Contrôle dynamique de méthodes d'approximation

Fabienne Jézéquel

Habilitation à Diriger des Recherches Laboratoire d'Informatique de Paris 6

Outline

- Principles of stochastic arithmetics
- Implementation of Discrete Stochastic Arithmetic
- Dynamical control of approximations methods
 - Using sequences with a linear convergence
 - Using combined sequences

Dynamical control of multiple integrals computation

- Using the principle of "iterated integrals"
- Using cubature methods

Applications

- In crystallography
- In the neutron star theory

Round-off error analysis - 1/2 Several approaches

• Direct analysis

estimation or bound of the direct error running error analysis, J.H. Wilkinson 1971 SCALP, Ph. François 1989

Inverse analysis

based on the "Wilkinson principle": the computed solution is assumed to be the exact solution of a nearby problem LAPACK, E. Anderson et al. 1999 PRECISE, F. Chaitin-Chatelin et al. 2000

 Methods based on algorithmic differentiation first order approximation of the global round-off error the CENA method, Ph. Langlois 2001

Round-off error analysis - 2/2 Several approaches

Interval arithmetic

guaranted bounds for each computed result XSC languages, U. Kulisch et al. 1990 INTLAB, S.M. Rump 1998 MPFI, N. Revol and F. Rouillier 2003

Probabilistic approach uses a random rounding mode the CESTAC method, M. La Porte and J. Vignes 1974 Monte Carlo Arithmetic, D.S. Parker 1997

- each arithmetical operation is performed *N* times using the random rounding mode
 ⇒ for each arithmetical operation, *N* results *R_i* are computed.
- computed result: $\overline{R} = \frac{1}{N} \sum_{i=1}^{N} R_i$.
- the number $C_{\overline{R}}$ of exact significant digits is estimated by

$$C_{\overline{R}} = log_{10}\left(\frac{\sqrt{N} |\overline{R}|}{s \tau_{\beta}}\right) \text{ with } s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (R_i - \overline{R})^2$$

 τ_{β} being the value of the Student distribution for N-1 degrees of freedom and a probability level $(1 - \beta)$.

In practice, N = 2 or N = 3 and $\beta = 0.05$.

J. Vignes, 1986

Definition

During the run of a code using the CESTAC method, a result R is a computational zero, denoted by @.0, if

$$\forall i, R_i = 0 \text{ or } C_{\overline{R}} \leq 0.$$

- synchronous implementation of the CESTAC method
- concept of computational zero
- \Rightarrow continuous or discrete stochastic arithmetic

Using the CESTAC method, the results of each arithmetical operation can be considered as realizations of a Gaussian random variable.

Definition

A stochastic number X is a Gaussian random variable denoted by (m, σ^2) , where *m* is the mean value of X and σ its standard deviation.

The number of significant digits common to all the elements of the confidence interval of *m* at $1 - \beta$ and to *m* is lower bounded by

$$C_{eta,X} = \log_{10}\left(rac{|m|}{\lambda_eta\sigma}
ight)$$

with $\beta = 0.05$, $\lambda_{\beta} \approx 1.96$.

Stochastic arithmetical operations

Definition

We define the elementary operations on two stochastic numbers $X_1 = (m_1, \sigma_1^2)$ and $X_2 = (m_2, \sigma_2^2)$ by: • $X_1 s + X_2 \stackrel{\text{def}}{=} \left(m_1 + m_2, \sigma_1^2 + \sigma_2^2 \right)$ • $X_1 s - X_2 \stackrel{\text{def}}{=} \left(m_1 - m_2, \sigma_1^2 + \sigma_2^2 \right)$ • $X_1 s \times X_2 \stackrel{\text{def}}{=} \left(m_1 * m_2, m_2^2 \sigma_1^2 + m_1^2 \sigma_2^2 \right)$ • $X_1 s / X_2 \stackrel{\text{def}}{=} \left(m_1 / m_2, \left(\frac{\sigma_1}{m_2} \right)^2 + \left(\frac{m_1 \sigma_2}{m_2^2} \right)^2 \right)$, with $m_2 \neq 0$.

They correspond to the first order terms in $\frac{\sigma}{m}$ of operations between two independent Gaussian random variables.

F. Jézéquel

The concept of stochastic zero

Definition

A stochastic number X is a stochastic zero, denoted by 0, if

$$X = (0,0)$$
 or $C_{\beta,X} \leq 0$.

In accordance with the concept of stochastic zero, a new equality concept and new order relations have been defined.

Definition

Let
$$X_1 = (m_1, \sigma_1^2)$$
 and $X_2 = (m_2, \sigma_2^2)$.

Stochastic equality, denoted by s=, is defined as:
 X₁ s= X₂ if and only if X₁ s- X₂ = 0.

- Stochastic inequalities, denoted by $s > \text{ and } s \ge$, are defined as: $X_1 s > X_2$ if and only if $m_1 > m_2$ and $X_1 s \ne X_2$,
 - $X_1 \ s \geq \ X_2$ if and only if $m_1 \geq m_2$ or $X_1 \ s = \ X_2$.

With DSA, a real number becomes an N-dimensional set.

Any operation on these *N*-dimensional sets is performed element per element using the random rounding mode.

By identifying $C_{\beta,X}$ and $C_{\overline{R}}$, an equality concept and order relations have been defined for DSA.

Theorem

Let X_i be the approximation in stochastic arithmetic of a mathematical value x_i such that its exact significant bits are those of x_i up to p_i (i = 1, 2).

Let \bigcirc be an arithmetical operator: $\bigcirc \in \{+, -, \times, /\}$ and $s \bigcirc$ the corresponding stochastic operator: $s \bigcirc \in \{s+, s-, s \times, s /\}.$

Then the exact significant bits of $X_1 \le X_2$ are those of the mathematical value $x_1 \bigcirc x_2$, up to $max(p_1, p_2)$.

- proved for stochastic operations
- used in practice for results obtained in DSA

DSA is implemented in the CADNA library.

A stochastic variable is an N-dimensional set of real numbers. Practically, N = 2 (or 3).

In Fortran 90, each stochastic variable A is represented by a structure consisting of 2 real variables : A%x and A%y.

Each stochastic operation $A \Omega B$ is overloaded as:

 $(A\%x,A\%y) \ \Omega \ (B\%x,B\%y) = (A\%x \ \omega \ B\%x \ , \ A\%y \ \omega \ B\%y)$

 ω : arithmetic operation rounded up or down with probability $\frac{1}{2}$.

Two types of versions of CADNA on parallel architectures:

- Numerical validation of parallel codes using PVM or MPI
- Parallelization of DSA to improve the performances of CADNA for sequential codes

(HDR J.-L. Lamotte 2004)

The problems :

vectorial processors do not always respect the IEEE standard

- NEC SX5 respects the IEEE standard,
- but not CRAY SV1.
- classical operation overloading inhibits vectorization,

Without the help of a vector preprocessor, we can only implement new array operators.

Run time (in seconds) of a code performing LU decomposition of a matrix of dimension 1000, without pivoting:

	classical code	with CADNA
PC (Pentium III-450)	73	199
CRAY SV1	7	395

static rounding modes:

- additions and subtractions are rounded to zero,
- multiplications and divisions are rounded to the nearest.

For a stochastic vector operation $C = A \Omega B$, the elements of C must be randomly rounded up or down.

The last bit in the mantissa is changed using **vector** logical operations and an array of random 0 or 1.

Without pivoting, the dimension of the matrix is 1000.

Although the CADNA library is inlined, the code has also been written with manual inlining of the array operators.

	Run time	Perf.	Cost
classical vector processor	7.1 s	94 Mflops	—
CADNA, scalar version	395 s	1.7 Mstops	56
CADNA, vector version	49 s	14 Mstops	7
with manual inlining	27 s	24 Mstops	3.8

Mstops means millions of stochastic operations per second.

A real-life example: the ORCA code

- numerical simulation of all the ocean streams
- about 50 000 line codes in 112 files

7 subroutines have been rewritten with the array formulation so that the vector version of CADNA can be used.

For 10 iterations, they represent 65 % of the global classical run and 57 % of the stochastic run on CRAY SV1.

For 10 time iterations,

in the 7 routines	Run time	Perf.	Cost
classical	32 s	210 Mflops	—
CADNA, scalar	2868 s	2.3 Mstops	90
CADNA, vector	568 s	11.8 Mstops	18

NEC SX5 respects the IEEE 754 standard \Rightarrow the 4 rounding modes defined in this standard are available.

The Fortran compiler has been updated in order to vectorize some derived type statements.

Memory optimization:

From an 8-byte word to another, a step of length 1 is performed. An even step-length is very time consuming.

In order to perform steps of odd length, stochastic arrays consist of:

- 2 real arrays in single precision
- 3 real arrays in double precision.

Let C = A * B, where A, B and C are stochastic arrays of size n.

To save a switch of the rounding mode, the following property is used. $u *^+ v = -((-u) *^- v)$ and $u *^- v = -((-u) *^+ v)$

A random logical array L is used.

where(L(1 : n)) C%x = A%x * B%x C%y = -((-A%y) * B%y)elsewhere C%y = A%y * B%y C%x = -((-A%x) * B%x)endwhere

$$C = \begin{pmatrix} C(1)\%x & C(1)\%y \\ C(2)\%x & C(2)\%y \\ C(3)\%x & C(3)\%y \\ C(4)\%x & C(4)\%y \\ \vdots & \vdots \\ C(n)\%x & C(n)\%y \end{pmatrix}$$

A code performing 1 600 000 multiplications of single precision arrays of size 500 runs at 276 MFlops.

F. Jézéquel

Let C = A * B, where A, B and C are stochastic arrays of size n.

To save a switch of the rounding mode, the following property is used. $u *^+ v = -((-u) *^- v)$ and $u *^- v = -((-u) *^+ v)$

A random logical array *L* is used.

 $\begin{array}{l} \text{where}(L(1:n)) \\ C_0^{\prime}x = A_0^{\prime}x * B_0^{\prime}x \\ C_0^{\prime}y = -((-A_0^{\prime}y) * B_0^{\prime}y) \\ \text{elsewhere} \\ C_0^{\prime}y = A_0^{\prime}y * B_0^{\prime}y \\ C_0^{\prime}x = -((-A_0^{\prime}x) * B_0^{\prime}x) \\ \text{endwhere} \end{array} \qquad \qquad C = \begin{pmatrix} C(1)_0^{\prime}x & C(1)_0^{\prime}y \\ C(2)_0^{\prime}x & C(2)_0^{\prime}y \\ C(3)_0^{\prime}x & C(2)_0^{\prime}y \\ C(3)_0^{\prime}x & C(3)_0^{\prime}y \\ C(4)_0^{\prime}x & C(4)_0^{\prime}y \\ \vdots & \vdots \\ C(n)_0^{\prime}x & C(n)_0^{\prime}y \end{pmatrix}$

A code performing 1 600 000 multiplications of single precision arrays of size 500 runs at 276 MFlops.

Inlining of an operation involving

- 2 arrays: since 2001
- scalar and arrays: since 2003

With a code performing 1 600 000 multiplications of double precision arrays of size 500:

	Run time	Perf.
Before update of 2001	13.0 s	62 Mstops
After update of 2001	3.5 s	229 Mstops
With global variable (instead of SIZE)	2.0 s	400 Mstops
With global variable and manual inlining	1.7 s	471 Mstops

Without pivoting, the dimension of the matrix is 1000:

	Run time	Perf.	Cost
classical vector processor	0.55 s	1.221 Gflops	_
CADNA, scalar version	1207 s	0.56 Mstops	2194
CADNA, vector version	13.5 s	50 Mstops	25
with manual inlining	1.3 s	501 Mstops	2.4

Still problems of inlining with instructions involving:

- > 2 variables
- ID sub-arrays of 2D arrays

F. Jézéquel, J.-M. Chesneaux, *For reliable and powerful scientifi c computations*, Scientifi c Computing, Validated Numerics, Interval Methods, 367-378, 2001.

F. Jézéquel

Dynamical control of approximation methods

10 Feb. 2005 22 / 48

Numerical accuracy of approximation methods

When an approximation L(h) such that $\lim_{h\to 0} L(h) = L$ is computed, it is affected by:

- a truncation error $e_m(h)$
- a round-off error $e_c(h)$.

If *h* decreases,
$$L(h)$$
: s exponent mantissa
 $\leftarrow e_c(h)$

As long as $e_c(h) < e_m(h)$, decreasing *h* brings reliable information to the mantissa.

The optimal step is reached when $e_c(h) \approx e_m(h)$.

How to determine dynamically the optimal step ?

2 Which digits in the approximation obtained are in common with L?

Definition

Let *a* and *b* be two real numbers, the number of significant digits that are common to *a* and *b* can be defined in \mathbb{R} by

• for
$$a \neq b$$
, $C_{a,b} = \log_{10} \left| \frac{a+b}{2(a-b)} \right|$,

$$\bigcirc$$
 $\forall a \in \mathbb{R}, \ C_{a,a} = +\infty.$

Example:

if a = 2.4599976 and b = 2.4600012, then $C_{a,b} \approx 5.8$.

Theorem

Let (I_n) be a sequence converging linearly to I, i.e. which satisfies $I_n - I = K\alpha^n + o(\alpha^n)$ where $K \in \mathbb{R}$ and $0 < |\alpha| < 1$, then

$$C_{I_n,I_{n+1}} = C_{I_n,I} + \log_{10}\left(\frac{1}{1-\alpha}\right) + o(1).$$

If the convergence zone is reached,

the significant decimal digits common to I_n and I_{n+1} , are those of I, up to $\log_{10}\left(\frac{1}{1-\alpha}\right)$.

If
$$-1 < \alpha \leq \frac{1}{2}$$
, then $-1 < \log_2\left(\frac{1}{1-\alpha}\right) \leq 1$.

In this case, the significant bits common to I_n and I_{n+1} are those of I, up to one.

Let us assume that the convergence zone is reached.

If $I_n - I_{n+1} = @.0$, the difference between I_n and I_{n+1} is due to round-off errors.

Further iterations are useless.

Consequently

- the optimal iterate I_{n+1} can be dynamically determined
- if $\alpha \leq \frac{1}{2}$, the exact significant bits of I_{n+1} are those of I, up to one.

F. Jézéquel, *Dynamical control of converging sequences computation*, Applied Numerical Mathematics, 50(2): 147-164, 2004.

F. Jézéquel

Dynamical control of approximation methods

Theorem

Let L(h) be an approximation of order p of L, i.e.

$$L(h) - L = Kh^{p} + O(h^{q})$$
 with $1 \leq p < q, K \in \mathbb{R}$.

If L_n is the approximation computed with the step $\frac{h_0}{2^n}$, then

$$C_{L_{n},L_{n+1}} = C_{L_{n},L} + \log_{10}\left(\frac{2^{p}}{2^{p}-1}\right) + \mathcal{O}\left(2^{n(p-q)}\right)$$

If the convergence zone is reached and $L_n - L_{n+1} = @.0$, the exact significant bits of L_{n+1} are those of *L*, up to one.

Dynamical control of the trapezoidal rule and Simpson's rule

Corollary

If I_n is the approximation of $I = \int_a^b f(x) dx$ computed with step $h = \frac{b-a}{2^n}$ using the trapezoidal rule or Simpson's rule, then

$$\mathsf{C}_{\mathit{I}_{n},\mathit{I}_{n+1}} = \mathsf{C}_{\mathit{I}_{n},\mathit{I}} + \log_{10}\left(eta
ight) + \mathcal{O}\left(rac{1}{4^{n}}
ight)$$

- trapezoidal rule: $\beta = \frac{4}{3}$ (p = 2)
- Simpson's rule: $\beta = \frac{16}{15}$ (p = 4)

If the convergence zone is reached and $I_n - I_{n+1} = @.0$, the exact significant bits of I_{n+1} are those of I, up to one.

J.-M. Chesneaux, F. Jézéquel, *Dynamical control of computations using the trapezoidal and Simpson's rules*, J. of Universal Computer Science, 4(1): 2-10, 1998.

F. Jézéquel

The Gauss-Legendre method

The approximation of $\int_{-1}^{1} f(x) dx$ by the Gauss-Legendre method with ν points is

$$\sum_{i=1}^{\nu} C_i f(x_i)$$

where for $i = 1, ..., \nu$,

{x_i} are the roots of the ν-degree Legendre polynomial P_ν
 C_i = 2/(1-x_i²)(P'_ν(x_i))².

For the computation of $I = \int_{a}^{b} g(t) dt$, a change of variable is required:

$$I = rac{(b-a)}{2} \, \int_{-1}^{1} g\left(rac{(b-a)x + (b+a)}{2}
ight) dx.$$

Dynamical control of the Gauss-Legendre method

Theorem

Let $I = \int_{a}^{b} g(t) dt$. If [a, b] is partitioned into 2^{n} subintervals of same length on which the Gauss-Legendre method with ν points is applied and I_{n} is the sum of the 2^{n} approximations obtained, then

$$I_n - I = \frac{K_\nu}{4^{n\nu}} + \mathcal{O}\left(\frac{1}{2^{n(2\nu+1)}}\right)$$

Corollary

$$C_{l_n,l_{n+1}} = C_{l_n,l} + log_{10}\left(\frac{4^{\nu}}{4^{\nu}-1}\right) + \mathcal{O}\left(\frac{1}{2^n}\right).$$

If the convergence zone is reached and $I_n - I_{n+1} = @.0$, the exact significant bits of I_{n+1} are those of I, up to one.

F. Jézéquel

Dynamical control of approximation methods

Romberg's method

The approximation of $I = \int_a^b f(x) dx$ with Romberg's method, requires the following computations $(h = \frac{b-a}{M}, M \ge 1)$:

$$\begin{array}{cccccccc} T_1(h) & T_1(\frac{h}{2}) & \dots & T_1(\frac{h}{2n-3}) & T_1(\frac{h}{2n-2}) & T_1(\frac{h}{2n-1}) \\ T_2(h) & T_2(\frac{h}{2}) & \dots & T_2(\frac{h}{2n-3}) & T_2(\frac{h}{2n-2}) \\ T_3(h) & T_3(\frac{h}{2}) & \dots & T_3(\frac{h}{2n-3}) \\ \vdots & \vdots \\ T_{n-1}(h) & T_{n-1}(\frac{h}{2}) \\ T_n(h) \end{array}$$

The first row is computed using the trapezoidal rule with step $\frac{h}{2^j}$. For r = 2, ..., n and j = 0, ..., n - r,

$$T_r\left(\frac{h}{2^j}\right) = \frac{1}{4^{r-1}-1} \left(4^{r-1}T_{r-1}\left(\frac{h}{2^{j+1}}\right) - T_{r-1}\left(\frac{h}{2^j}\right)\right)$$

Theorem

If $T_n(h)$ is the approximation of $I = \int_a^b f(x) dx$ computed with *n* iterations of Romberg's method using the initial step $h = \frac{b-a}{M}$, then

$$\mathbf{C}_{T_n(h),T_{n+1}(h)} = \mathbf{C}_{T_n(h),I} + \mathcal{O}\left(\frac{1}{n^2}\right).$$

If the convergence zone is reached and $T_n(h) - T_{n+1}(h) = @.0$, the exact significant digits of $T_{n+1}(h)$ are those of *I*.

- Let (u_m) be a sequence converging linearly to u.
- For all *m*, let $(u_{m,n})$ be a sequence converging linearly to u_m .

 $(u_{m,n})$ is computed until, in the convergence zone, the difference between two successive iterates is @.0.

Let U_m be the approximation of u_m obtained.

- \Rightarrow the bits common to u_m and u_{m+1} are those of u, up to p.
- \Rightarrow the exact significant bits of U_m are those of u_m , up to q.
- ⇒ if $U_m U_{m+1} = @.0$, the exact significant bits of U_{m+1} are those of *u*, up to *p*+*q*.

Dynamical control of integrals on an infi nite domain

Let
$$g = \int_0^\infty \phi(x) dx$$
 and $g_m = \sum_{j=0}^m f_j$ with $f_j = \int_{jL}^{(j+1)L} \phi(x) dx$.

We assume that (g_m) converges linearly to g.

An approximation of each integral can be computed in DSA, such that its exact significant bits are those of f_i , up to 1.

Let G_m be the approximation of g_m computed in DSA.

- \Rightarrow the exact significant bits of G_m are those of g_m , up to 1.
- ⇒ if the convergence zone is reached, the significant bits common to g_m and g_{m+1} are those of g, up to p.

⇒ if
$$G_m - G_{m+1} = @.0$$
,
the exact significant bits of G_{m+1} are those of g , up to $p+1$.

Dynamical control of multiple integrals computation

PhD M. Charikhi, Jan. 2005

$$f = \int_{\Omega} f(\mathbf{x}) d\mathbf{x}$$
 with $\Omega \subset {\rm I\!R}^{
m N}$

can be approximated by:

$$\mathsf{Q}[f] = \sum_{j=1}^{
u} a_j f(\mathbf{x_j}) ext{ with } a_j \in \mathbb{R} ext{ and } \mathbf{x_j} \in \Omega.$$

The approximation Q is called cubature formula if $N \ge 2$.

- polynomial-based methods
- Monte Carlo methods

Cubpack, R. Cools et al. 1992 VANI, C.-Y. Chen 1998 CLAVIS. S. Wedner 2000

F. Jézéquel

Approximation using the principle of "iterated integrals" Computation of 2-dimensional integrals

$$s = \int_{a}^{b} \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dx dy = \int_{a}^{b} g(x) dx$$
 with $g(x) = \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dy$.

 $\forall x \in [a, b]$, an approximation G(x) can be computed in DSA such that its exact significant bits are those of g(x), up to δ .

Let $S_n = \phi(\{G(x_i)\})$ be the approximation of *s* computed in DSA and $s_n = \phi(\{g(x_i)\})$.

- \Rightarrow the exact significant bits of S_n are those of s_n , up to δ
- ⇒ if the convergence zone is reached, the significant bits common to s_{n-1} and s_n are common with s, up to δ
- ⇒ if $S_{n-1} S_n = @.0$, the exact significant bits of S_n are those of *s*, up to 2 δ .

The exact significant bits of the approximation obtained are those of the mathematical value of the integral, up to $N\delta$.

- With Romberg's method, $\delta = 0$.
- With the trapezoidal rule, $N\delta$ represents:
 - one bit if *N* ≤ 2
 - one decimal digit if $N \leq 8$.
- With Simpson's rule, $N\delta$ represents one bit if $N \leq 35$.
- With the Gauss-Legendre method with 6 points, Nδ represents one bit if N ≤ 2838.

Computation of an integral involved in crystallography

$$g(a)=\int_0^{+\infty}f(x)dx,$$

with $f(x) = [\exp(x) + \exp(-x)]^a - \exp(ax) - \exp(-ax)$ and 0 < a < 2.

 $g(5/3) \approx 4.45$ (W. Harrison 1981) $g(5/3) \approx 4.6262911$ (SIAM review 1996)

g(a) can be expressed as a series expansion:

$$g(a) = \sum_{n=1}^{+\infty} \frac{\prod_{i=0}^{n-1} (a-i)}{(n!)(2n-a)} - \frac{1}{a}.$$

F. Jézéquel, J.-M. Chesneaux, *Computation of an infi nite integral using Romberg's method*, Numerical Algorithms, 36(3): 265-283, 2004.

F. Jézéquel

Dynamical control of approximation methods

Several numerical problems may occur in the computation of g(a):

- for high values of x, the computation of f(x) may generate cancellations,
- the upper bound of the integral is infinite,
- the quadrature method used, e.g. Romberg's method, generates both a truncation error and a round-off error.

In order to avoid cancellations, the same expression of the integrand is not used at both bounds of the interval.

$$g(a) \approx \int_{0}^{l} f_{1}(x) dx + \sum_{j=1}^{k} \int_{jl}^{(j+1)l} f_{2}(x) dx,$$

where $f_{1}(x) = \exp(ax) \left[(1 + \exp(-2x))^{a} - 1 - \exp(-2ax) \right]$
 $f_{2}(x) = \exp(ax)u(x) - \exp(-ax),$
 $u(x) = \lim_{n \to \infty} u_{n}(x)$ with $u_{n}(x) = \sum_{i=1}^{n-1} \frac{\exp(-2ix)}{i!} \prod_{j=0}^{i-1} (a-j).$

Dynamical choice of several parameters:

- *n* such that $u_n(x) \approx u(x)$
- k such that $\int_{I}^{kl} f_2(x) dx \approx \int_{I}^{\infty} f_2(x) dx$
- the number of iterations with Romberg's method

Computation of an integral involved in crystallography

Theoretical and numerical results

Proposition

One can compute an approximation G(a) such that its exact significant digits are those of g(a), up to $\delta = \log_{10} \left(\frac{2}{1 - \exp^{-/\min(a, 2-a)}} \right)$.

а	$\delta \approx$	g(a)	
0.5	0.34	exact:	-1.694426169587958E+000
010	0.0.	DSA:	-1.69442616958795E+000
5/3	0.39	exact:	4.626291111983995E+000
		DSA:	4.626291111983E+000
1.9999	3.6	exact:	1.999899986776092E+004
		DSA:	1.99989997358E+004

The exact significant digits of G(a) are in common with g(a), up to $\lceil \delta \rceil$.

F. Jézéquel

Study of an integral involved in the neutron star theory

$$\tau(\varepsilon, \mathbf{v}) = \frac{1}{\omega(\varepsilon)} \int_0^{\frac{\pi}{2}} d\theta \sin(\theta) \int_0^{\infty} dn \, n^2 \int_0^{\infty} dp \, h(n, p, \theta, \varepsilon, \mathbf{v})$$

 $(\varepsilon,\nu)\in[10^{-4},10^4]\times[10^{-4},10^3]$

 $\boldsymbol{\omega}$ is a normalization function

$$h(n, p, \theta, \varepsilon, v) = \psi(z)\Gamma(n - \varepsilon - z) + \psi(-z)\Gamma(n - \varepsilon + z) -\psi(z)\Gamma(n + \varepsilon - z) - \psi(z)\Gamma(n + \varepsilon + z)$$

with
$$z = \sqrt{p^2 + (v \sin(\theta))^2}$$
, $\psi(x) = \frac{1}{\exp(x)+1}$, $\Gamma(x) = \frac{x}{\exp(x)-1}$.

F. Jézéquel, F. Rico, J.-M. Chesneaux, M. Charikhi, *Reliable computation of a multiple integral involved in the neutron star theory*, submitted to "Mathematics and Computers in Simulation".

F. Jézéquel

Study of an integral involved in the neutron star theory Dynamical control of the computation

The numerical problems:

- two infinite bounds $\int_0^\infty \dots$ is replaced by $\sum_{j=0}^k \int_{jL}^{(j+1)L} \dots$ \Rightarrow Dynamical choice of k
- Γ(x) = x/exp(x)-1 generates cancellations if x ≈ 0.
 a series expansion of Γ(x) is used: Γ(x) ≈ 1/(1+x/2+...+xⁿ⁻¹/n!)
 ⇒ Dynamical choice of n
- With the principle of "iterated integrals", the Gauss-Legendre method is used and generates both a truncation error and a round-off error

 \Rightarrow Dynamical control of the Gauss-Legendre method

Study of an integral involved in the neutron star theory Dynamical control of the computation

The numerical problems:

- two infinite bounds $\int_0^\infty \dots$ is replaced by $\sum_{j=0}^k \int_{jL}^{(j+1)L} \dots$ \Rightarrow Dynamical choice of k
- $\Gamma(x) = \frac{x}{\exp(x)-1}$ generates cancellations if $x \approx 0$. a series expansion of $\Gamma(x)$ is used: $\Gamma(x) \approx \frac{1}{1 + \frac{x}{2} + ... + \frac{x^{n-1}}{n!}}$ \Rightarrow Dynamical choice of *n*
- With the principle of "iterated integrals", the Gauss-Legendre method is used and generates both a truncation error and a round-off error
 - \Rightarrow Dynamical control of the Gauss-Legendre method

 τ (ε , v) has been computed using DSA in single precision for 5752 points (ε , v) defined by:

$$\begin{cases} \varepsilon = 10^{a} \text{ with } a = -4.0, -3.9, -3.8, \dots, 4.0 \\ v = 10^{b} \text{ with } b = -4.0, -3.9, -3.8, \dots, 3.0. \end{cases}$$

The run time of the code varies from 45 s to 3347 s depending on the values of ε and v, the average run time being 389 s.

Study of an integral involved in the neutron star theory

Numerical quality of the approximations obtained

Proposition

One can compute an approximation of τ (ε , ν) such that its exact significant digits are those of τ (ε , ν), up to 2.

nb of exact significant digits	occurrence
	4
3	1
4	217
5	665
5	005
6	3347
7	1522

 \Rightarrow we can guarantee 1 to 5 significant digits in the results obtained.

Study of an integral involved in the neutron star theory Numerical results

Dynamical control of converging sequences computation

Let $u = \lim_{n \to \infty} u_n$. From two iterates in the convergence zone, one can determine the first digits of *u*.

If $u_n - u_{n+1} = @.0$, one can determine which exact significant digits of u_{n+1} are in common with u.

Combination of theoretical results if several sequences are involved

For the approximation of an integral, one has to take into account:

- the dimension of the integral
- the number of improper bounds
- the possible approximation of the integrand by its series expansion
- the convergence speed of the sequences involved

Conclusion and perspectives - 2/2

- Adaptive strategies
- Other approximation methods
- Approximation of multiple integrals
 - other cubature methods
 - singular integrals
 - Monte Carlo methods
- Dynamical control of vector sequences computation PhD R. Adout
 - acceleration of the restarted GMRES method
 - dynamical control of the dimension of the Krylov subspace
- Automatic methods for round-off error analysis
 - DSA for MATLAB
 - compiler with DSA features
 - linear algebra library
 - grid computing: new methodologies