Contrôle dynamique de méthodes d’approximation

Fabienne Jézéquel
Laboratoire d’Informatique de Paris 6

ARINEWS, ENS Lyon, 7-8 mars 2005
Numerical accuracy of approximation methods

When an approximation $L(h)$ such that $\lim_{h \to 0} L(h) = L$ is computed, it is affected by:

- a truncation error $e_m(h)$
- a round-off error $e_c(h)$.

If h decreases, $L(h)$:

```
<table>
<thead>
<tr>
<th>exponent</th>
<th>mantissa</th>
</tr>
</thead>
</table>
```

As long as $e_c(h) < e_m(h)$, decreasing h brings reliable information to the mantissa.

The optimal step is reached when $e_c(h) \approx e_m(h)$.

1. How to determine dynamically the optimal step?
2. Which digits in the approximation obtained are in common with L?
Stochastic approach of round-off errors

- the CESTAC method
- the concept of computational zero

⇒ Continuous stochastic arithmetic: $X = (m, \sigma^2)$
⇒ Discrete stochastic arithmetic: $X = (X_1, X_2, ..., X_N)$
Significant digits common to two real numbers

Definition

Let a and b be two real numbers, the number of significant digits that are common to a and b can be defined in \mathbb{R} by

1. for $a \neq b$, $C_{a,b} = \log_{10} \left| \frac{a + b}{2(a - b)} \right|$,
2. $\forall a \in \mathbb{R}$, $C_{a,a} = +\infty$.

Example:
if $a = 2.4599976$ and $b = 2.4600012$, then $C_{a,b} \approx 5.8$.

F. Jézéquel
Dynamical control of approximation methods
7-8 Mar. 2005 4 / 23
On sequences with a linear convergence

Theorem

Let \((I_n)\) be a sequence converging linearly to \(I\), i.e. which satisfies
\[
I_n - I = K \alpha^n + o(\alpha^n)
\]
where \(K \in \mathbb{R}\) and \(0 < |\alpha| < 1\), then

\[
C_{I_n, I_{n+1}} = C_{I_n, I} + \log_{10} \left(\frac{1}{1 - \alpha} \right) + o(1).
\]

If the convergence zone is reached, the significant decimal digits common to \(I_n\) and \(I_{n+1}\), are those of \(I\), up to \(\log_{10} \left(\frac{1}{1 - \alpha} \right)\).

If \(-1 < \alpha \leq \frac{1}{2}\), then
\[-1 < \log_2 \left(\frac{1}{1 - \alpha} \right) \leq 1.
\]
In this case, the significant bits common to \(I_n\) and \(I_{n+1}\) are those of \(I\), up to one.
Let us assume that the convergence zone is reached.

If \(I_n - I_{n+1} = @.0 \), the difference between \(I_n \) and \(I_{n+1} \) is due to round-off errors.

Further iterations are useless.

Consequently

- the optimal iterate \(I_{n+1} \) can be dynamically determined
- if \(\alpha \leq \frac{1}{2} \), the exact significant bits of \(I_{n+1} \) are those of \(I \), up to one.

Dynamical control of approximation methods

Theorem

Let \(L(h) \) be an approximation of order \(p \) of \(L \), i.e.

\[
L(h) - L = Kh^p + \mathcal{O}(h^q) \quad \text{with} \quad 1 \leq p < q, \quad K \in \mathbb{R}.
\]

If \(L_n \) is the approximation computed with the step \(\frac{h_0}{2^n} \), then

\[
C_{L_n,L_{n+1}} = C_{L_n,L} + \log_{10} \left(\frac{2^p}{2^p - 1} \right) + \mathcal{O} \left(2^{n(p-q)} \right).
\]

If the convergence zone is reached and \(L_n - L_{n+1} = \circ.0 \), the exact significant bits of \(L_{n+1} \) are those of \(L \), up to one.
Theorem

Let X_i be the approximation in stochastic arithmetic of a mathematical value x_i such that its exact significant bits are those of x_i up to p_i ($i = 1, 2$).

Let \circ be an arithmetical operator: $\circ \in \{+, -, \times, /\}$ and $s\circ$ the corresponding stochastic operator: $s\circ \in \{s+, s-, s\times, s/\}$.

Then the exact significant bits of $X_1 \circ X_2$ are those of the mathematical value $x_1 \circ x_2$, up to $\max(p_1, p_2)$.

proved for stochastic operations

used in practice for results obtained in DSA

Let $g = \int_{0}^{\infty} \phi(x)dx$ and $g_m = \sum_{j=0}^{m} f_j$ with $f_j = \int_{jL}^{(j+1)L} \phi(x)dx$.

We assume that (g_m) converges linearly to g.

An approximation of each integral can be computed in DSA, such that its exact significant bits are those of f_j, up to 1.

Let G_m be the approximation of g_m computed in DSA.

\Rightarrow the exact significant bits of G_m are those of g_m, up to 1.

\Rightarrow if the convergence zone is reached, the significant bits common to g_m and g_{m+1} are those of g, up to p.

\Rightarrow if $G_m - G_{m+1} = @.0$, the exact significant bits of G_{m+1} are those of g, up to $p+1$.
\[I = \int_{\Omega} f(\mathbf{x}) d\mathbf{x} \quad \text{with} \quad \Omega \subset \mathbb{R}^N \]

The approximation \(Q \) is called \textbf{cubature formula} if \(N \geq 2 \).

- polynomial-based methods
- Monte Carlo methods

Cubpack, R. Cools et al. 1992
VANI, C.-Y. Chen 1998
CLAVIS, S. Wedner 2000
Approximation using the principle of “iterated integrals”

Computation of 2-dimensional integrals

\[s = \int_a^b \int_{y_1(x)}^{y_2(x)} f(x, y) \, dx \, dy = \int_a^b g(x) \, dx \] with \[g(x) = \int_{y_1(x)}^{y_2(x)} f(x, y) \, dy. \]

\(\forall x \in [a, b] \), an approximation \(G(x) \) can be computed in DSA such that its exact significant bits are those of \(g(x) \), up to \(\delta \).

Let \(S_n = \phi(\{ G(x_i) \}) \) be the approximation of \(s \) computed in DSA and \(s_n = \phi(\{ g(x_i) \}) \).

\[\Rightarrow \] the exact significant bits of \(S_n \) are those of \(s_n \), up to \(\delta \)

\[\Rightarrow \] if the convergence zone is reached, the significant bits common to \(s_{n-1} \) and \(s_n \) are common with \(s \), up to \(\delta \)

\[\Rightarrow \] if \(S_{n-1} = S_n = \@.0 \), the exact significant bits of \(S_n \) are those of \(s \), up to \(2\delta \).
The exact significant bits of the approximation obtained are those of the mathematical value of the integral, up to $N\delta$.

- With Romberg’s method, $\delta = 0$.

- With the trapezoidal rule, $N\delta$ represents:
 - one bit if $N \leq 2$
 - one decimal digit if $N \leq 8$.

- With Simpson’s rule, $N\delta$ represents one bit if $N \leq 35$.

- With the Gauss-Legendre method with 6 points, $N\delta$ represents one bit if $N \leq 2838$.
Computation of an integral involved in crystallography

\[g(a) = \int_0^{+\infty} f(x) \, dx, \]

with \(f(x) = [\exp(x) + \exp(-x)]^a - \exp(ax) - \exp(-ax) \) and \(0 < a < 2 \).

\[g(5/3) \approx 4.45 \text{ (W. Harrison 1981)} \]
\[g(5/3) \approx 4.6262911 \text{ (SIAM review 1996)} \]

\(g(a) \) can be expressed as a series expansion:

\[g(a) = \sum_{n=1}^{+\infty} \frac{\prod_{i=0}^{n-1} (a - i)}{(n!)(2n - a)} - \frac{1}{a}. \]

Several numerical problems may occur in the computation of $g(a)$:

- for high values of x, the computation of $f(x)$ may generate cancellations,
- the upper bound of the integral is infinite,
- the quadrature method used, e.g. Romberg’s method, generates both a truncation error and a round-off error.
In order to avoid cancellations, the same expression of the integrand is not used at both bounds of the interval.

\[g(a) \approx \int_0^l f_1(x) \, dx + \sum_{j=1}^k \int_{j}^{(j+1)l} f_2(x) \, dx, \]

where \(f_1(x) = \exp(ax) \left[(1 + \exp(-2x))^a - 1 - \exp(-2ax) \right] \)
\(f_2(x) = \exp(ax)u(x) - \exp(-ax), \)

\[u(x) = \lim_{n \to \infty} u_n(x) \text{ with } u_n(x) = \sum_{i=1}^{n-1} \frac{\exp(-2ix)}{i!} \prod_{j=0}^{i-1}(a - j). \]

Dynamical choice of several parameters:

- \(n \) such that \(u_n(x) \approx u(x) \)
- \(k \) such that \(\int_k^l f_2(x) \, dx \approx \int_l^\infty f_2(x) \, dx \)
- the number of iterations with Romberg’s method
Computation of an integral involved in crystallography
Theoretical and numerical results

Proposition

One can compute an approximation $G(a)$ such that its exact significant digits are those of $g(a)$, up to $\delta = \log_{10} \left(\frac{2}{1- \exp^{-\min(a,2-a)}} \right)$.

<table>
<thead>
<tr>
<th>a</th>
<th>$\delta \approx$</th>
<th>$g(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.34</td>
<td>exact: $-1.694426169587958E+000$
DSA: $-1.694426169587958E+000$</td>
</tr>
<tr>
<td>5/3</td>
<td>0.39</td>
<td>exact: $4.626291111983995E+000$
DSA: $4.626291111983995E+000$</td>
</tr>
<tr>
<td>1.9999</td>
<td>3.6</td>
<td>exact: $1.999899986776092E+004$
DSA: $1.99989997358E+004$</td>
</tr>
</tbody>
</table>

The exact significant digits of $G(a)$ are in common with $g(a)$, up to $[\delta]$.
\[\tau(\varepsilon, \nu) = \frac{1}{\omega(\varepsilon)} \int_0^{\frac{\pi}{2}} d\theta \sin(\theta) \int_0^{\infty} dn \int_0^{\infty} dp \ h(n, p, \theta, \varepsilon, \nu) \]

\[(\varepsilon, \nu) \in [10^{-4}, 10^{4}] \times [10^{-4}, 10^{3}] \]

\(\omega \) is a normalization function

\[h(n, p, \theta, \varepsilon, \nu) = \psi(z)\Gamma(n - \varepsilon - z) + \psi(-z)\Gamma(n - \varepsilon + z) \]
\[-\psi(z)\Gamma(n + \varepsilon - z) - \psi(z)\Gamma(n + \varepsilon + z) \]

with \(z = \sqrt{p^2 + (\nu \sin(\theta))^2} \), \(\psi(x) = \frac{1}{\exp(x) + 1} \), \(\Gamma(x) = \frac{x}{\exp(x) - 1} \).

Study of an integral involved in the neutron star theory

Dynamical control of the computation

The numerical problems:

- two infinite bounds
 \[\int_0^\infty \ldots \text{ is replaced by } \sum_{j=0}^{k} \int_{jL}^{(j+1)L} \ldots \]
 \[\Rightarrow \text{ Dynamical choice of } k \]

- \(\Gamma(x) = \frac{x}{\exp(x) - 1} \) generates cancellations if \(x \approx 0 \).

 a series expansion of \(\Gamma(x) \) is used:
 \[\Gamma(x) \approx \frac{1}{1 + \frac{x}{2} + \ldots + \frac{x^{n-1}}{n!}} \]
 \[\Rightarrow \text{ Dynamical choice of } n \]

- With the principle of “iterated integrals”, the Gauss-Legendre method is used and generates both a truncation error and a round-off error
 \[\Rightarrow \text{ Dynamical control of the Gauss-Legendre method} \]
The numerical problems:

- two infinite bounds
 \[\int_0^\infty \ldots \text{is replaced by} \sum_{j=0}^k \int_{jL}^{(j+1)L} \ldots \]
 ⇒ Dynamical choice of \(k \)

- \(\Gamma(x) = \frac{x}{\exp(x) - 1} \) generates cancellations if \(x \approx 0 \).
 a series expansion of \(\Gamma(x) \) is used: \(\Gamma(x) \approx \frac{1}{1 + \frac{x}{2} + \ldots + \frac{x^{n-1}}{n!}} \)
 ⇒ Dynamical choice of \(n \)

With the principle of “iterated integrals”, the Gauss-Legendre method is used and generates both a truncation error and a round-off error
 ⇒ Dynamical control of the Gauss-Legendre method
\(\tau (\varepsilon, \nu) \) has been computed using DSA in single precision for 5752 points \((\varepsilon, \nu)\) defined by:

\[
\begin{align*}
\varepsilon &= 10^a \quad \text{with} \quad a = -4.0, -3.9, -3.8, \ldots, 4.0 \\
\nu &= 10^b \quad \text{with} \quad b = -4.0, -3.9, -3.8, \ldots, 3.0.
\end{align*}
\]

The run time of the code varies from 45 s to 3347 s depending on the values of \(\varepsilon\) and \(\nu\), the average run time being 389 s.
Numerical quality of the approximations obtained

Proposition

One can compute an approximation of $\tau (\varepsilon, \nu)$ such that its exact significant digits are those of $\tau (\varepsilon, \nu)$, up to 2.

<table>
<thead>
<tr>
<th>nb. of exact significant digits</th>
<th>occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>217</td>
</tr>
<tr>
<td>5</td>
<td>665</td>
</tr>
<tr>
<td>6</td>
<td>3347</td>
</tr>
<tr>
<td>7</td>
<td>1522</td>
</tr>
</tbody>
</table>

\Rightarrow we can guarantee 1 to 5 significant digits in the results obtained.
Study of an integral involved in the neutron star theory

Numerical results

\[\tau(\varepsilon, V) \]
Dynamical control of converging sequences computation

Let \(u = \lim_{n \to \infty} u_n \). From two iterates in the convergence zone, one can determine the first digits of \(u \).

If \(u_n - u_{n+1} = 0.0 \), one can determine which significant digits of \(u_{n+1} \) are in common with \(u \).

Combination of theoretical results if several sequences are involved

For the approximation of an integral, one has to take into account:

- the dimension of the integral
- the number of improper bounds
- the possible approximation of the integrand by its series expansion
- the convergence speed of the sequences involved
Conclusion and perspectives - 2/2

- Adaptive strategies
- Other approximation methods
 - Approximation of multiple integrals
 - other cubature methods
 - singular integrals
 - Monte Carlo methods
 - Other approximation methods
 - Dynamical control of vector sequences computation
 - PhD R. Adout
 - acceleration of the restarted GMRES method
 - dynamical control of the dimension of the Krylov subspace
- Automatic methods for round-off error analysis
 - DSA for MATLAB
 - compiler with DSA features
 - linear algebra library
 - grid computing: new methodologies