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Round-off error analysis - 1/2
Several approaches

Direct analysis
estimation or bound of the direct error
running error analysis, J.H. Wilkinson 1971
SCALP, Ph. François 1989

Inverse analysis
based on the “ Wilkinson principle”: the computed solution is
assumed to be the exact solution of a nearby problem
LAPACK, E. Anderson et al. 1999
PRECISE, F. Chaitin-Chatelin et al. 2000

Methods based on algorithmic differentiation
first order approximation of the global round-off error
the CENA method, Ph. Langlois 2001
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Round-off error analysis - 2/2
Several approaches

Interval arithmetic
guaranted bounds for each computed result
XSC languages, U. Kulisch et al. 1990
INTLAB, S.M. Rump 1998
MPFI, N. Revol and F. Rouillier 2003

Probabilistic approach
uses a random rounding mode
the CESTAC method, M. La Porte and J. Vignes 1974
Monte Carlo Arithmetic, D.S. Parker 1997
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The CESTAC method

each arithmetical operation is performed N times using the
random rounding mode
⇒ for each arithmetical operation, N results Ri are computed.

computed result: R = 1
N

∑N
i=1 Ri .

the number CR of exact significant digits is estimated by

CR = log10

(√
N
∣

∣R
∣

∣

s τβ

)

with s2 =
1

N − 1

N
∑

i=1

(

Ri − R
)2

τβ being the value of the Student distribution for N − 1 degrees of
freedom and a probability level (1− β).

In practice, N = 2 or N = 3 and β = 0.05.

F. Jézéquel Dynamical control of approximation methods 10 Feb. 2005 5 / 48



The concept of computational zero

J. Vignes, 1986

Definition
During the run of a code using the CESTAC method, a result R is a
computational zero, denoted by @.0, if

∀i ,Ri = 0 or CR ≤ 0.

synchronous implementation of the CESTAC method

concept of computational zero

⇒ continuous or discrete stochastic arithmetic
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Continuous stochastic arithmetic

Using the CESTAC method, the results of each arithmetical operation
can be considered as realizations of a Gaussian random variable.

Definition
A stochastic number X is a Gaussian random variable denoted by
(

m, σ2
)

, where m is the mean value of X and σ its standard deviation.

The number of significant digits common to all the elements of the
confidence interval of m at 1− β and to m is lower bounded by

Cβ,X = log10

( |m|
λβσ

)

with β = 0.05, λβ ≈ 1.96.
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Stochastic arithmetical operations

Definition
We define the elementary operations on two stochastic numbers
X1 =

(

m1, σ
2
1

)

and X2 =
(

m2, σ
2
2

)

by:

X1s + X2
def
=

(

m1 + m2, σ
2
1 + σ2

2

)

X1s − X2
def
=

(

m1 −m2, σ
2
1 + σ2

2

)

X1s × X2
def
=

(

m1 ∗m2,m2
2σ

2
1 + m2

1σ
2
2

)

X1s/ X2
def
=

(

m1/m2,

(

σ1
m2

)2

+

(

m1σ2
m2

2

)2)

, with m2 6= 0.

They correspond to the first order terms in σ
m of operations between

two independent Gaussian random variables.
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The concept of stochastic zero

Definition
A stochastic number X is a stochastic zero, denoted by 0, if

X = (0,0) or Cβ,X ≤ 0.

In accordance with the concept of stochastic zero, a new equality
concept and new order relations have been defined.

Definition

Let X1 = (m1, σ
2
1) and X2 = (m2, σ

2
2).

Stochastic equality, denoted by s=, is defined as:
X1 s= X2 if and only if X1 s− X2 = 0.

Stochastic inequalities, denoted by s> and s≥, are defined as:
X1 s> X2 if and only if m1 > m2 and X1 s 6= X2,
X1 s≥ X2 if and only if m1 ≥ m2 or X1 s= X2.
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Discrete Stochastic Arithmetic (DSA)

With DSA, a real number becomes an N-dimensional set.

Any operation on these N-dimensional sets is performed element per
element using the random rounding mode.

By identifying Cβ,X and CR, an equality concept and order relations
have been defined for DSA.
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Control of stochastic operations

Theorem
Let Xi be the approximation in stochastic arithmetic of a mathematical
value xi such that its exact significant bits are those of xi up to pi

(i = 1,2).

Let© be an arithmetical operator: © ∈ {+,−,×, /}
and s© the corresponding stochastic operator:
s© ∈ {s+ , s− , s× , s/}.
Then the exact significant bits of X1 s© X2 are those of the
mathematical value x1© x2, up to max(p1,p2).

proved for stochastic operations

used in practice for results obtained in DSA
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DSA on scalar architectures

DSA is implemented in the CADNA library.

A stochastic variable is an N-dimensional set of real numbers.
Practically, N = 2 (or 3).

In Fortran 90, each stochastic variable A is represented by a structure
consisting of 2 real variables : A%x and A%y .

Each stochastic operation A Ω B is overloaded as:

(A%x ,A%y) Ω (B%x ,B%y) = (A%x ω B%x , A%y ω B%y)

ω: arithmetic operation rounded up or down with probability 1
2 .
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DSA on parallel architectures

Two types of versions of CADNA on parallel architectures:

Numerical validation of parallel codes
using PVM or MPI

Parallelization of DSA
to improve the performances of CADNA for sequential codes

(HDR J.-L. Lamotte 2004)
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DSA on vector architectures

The problems :
1 vectorial processors do not always respect the IEEE standard

NEC SX5 respects the IEEE standard,
but not CRAY SV1.

2 classical operation overloading inhibits vectorization,

Without the help of a vector preprocessor, we can only implement new
array operators.

Run time (in seconds) of a code performing LU decomposition of a
matrix of dimension 1000, without pivoting:

classical code with CADNA
PC (Pentium III-450) 73 199
CRAY SV1 7 395
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Array implementation on Cray SV1

static rounding modes:

additions and subtractions are rounded to zero,

multiplications and divisions are rounded to the nearest.

For a stochastic vector operation C = A Ω B, the elements of C must
be randomly rounded up or down.

The last bit in the mantissa is changed using vector logical operations
and an array of random 0 or 1.
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LU decomposition
on CRAY SV1

Without pivoting, the dimension of the matrix is 1000.

Although the CADNA library is inlined, the code has also been written
with manual inlining of the array operators.

Run time Perf. Cost
classical vector processor 7.1 s 94 Mflops −
CADNA, scalar version 395 s 1.7 Mstops 56
CADNA, vector version 49 s 14 Mstops 7
with manual inlining 27 s 24 Mstops 3.8

Mstops means millions of stochastic operations per second.
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A real-life example: the ORCA code

numerical simulation of all the ocean streams

about 50 000 line codes in 112 files

7 subroutines have been rewritten with the array formulation so that
the vector version of CADNA can be used.

For 10 iterations, they represent 65 % of the global classical run and
57 % of the stochastic run on CRAY SV1.

For 10 time iterations,

in the 7 routines Run time Perf. Cost
classical 32 s 210 Mflops −
CADNA, scalar 2868 s 2.3 Mstops 90
CADNA, vector 568 s 11.8 Mstops 18
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Array implementation on NEC SX5

NEC SX5 respects the IEEE 754 standard
⇒ the 4 rounding modes defined in this standard are available.

The Fortran compiler has been updated
in order to vectorize some derived type statements.

Memory optimization:

From an 8-byte word to another, a step of length 1 is performed.
An even step-length is very time consuming.

In order to perform steps of odd length, stochastic arrays consist of:

2 real arrays in single precision

3 real arrays in double precision.
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Implementation of stochastic operations
Example: the stochastic multiplication

Let C = A ∗ B, where A, B and C are stochastic arrays of size n.

To save a switch of the rounding mode, the following property is used.
u ∗+ v = −((−u) ∗− v) and u ∗− v = −((−u) ∗+ v)

A random logical array L is used.

where(L(1 : n))
C%x = A%x ∗ B%x
C%y = −((−A%y) ∗ B%y)

elsewhere C =



















C(1)%x C(1)%y
C(2)%x C(2)%y
C(3)%x C(3)%y
C(4)%x C(4)%y

...
...

C(n)%x C(n)%y



















C%y = A%y ∗ B%y
C%x = −((−A%x) ∗ B%x)
endwhere

A code performing 1 600 000 multiplications of single precision arrays
of size 500 runs at 276 MFlops.
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Updates of the Fortran compiler on NEC SX5

Inlining of an operation involving

2 arrays: since 2001

scalar and arrays: since 2003

With a code performing 1 600 000 multiplications of double precision
arrays of size 500:

Run time Perf.
Before update of 2001 13.0 s 62 Mstops
After update of 2001 3.5 s 229 Mstops
With global variable (instead of SIZE) 2.0 s 400 Mstops
With global variable and manual inlining 1.7 s 471 Mstops

F. Jézéquel Dynamical control of approximation methods 10 Feb. 2005 21 / 48



LU decomposition
on NEC SX5

Without pivoting, the dimension of the matrix is 1000:

Run time Perf. Cost
classical vector processor 0.55 s 1.221 Gflops −
CADNA, scalar version 1207 s 0.56 Mstops 2194
CADNA, vector version 13.5 s 50 Mstops 25
with manual inlining 1.3 s 501 Mstops 2.4

Still problems of inlining with instructions involving:
> 2 variables
1D sub-arrays of 2D arrays

F. Jézéquel, J.-M. Chesneaux, For reliable and powerful scientific computations,

Scientific Computing, Validated Numerics, Interval Methods, 367-378, 2001.
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Numerical accuracy of approximation methods

When an approximation L(h) such that lim
h→0

L(h) = L is computed, it is

affected by:

a truncation error em(h)

a round-off error ec(h).

em(h) −→
If h decreases, L(h): s exponent mantissa

←− ec(h)

As long as ec(h) < em(h), decreasing h brings reliable information to
the mantissa.

The optimal step is reached when ec(h) ≈ em(h).

1 How to determine dynamically the optimal step ?
2 Which digits in the approximation obtained are in common with L ?
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Significant digits common to two real numbers

Definition
Let a and b be two real numbers, the number of significant digits that
are common to a and b can be defined in IR by

1 for a 6= b, Ca,b = log10

∣

∣

∣

∣

a + b
2(a− b)

∣

∣

∣

∣

,

2 ∀a ∈ IR, Ca,a = +∞.

Example:
if a = 2.4599976 and b = 2.4600012, then Ca,b ≈ 5.8.
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On sequences with a linear convergence

Theorem

Let (In) be a sequence converging linearly to I, i.e. which satisfies
In − I = Kαn + o(αn) where K ∈ IR and 0 < |α| < 1, then

CIn,In+1
= CIn,I + log10

(

1
1− α

)

+ o (1) .

If the convergence zone is reached,
the significant decimal digits common to In and In+1, are those of I, up

to log10

(

1
1−α

)

.

If −1 < α ≤ 1
2 , then −1 < log2

(

1
1−α

)

≤ 1.

In this case, the significant bits common to In and In+1 are those of I,
up to one.
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Applications in DSA

Let us assume that the convergence zone is reached.

If In − In+1 = @.0,
the difference between In and In+1 is due to round-off errors.

Further iterations are useless.

Consequently

the optimal iterate In+1 can be dynamically determined

if α ≤ 1
2 , the exact significant bits of In+1 are those of I, up to one.

F. Jézéquel, Dynamical control of converging sequences computation, Applied

Numerical Mathematics, 50(2): 147-164, 2004.
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Dynamical control of approximation methods

Theorem
Let L(h) be an approximation of order p of L, i.e.

L(h)− L = Khp +O (hq) with 1 ≤ p < q, K ∈ IR.

If Ln is the approximation computed with the step h0
2n , then

CLn,Ln+1
= CLn,L + log10

(

2p

2p − 1

)

+O
(

2n(p−q)
)

.

If the convergence zone is reached and Ln − Ln+1 = @.0, the exact
significant bits of Ln+1 are those of L, up to one.
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Dynamical control of the trapezoidal rule and
Simpson’s rule

Corollary

If In is the approximation of I =
∫ b

a f (x)dx computed with step h = b−a
2n

using the trapezoidal rule or Simpson’s rule, then

CIn,In+1
= CIn,I + log10 (β) +O

(

1
4n

)

trapezoidal rule: β = 4
3 (p = 2)

Simpson’s rule: β = 16
15 (p = 4)

If the convergence zone is reached and In − In+1 = @.0, the exact
significant bits of In+1 are those of I, up to one.

J.-M. Chesneaux, F. Jézéquel, Dynamical control of computations using the

trapezoidal and Simpson’s rules, J. of Universal Computer Science, 4(1): 2-10, 1998.
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The Gauss-Legendre method

The approximation of
∫ 1

−1
f (x)dx by the Gauss-Legendre method with

ν points is
ν
∑

i=1

Ci f (xi)

where for i = 1, ..., ν,

{xi} are the roots of the ν-degree Legendre polynomial Pν

Ci = 2
(1−x2

i )(P′

ν
(xi ))2 .

For the computation of I =

∫ b

a
g(t)dt , a change of variable is required:

I =
(b − a)

2

∫ 1

−1
g
(

(b − a)x + (b + a)

2

)

dx .
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Dynamical control of the Gauss-Legendre method

Theorem

Let I =
∫ b

a g(t)dt.
If [a,b] is partitioned into 2n subintervals of same length on which the
Gauss-Legendre method with ν points is applied
and In is the sum of the 2n approximations obtained, then

In − I =
Kν

4nν
+O

(

1
2n(2ν+1)

)

Corollary

CIn,In+1
= CIn,I + log10

(

4ν

4ν − 1

)

+O
(

1
2n

)

.

If the convergence zone is reached and In − In+1 = @.0, the exact
significant bits of In+1 are those of I, up to one.
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Romberg’s method

The approximation of I =
∫ b

a f (x)dx with Romberg’s method, requires
the following computations (h = b−a

M , M ≥ 1):

T1(h) T1(
h
2 ) ....... T1(

h
2n−3 ) T1(

h
2n−2 ) T1(

h
2n−1 )

T2(h) T2(
h
2 ) ....... T2(

h
2n−3 ) T2(

h
2n−2 )

T3(h) T3(
h
2 ) ....... T3(

h
2n−3 )

...
...

Tn−1(h) Tn−1(
h
2)

Tn(h)

The first row is computed using the trapezoidal rule with step h
2j .

For r = 2, ...,n and j = 0, ...,n − r ,

Tr

(

h
2j

)

=
1

4r−1 − 1

(

4r−1Tr−1

(

h
2j+1

)

− Tr−1

(

h
2j

))

.
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Dynamical control of Romberg’s method

Theorem

If Tn(h) is the approximation of I =
∫ b

a f (x)dx computed with n
iterations of Romberg’s method using the initial step h = b−a

M , then

CTn(h),Tn+1(h) = CTn(h),I +O
(

1
n2

)

.

If the convergence zone is reached and Tn(h)− Tn+1(h) = @.0, the
exact significant digits of Tn+1(h) are those of I.
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Dynamical control of combined sequences

Let (um) be a sequence converging linearly to u.

For all m, let (um,n) be a sequence converging linearly to um.

(um,n) is computed until, in the convergence zone, the difference
between two successive iterates is @.0.

Let Um be the approximation of um obtained.

⇒ the bits common to um and um+1 are those of u, up to p.

⇒ the exact significant bits of Um are those of um, up to q.

⇒ if Um − Um+1 = @.0,
the exact significant bits of Um+1 are those of u, up to p +q.
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Dynamical control of integrals on an infinite domain

Let g =

∫

∞

0
φ(x)dx and gm =

m
∑

j=0

fj with fj =

∫ (j+1)L

jL
φ(x)dx .

We assume that (gm) converges linearly to g.

An approximation of each integral can be computed in DSA,
such that its exact significant bits are those of fj , up to 1.

Let Gm be the approximation of gm computed in DSA.

⇒ the exact significant bits of Gm are those of gm, up to 1.

⇒ if the convergence zone is reached,
the significant bits common to gm and gm+1 are those of g, up to p.

⇒ if Gm −Gm+1 = @.0,
the exact significant bits of Gm+1 are those of g, up to p+1.
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Dynamical control of multiple integrals computation

PhD M. Charikhi, Jan. 2005

I =

∫

Ω
f (x)dx with Ω ⊂ IRN

can be approximated by:

Q[f ] =

ν
∑

j=1

aj f (xj) with aj ∈ IR and xj ∈ Ω.

The approximation Q is called cubature formula if N ≥ 2.

polynomial-based methods

Monte Carlo methods

Cubpack, R. Cools et al. 1992
VANI, C.-Y. Chen 1998
CLAVIS, S. Wedner 2000
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Approximation using the principle of “iterated integrals”
Computation of 2-dimensional integrals

s =

∫ b

a

∫ y2(x)

y1(x)
f (x , y)dxdy =

∫ b

a
g(x)dx with g(x) =

∫ y2(x)

y1(x)
f (x , y)dy .

∀x ∈ [a,b], an approximation G(x) can be computed in DSA such that
its exact significant bits are those of g(x), up to δ.

Let Sn = φ({G(xi )}) be the approximation of s computed in DSA
and sn = φ({g(xi)}).

⇒ the exact significant bits of Sn are those of sn, up to δ

⇒ if the convergence zone is reached, the significant bits common to
sn−1 and sn are common with s, up to δ

⇒ if Sn−1 − Sn = @.0,
the exact significant bits of Sn are those of s, up to 2δ.
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Approximation using the principle of “iterated integrals”
Computation of N-dimensional integrals

The exact significant bits of the approximation obtained are those of
the mathematical value of the integral, up to Nδ.

With Romberg’s method, δ = 0.

With the trapezoidal rule, Nδ represents:
one bit if N ≤ 2
one decimal digit if N ≤ 8.

With Simpson’s rule, Nδ represents one bit if N ≤ 35.

With the Gauss-Legendre method with 6 points, Nδ represents
one bit if N ≤ 2838.
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Computation of an integral involved in crystallography

g(a) =

∫ +∞

0
f (x)dx ,

with f (x) = [exp(x) + exp(−x)]a − exp(ax)− exp(−ax) and 0 < a < 2.

g(5/3) ≈ 4.45 (W. Harrison 1981)
g(5/3) ≈ 4.6262911 (SIAM review 1996)

g(a) can be expressed as a series expansion:

g(a) =
+∞
∑

n=1

Πn−1
i=0 (a− i)

(n!)(2n − a)
− 1

a
.

F. Jézéquel, J.-M. Chesneaux, Computation of an infinite integral using Romberg’s

method, Numerical Algorithms, 36(3): 265-283, 2004.
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Computation of an integral involved in crystallography
The numerical problems

Several numerical problems may occur in the computation of g(a):

for high values of x , the computation of f (x) may generate
cancellations,

the upper bound of the integral is infinite,

the quadrature method used, e.g. Romberg’s method, generates
both a truncation error and a round-off error.
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Computation of an integral involved in crystallography
Dynamical control of the computation

In order to avoid cancellations, the same expression of the integrand is
not used at both bounds of the interval.

g(a) ≈
∫ l

0
f1(x)dx +

k
∑

j=1

∫ (j+1)l

jl
f2(x)dx ,

where f1(x) = exp(ax)
[

(1 + exp(−2x))a − 1− exp(−2ax)
]

f2(x) = exp(ax)u(x)− exp(−ax),

u(x) = lim
n→∞

un(x) with un(x) =

n−1
∑

i=1

exp(−2ix)

i!
Πi−1

j=0(a− j).

Dynamical choice of several parameters:

n such that un(x) ≈ u(x)

k such that
∫ kl

l f2(x)dx ≈
∫

∞

l f2(x)dx
the number of iterations with Romberg’s method
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Computation of an integral involved in crystallography
Theoretical and numerical results

Proposition

One can compute an approximation G(a) such that its exact significant

digits are those of g(a), up to δ = log10

(

2
1−exp−l min(a,2−a)

)

.

a δ ≈ g(a)

0.5 0.34 exact: -1.694426169587958E+000
DSA: -1.69442616958795E+000

5/3 0.39 exact: 4.626291111983995E+000
DSA: 4.626291111983E+000

1.9999 3.6 exact: 1.999899986776092E+004
DSA: 1.99989997358E+004

The exact significant digits of G(a) are in common with g(a), up to dδe.
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Study of an integral involved in the neutron star theory

τ (ε, v) =
1

ω (ε)

∫ π

2

0
dθ sin (θ)

∫

∞

0
dn n2

∫

∞

0
dp h (n,p, θ, ε, v)

(ε, v) ∈ [10−4,104]× [10−4,103]

ω is a normalization function

h (n,p, θ, ε, v) = ψ(z)Γ(n − ε− z) + ψ(−z)Γ(n − ε+ z)
−ψ(z)Γ(n + ε− z)− ψ(z)Γ(n + ε+ z)

with z =

√

p2 + (v sin(θ))2, ψ(x) = 1
exp(x)+1 , Γ(x) = x

exp(x)−1 .

F. Jézéquel, F. Rico, J.-M. Chesneaux, M. Charikhi, Reliable computation of a multiple

integral involved in the neutron star theory, submitted to “Mathematics and Computers

in Simulation”.
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Study of an integral involved in the neutron star theory
Dynamical control of the computation

The numerical problems:

two infinite bounds
∫

∞

0 ... is replaced by
∑k

j=0

∫ (j+1)L
jL ...

⇒ Dynamical choice of k

Γ(x) = x
exp(x)−1 generates cancellations if x ≈ 0.

a series expansion of Γ(x) is used: Γ(x) ≈ 1

1+ x
2 +...+ xn−1

n!

⇒ Dynamical choice of n

With the principle of “iterated integrals”, the Gauss-Legendre
method is used and generates both a truncation error and a
round-off error
⇒ Dynamical control of the Gauss-Legendre method
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Study of an integral involved in the neutron star theory
Computation in single precision

τ (ε, v) has been computed using DSA in single precision for 5752
points (ε, v) defined by:

{

ε = 10a with a = −4.0,−3.9,−3.8, . . . ,4.0
v = 10b with b = −4.0,−3.9,−3.8, . . . ,3.0.

The run time of the code varies from 45 s to 3347 s depending on the
values of ε and v , the average run time being 389 s.
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Study of an integral involved in the neutron star theory
Numerical quality of the approximations obtained

Proposition
One can compute an approximation of τ (ε, v) such that its exact
significant digits are those of τ (ε, v), up to 2.

nb. of exact significant digits occurrence
3 1
4 217
5 665
6 3347
7 1522

⇒ we can guarantee 1 to 5 significant digits in the results obtained.
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Study of an integral involved in the neutron star theory
Numerical results

P
S
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Conclusion and perspectives - 1/2

Dynamical control of converging sequences computation

Let u = lim
n→∞

un. From two iterates in the convergence zone, one can

determine the first digits of u.

If un − un+1 = @.0, one can determine which exact significant digits of
un+1 are in common with u.

Combination of theoretical results if several sequences are involved

For the approximation of an integral, one has to take into account:

the dimension of the integral

the number of improper bounds

the possible approximation of the integrand by its series expansion

the convergence speed of the sequences involved
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Conclusion and perspectives - 2/2

Adaptive strategies

Other approximation methods

Approximation of multiple integrals
other cubature methods
singular integrals
Monte Carlo methods

Dynamical control of vector sequences computation
PhD R. Adout

acceleration of the restarted GMRES method
dynamical control of the dimension of the Krylov subspace

Automatic methods for round-off error analysis
DSA for MATLAB
compiler with DSA features
linear algebra library
grid computing: new methodologies
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