w^{k+1}, t) + \nabla I_{\text{shift}}^k(x, \uparrow w^{k+1}, t) \cdot dw^k = 0
 \]
4. Update $w^k = w^{k+1} + dw^k$, $k = k - 1$
5. Iterate steps 3. and 4. up to $k = 0$
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Guided regularizations

Large displacements

Illumination changes and occlusion

Alternatives approaches

Evaluation

Appendix
Illumination change: [Brox et al., 2004]

- Global illumination change is a common issue
- Model: \(I(x, t + 1) = I(x + w, t) + c, \) \(c \) bias
- Simple remark:
 \[I(x, t + 1) = I(x + w, t) + c \Rightarrow \nabla I(x, t + 1) = \nabla I(x + w, t) \]
- Brox et al proposal: two data term in the cost function
 - one for brightness constancy
 - one for gradient brightness constancy
- Cost function:
 \[
 E(w) = \int \| I(x + w, t + 1) - I(x, t) \|^2 dx
 + \int \gamma \| \nabla I(x + w, t + 1) - \nabla I(x, t) \|^2 dx
 + \int \alpha \| \nabla w \|^2 dx
 \]
- Two constraints, but the problem remains ill-posed, why?
Object occlusion

- Occlusion occurs when an object is in front of another one
- The optical flow equation does not hold for occluded objects
- What can we do?
 - detect regions of occlusion: estimation of velocity will be not relevant in these regions
 - extrapolate, interpolate velocity map on these regions
Object occlusion: [Ince and Konrad, 2008]

- A 2-stage algorithm:
 1. detection of the occlusion regions:
 - Estimation of optical flow between images 1 and 2: \(w_{12} \)
 - Estimation of retrograd optical flow, i.e. between images 2 and 1: \(w_{21} \)
 - occlusion at pixel \(x \) if \(w_{12} \) is significantly different from \(-w_{21}\)
 2. Estimation of velocity inside the occlusion regions:
 - use of an in-painting method (see my TADI lecture on scales spaces):
 - use of guided norm, \(w \) is smoothing in the direction of \(w \) inside these regions

- Stages 1. and 2. are repeated until convergence
- Joint estimation of optical flow and inpainting is also possible
Horn and Schunck issues: concluding remarks

Figure 7: Large displacements, discontinuous vector field, occlusions

Figure 8: Ground truth, Horn and Schunk (1981), Sun et al. (2010)
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Alternatives approaches

Data assimilation

Neural networks

Evaluation

Appendix
Data assimilation approach

- A formalism for inverse problems: knowing some partial observation of a physical system and a background, knowing physics of the system (time evolution), and knowing statistics of errors (covariance matrices), how to retrieve the system?
- A state vector $X_t \in \mathbb{R}^n$ describes the physical system over time $t \in [0, T]$.
- A model \mathbb{M} (physics) rules the time evolution of X:
 \[X_{t+1} = \mathbb{M}_t X_t \]
- We have a first guess (background) of the initial condition of X:
 \[X_0 = X_b + \epsilon_B, \quad \epsilon_B \text{ assumed Gaussian of covariance } B \]
- We have partial observation $Y \in \mathbb{R}^d$ of X:
 \[Y_t = \mathbb{H}_t X_t + \epsilon_{R_t} \quad R_t \text{ assumed Gaussian of covariance } R_t \]
 \mathbb{H} is called *observation operator*. As $d < n$, it is non invertible.
Data assimilation approach: 4DVar formalism

- The question: how to retrieve the initial condition X_0 satisfying the system?

$$X_0 = X_b + \epsilon_B$$ \hspace{1cm} (7)

$$X_{t+1} = M_t X_t$$ \hspace{1cm} (8)

$$Y_t = H_t X_t + \epsilon_{R_t}$$ \hspace{1cm} (9)

- From Eq. (8): $X_t = M_{t-1} \cdots M_1 M_0 X_0 = M_0 \rightarrow_t X_0$

$\Rightarrow X_t$ only depends on X_0

- To answer to the question: find X_0 that minimizes

$$J(X_0) = \|X_0 - X_b\|_B^2 + \sum_{t=0}^{T} \|Y_t - H_t X_t\|_{R_t}^2$$

s.t. Eq. (8)

in a variational framework (4DVar=space and time, variational)

Notation: $\|\epsilon\|_A^2 = \int \epsilon^T(x) A^{-1}(x) \epsilon(x) dx$
Minimize the 4DVar cost function

\[J(X_0) = \|X_0 - X_b\|^2_B + \sum_{t=0}^{T} \|Y_t - \mathbb{M}_t X_t\|^2_{R_t} \]

- Gradient of \(J \) (assuming \(\mathbb{M} \) and \(\mathbb{H} \) linear) is:
 \[
 \nabla J(X(t_0)) = 2B^{-1}(X(t_0) - X_b) + 2\left[\mathbb{H}_0^T R_0^{-1} D_0 + \mathbb{M}_1^T [\mathbb{H}_1^T R_1^{-1} D_1 + \cdots + \mathbb{M}_T^T \mathbb{H}_T^T R_T^{-1} D_T] \right]
 \]
 with \(D_t = Y_t - \mathbb{H}_t X_t \)

- In practice, gradient can also be obtained using automatic differentiation (ex: Autograd for Pytorch)
- Minimum of \(J \) is achieved by steepest descent with a Quasi-Newton solver (ex: L-BFGS)
4DVar diagram (in a Deep Learning spirit)

\[\| \epsilon_b \|_B^2 \]

\[\mathbf{X}_b \]

\[\mathbf{X}_0 \]

\[\mathbf{Y}_0 \]

\[\| \epsilon_{R_0} \|_{R_0}^2 \]

\[\mathbf{X}_t \]

\[\mathbf{Y}_t \]

\[\| \epsilon_{R_t} \|_{R_t}^2 \]

\[\mathbf{X}_T \]

\[\mathbf{Y}_T \]

\[\| \epsilon_{R_T} \|_{R_T}^2 \]
Application to optical flow estimation

- Physical system: a scalar map, l, is advected by a velocity map, w
 \[X = \begin{pmatrix} l \\ w \end{pmatrix} \]

- From this system we observe the scalar map at various acquisition dates t: $Y_t = I(., t)$, and we want to retrieve w

- Observation operator is then the projection of X into the subspace \mathbb{R}^d of observation: $HX = Y$

- Advection is the physical process ruling the state vector in time:
 \[
 \frac{\partial l}{\partial t} + \nabla l(t) \cdot w(t) = 0 \tag{10}
 \]
 while velocity will be supposed stationary

- After time discretisation, \mathbb{M} writes such as:
 \[
 l_{t+1} = l_t + \Delta t \nabla l_t \cdot w_t \quad \text{(advection)} \tag{11}
 \]
 \[
 w_{t+1} = w_t \quad \text{(stationarity)} \tag{12}
 \]

- Δt is the time step
• Possible choice of background: $X_b = (\vec{0} \quad I_0)^T$
 • we never observe w

• We assume no spatial correlation on Y:
 • R_t is diagonal and $R_t(x)$ gives the variance noise acquisition as pixel x

• Missing data: set $R_t^{-1}(x) = 0$
 • we can use 4DVar for inpainting!

• No observation at time t: set $R_t^{-1} \equiv 0$:
 • we control the number of time steps, no need of multi-resolution scheme to respect the optical flow assumption ($t + 1 = t + N \times \Delta t$, with $\Delta t = 1/N$ arbitrarily small)

• Optical flow estimation, even in a 4DVar formalism, remains ill-posed and need regularization
 • Regularization of w_0 can be embedded in matrix B:
 derivation being linear, it exists B such as: $\|X_0 - X_b\|_B^2 = \alpha \|\nabla w_0\|^2$
Some results: Inpainting on ocean images

Evaluation on ground truth

Cloud cover inpainting
Some results: Rain nowcasting

Figure 9: left and middle: two radar rainmaps for two successive times acquisition; right: the motion and its intensity estimated from theses observation

- Forecast is done by applying $\mathbb{M}_{0 \rightarrow t}$ on last observation and the estimated velocity map
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Alternatives approaches

Data assimilation

Neural networks

Evaluation

Appendix
Limitations of variational approaches

- Model used (brightness constancy, regularization) remain imperfect and not always justified: need of more general models, whose parameters would be learned with supervised machine learning techniques

- Short state-of-the-art:
 - Black et al [Black et al., 1997]: PCA computed on a training set, motion is seen as a linear combination of eigenvector. The optical flow equation is projected onto the PCA basis leading to a linear regression problem. No regularization.
 - Rosenbraum et al [Rosenbraum et al., 2013]: motion models as a Gaussian mixture
 - Sun et al [Sun et al., 2008]: image are pre-processed with a bank of FIR filters, filters are learned (by likelihood maximization) before compute the optical flow
Deep neural networks

• Following Sun’s idea, CNN can be used to learn motion estimation filter
 • at first order: the linear optical flow equation, as well regularization, use differential operators that can be learned with convolution kernels ⇒ convolutional networks
 • at second order: universal approximation theorem, [Hornik et al., 1989], a network with an hidden layer can approximate any continuous function ⇒ deep networks

• Availability of huge databases for motion estimation (KITTI, SINTEL...) permits to train deep CNN, with a limitation, these databases being synthetic, they lack of realism
Flownet [Dosovitskiy et al., 2015]

- FlownetS (Simple) and FlownetC (Correlated)

Figure 10: Both figures from [Dosovitskiy et al., 2015]

- Details of the green box:
Flownet [Dosovitskiy et al., 2015]

- “U-Net” architecture:
 - Encoder into a latent space, then decoder
 - Skip connection between each resolution downsample
- Encoder, two versions:
 - FlownetS ('Simple'): input data are stacked into channels (2 consecutive RGB images = 6 channels) than encoded
 - FlownetC: ('Correlation'): two separate stages, one by images. Then features are merged with a correlation product (unlearned) before to be encoded into the latent space
- The network learns the evolution law between a pair of images: richer than the advection
- The encoder/decoder architecture mimics a multiresolution scheme
- Loss function: EPE, \(\mathcal{L}(w, \hat{w}) = ||w - \hat{w}|| \) (supervised training)
- Better results for FlownetC than FlownetS
The “Flying chairs” database

- Dataset of 45 Gb, semi-synthetic images
- Size required to train correctly FlowNet.
- https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html
- Train: several hours on a huge GPU
- still outperformed by the best variationnal approaches (on small displacements specially)
Spynet [Ranjan and Black, 2017], Flownet2 [Ilg et al., 2017]

- Spynet: standard multiresolution pyramid without latent space

Figure 11: From [Ranjan and Black, 2017]

- Loss function: EPE for each resolution
- Outperforms Flownet
- Flownet2: combination of several FlownetS and FlownetC, with a module dedicated to “small displacements” outperforms Spynet
RAFT [Teed and Deng, 2020]

- Recurrent All-Pairs Field Transforms for Optical Flow

Figure 12: From [Teed and Deng, 2020]

- Architecture:
 - a Feature encoder, similar to FlownetC, but the correlation is 4D between all-pairs of pixel feature of the two input images
 - Iterative update: a multiresolution strategy \(w^{k+1} = \triangle w + w^{k-1} \), obtained from successive pooling of 4D correlation and a GRU module
 - Loss: weighted \(L_1 \) EPE on each \(w^k \), supervised.
Unsupervised training

- Training sets are not always realist, how to train without ground truth?
- Change the loss function: consider the reconstruction error instead of EPE

Figure 13: From [Yu et al., 2016]
Unsupervised training (cont’d)

• The optical flow constraint is embedded in the loss

\[\mathcal{L}_{\text{EPE}}(w, w^{\text{GT}}) = \| w - w^{\text{GT}} \| \Rightarrow \mathcal{L}_{\text{warp}}(I_1, I_2, w) = \| I_1 - \text{Warp}(I_2, w) \| \]

• Remains ill posed! regularization is required:

\[\mathcal{L}_{\text{smooth}}(w) = \| \nabla w \| \]

• Issue: the optical flow constraint must be verified for correct performance

• At this moment, unsupervised approaches remain less accurate, work in progress (Deep Image Prior….)
Semi-supervised training with GAN [Lai et al., 2017]

- Generator: a NN $G(l_1, l_2)$ producing a velocity \tilde{w} minimizing the warping loss
- Idea for a discriminator D: train a NN such a:

$$D(\tilde{w}) = \begin{cases}
1 & \text{if } \tilde{w} \text{ produced from a ground truth} \\
0 & \text{if } \tilde{w} \text{ is computed by } G
\end{cases}$$

- D knows the ground truths, G is trained to make D wrong
Evaluation: introduction

- Difficulty of evaluation without ground truth
- Ground truth remains possible in some cases
 - synthetic images (coming from computer graphics)
 - useful as proof of concept
 - but not always realistic
 - real data
 - possible in some cases (controlled or known rigid/articulated motions, in situ measures)
 - but costly and complex to set up
- others and general cases
 - human validation: measuring displacement of objects/regions/points of interest
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues
Alternatives approaches

Evaluation

Introduction

Qualitative evaluation (visualization)
Quantitative evaluation (benchmarks)

Appendix
Evaluation by visualization: vector field

- Comparison of sparse vector field
- Example of Hamburg’s taxis (no ground truth)

![Vector Field Example](image)

Figure 14: Horn and Schunck (red), Zack *et al* (blue)

- With Matlab/Matplotlib: `quiver()`
Evaluation by visualization: Middlebury colormap

- Dense representation: Middlebury colormap
- Color wheel: velocity direction, color saturation: velocity magnitude

Figure 15: L_2 (left), TV-L_1 (right)

[^3]: http://vision.middlebury.edu/flow/
Evaluation by visualization: velocity magnitude

- Dense representation with velocity magnitude (norm):
 \[\| w \| = \sqrt{u^2 + v^2} \]

Figure 16: L_2 (left), TV-L_1 (right)
Evaluation by visualization: stream lines

- Stream lines: trajectory of point $x_0 \in \mathbb{R}^2$ transported by a static vector field $w(x)$ (here, stationary velocities, no time)

- Solve:

$$\frac{\partial x}{\partial s}(s) = w(x(s)) \quad s \in [0, 1]$$

$$x(0) = x_0$$

- Solution (integration):

$$x(s) = x_0 + \int_0^s w(x(u))du$$

- Resolution using a 4-order Range-Kutta scheme (i.e. $w(x(u))$ is evaluated by bilinear interpolation)
• Stream lines:

Figure 17: function stream2() (Matlab) streamplot() (Matplotlib)
Evaluation by visualization: Line Integral Convolution

- Line Integral Convolution (LIC): dense visualization of stream lines
- Determination of stream lines, Eq (13)
- Integration using the following way:

\[
\text{LIC}(x_0) = \int_{\mathbb{R}} k(u - u_0) T(x(u)) du
\]

\[
x_0 = x(u_0)
\]

- \(T\): image of texture (uniform noise)
- Convolution kernel \(k\) determine a window over the stream line:
 - \(k(u) = \frac{1}{2L} \mathbb{1}_{[-L,+L]}\)
 - or \(k\) Gaussian kernel of variance \(L\)
Figure 18: L_2 (left), TV-L_1 (left)
Evaluation by visualization: trajectories

- Temporal trajectory: points transported by a non stationary velocity field $w(x, t)$
- Modification of Eq (13):
 \[
 \frac{\partial x}{\partial t} = w(x, t) \\
 x(0) = x_0
 \]
- Integration:
 \[
 x(t) = x_0 + \int_0^t w(x(u), u) du
 \]
- Use of 4-order Rung-Kutta scheme
Evaluation by visualization: trajectories (cont’d)

- Matlab: `stream3()`, Matplotlib?
- Can be combined with LIC sort a dense visualization

Figure 19: L_2 (red), TV-L_1 (blue)
Part II: Fix Horn and Schunk’s issues, recent methods, evaluation

Horn and Schunck’s Issues

Alternatives approaches

Evaluation

Introduction

Qualitative evaluation (visualization)

Quantitative evaluation (benchmarks)

Appendix
Quantitative evaluation

- Comparison with the **ground truth**
- How to compare? visually, with statistics
- How to obtain a ground truth? Use of *twin* experiments
Quantitative evaluation: error measurements

- Let w be the reference, \tilde{w} the estimated.
- Angular error: $\varepsilon_{AE} = \langle \hat{w}, \tilde{w} \rangle = \arccos \left(\frac{w^T \tilde{w}}{\|w\| \|\tilde{w}\|} \right)$
- Angular error in space-time ([Fleet and Jepson, 1990]):
 $\varepsilon'_{AE} = \langle (w, 1), (\tilde{w}, 1) \rangle = \arccos \left(\frac{1 + w^T \tilde{w}}{\sqrt{(1 + \|w\|^2)(1 + \|\tilde{w}\|^2)}} \right)$

Figure 20: Angular error in space, and in space-time
Quantitative evaluation: error measurements (cont’d)

- Relative Norm Error: \(\varepsilon_{RNE} = \frac{\|w\| - \|\tilde{w}\|}{\|w\| + \epsilon} \)
- End Point Error: \(\varepsilon_{EPE} = \|w - \tilde{w}\| \) warning: an absolute error, relevant for comparison.
- Relative End Point Error: \(\frac{\|w - \tilde{w}\|}{\|w\| + \epsilon} \)
- Final statistics: mean and standard deviation of these error maps
Quantitative evaluation: Benchmarks

- First database for ranking optical flow algorithms: Baron et al [Barron et al., 1994]
 - a survey (about ten methods)
 - synthetic data with ground truth
 - evaluation using previous statistics

Figure 21: Synthetic data (with ground truth)

4https://www-pequan.lip6.fr/~bereziat/barron/
Quantitative evaluation: Benchmarks (cont’d)

• and also true data:

Figure 22: True data with ground truth
Quantitative evaluation: Middlebury

- Middlebury database, [Baker et al., 2011][5]
- Synthetic and true data with ground truth known for tuning, and hidden for performance ranking

Figure 23: Example of synthetic data with ground truth

Figure 24: Example of true data with ground truth

- black areas: occluding regions
Figure 25: True and synthetic data with hidden ground truth

- Characteristics: large displacements, discontinuous velocity field, occluding
- Other databases are available: Sintel Flow Database\(^6\), KITTI (road traffic)\(^7\)...

\(^6\)http://sintel.is.tue.mpg.de/
\(^7\)http://www.cvlibs.net/datasets/kitti/
Quantitative evaluation without ground truth

- Without ground truth? One can verify the estimated velocity map transport correctly image I_1 to I_2

![Diagram showing optical flow and reconstruction]

Figure 26: reconstruction error
Quantitative evaluation without ground truth (cont’d)

- Reconstructed image: \(I_1^{\text{warped}}(x + w(x)\delta t) = I_1(x) \)
- Issue: this process leaves uninitialized pixels in \(I_1^{\text{warped}} \) because the mapping \(x \mapsto x + w \) is not bijective application in a discrete world
- Possible solutions:
 - Initialize \(I_1^{\text{warped}}(x) = I_1(x) \) before mapping. Drawback: introduce false discontinuities
 - Fill in holes with inpainting technique. Drawback: no more false discontinuities, but not necessarily correct values
 - \(I_1^{\text{warped}}(x) = I_1(x' + w(x')) \) where \(x' \) is the pixel in \(I_1 \) that is mapped to \(x \) in \(I_2 \). Drawback: issue if \(x \) has several antecedents
- Error measurement: \(\| I_2 - I_1^{\text{warped}} \| \)
Appendix

Hierarchical model-based motion estimation.

Robust dynamic motion estimation over time.

Learning parametrized models of image motion.
In *Computer Vision and Pattern Recognition*.

High accuracy optical flow estimation based on a theory for warping.

An algorithm for total variation minimization and applications.

Flownet 2.0: Evolution of optical flow estimation with deep networks.
In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

Occlusion-aware optical flow estimation.

Semi-supervised learning for optical flow with generative adversarial networks.
In *NIPS*.

On the estimation of optical flow: relations between different approaches and some new results.

Space scale and edge detection using anisotropic diffusion.

Raft: Recurrent all pairs field transforms for optical flow.
In *European Conference on Computer Vision*.

Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness.
In *European Conference on Computer Vision*.

A duality based approach for realtime TV-l^1 optical flow.