Motivations Accurate polynomial evaluation

Accurate polynomial evaluation in floating point arithmetic

Stef Graillat

Université de Perpignan Via Domitia Laboratoire LP2A Équipe de recherche en Informatique DALI

MIMS Seminar, February, 10th 2006

General motivation

Provide numerical algorithms and software being

• a few times more accurate than the result from IEEE 754 working precision:

 \triangleright the actual accuracy is proved to satisfy improved versions of the "classic rule of thumb";

- efficient in term of running-time without too much portability sacrifice:
 - ▷ only working with IEEE 754 precision: single,double;
- together with a residual error bound to control the accuracy of the computed result:

 \vartriangleright dynamic and validated error bound computable in IEEE 754 arithmetic.

Example for polynomial evaluation with Horner scheme:

 \rightarrow the Compensated Horner Scheme¹

¹SG, N. Louvet, Ph. Langlois. Compensated Horner Scheme. Submitted to SISC

Loss of accuracy in the polynomial evaluation

Evaluation of the polynomial $p(x) = (x-2)^3 = x^3 - 6x^2 + 12x - 8$ for about 200 points near x = 2 in single and double precision

Problems in finite precision computation

Aims : Solving the previous problems being accurate and reliable

- Understanding the influence of the finite precision on the numerical quality of numerical software
 - inaccurate results;
 - numerical instabilities.
- controlling and limiting harmful effect

How to be more accurate without large overheads?

Problems in computing with uncertainties

Understanding the difficulties to deal with uncertainties:

- Controlling the effects of uncertainties:
 - How to measure the difficulty of solving the problem?
 - How to appreciate the reliability of the algorithm?
 - How to estimate the accuracy of the computed solution?
- Limiting the effect of finite precision
 - How to improve the accuracy of the solution?

Which notions to answer these questions?

Error analysis

• Forward error analysis

• Backward error analysis

Identify \hat{x} as the solution of a perturbed problem: $\hat{x} = G(y + \Delta y).$

Error analysis

- Forward error analysis
- Backward error analysis

Identify \hat{x} as the solution of a perturbed problem: $\hat{x} = G(y + \Delta y).$

Advantages of backward error analysis

• How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb:

forward error $~\lesssim~$ condition number $~\times~$ backward error.

• How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data

Condition number :
$$K(P, y) := \lim_{\varepsilon \to 0} \sup_{\Delta y \in \mathcal{P}(\varepsilon)} \left\{ \frac{\|\Delta x\|_{\mathcal{R}}}{\|\Delta y\|_{\mathcal{D}}} \right\}$$

• How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Backward error :
$$\eta(\widehat{x}) = \min_{\Delta y \in \mathcal{D}} \{ \|\Delta y\|_{\mathcal{D}} : \widehat{x} = G(y + \Delta y) \}$$

Advantages of backward error analysis

• How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb:

forward error $~\lesssim~$ condition number $~\times~$ backward error.

• How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data

Condition number :
$$\mathcal{K}(P, y) := \lim_{\varepsilon \to 0} \sup_{\Delta y \in \mathcal{P}(\varepsilon)} \left\{ \frac{\|\Delta x\|_{\mathcal{R}}}{\|\Delta y\|_{\mathcal{D}}} \right\}$$

• How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Backward error :
$$\eta(\widehat{x}) = \min_{\Delta y \in \mathcal{D}} \{ \|\Delta y\|_{\mathcal{D}} : \widehat{x} = G(y + \Delta y) \}$$

Advantages of backward error analysis

• How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb:

forward error $\,\lesssim\,$ condition number $\,\times\,$ backward error.

• How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data

Condition number :
$$K(P, y) := \lim_{\varepsilon \to 0} \sup_{\Delta y \in \mathcal{P}(\varepsilon)} \left\{ \frac{\|\Delta x\|_{\mathcal{R}}}{\|\Delta y\|_{\mathcal{D}}} \right\}$$

• How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Backward error :
$$\eta(\widehat{x}) = \min_{\Delta y \in \mathcal{D}} \{ \|\Delta y\|_{\mathcal{D}} : \widehat{x} = G(y + \Delta y) \}$$

Floating point number

Floating point system $\mathbb{F} \subset \mathbb{R}$:

$$x = \pm \underbrace{x_0.x_1...x_{p-1}}_{mantissa} \times \overset{b^e}{b^e}, \quad 0 \le x_i \le b-1, \quad x_0 \ne 0$$

b : basis, *p* : precision, *e* : exponent range s.t. $e_{\min} \le e \le e_{\max}$

Machine epsilon $\epsilon = b^{1-p}$, $|1^+ - 1| = \epsilon$

Approximation of \mathbb{R} by \mathbb{F} , rounding fl : $\mathbb{R} \to \mathbb{F}$ Let $x \in \mathbb{R}$ then

 $fl(x) = x(1+\delta), \quad |\delta| \le u.$

Unit roundoff $\mathbf{u} = \epsilon/2$ for round-to-nearest

Standard model of floating point arithmetic

Let $x, y \in \mathbb{F}$,

 $\mathsf{fl}(x \circ y) = (x \circ y)(1 + \delta), \quad |\delta| \le \mathsf{u}, \quad \circ \in \{+, -, \cdot, /\}$

IEEE 754 standard (1985)

					Range
				$u = 2^{-24} \approx 5,96 \times 10^{-8}$	
Double	64 bits	52+1 bits	11 bits	$u = 2^{-53} \approx 1,11 \times 10^{-16}$	$ ~pprox 10^{\pm 308}$

For a more precise evaluation scheme

- Accurate evaluation of p(x): the compensated Horner scheme and the compensated rule of thumb
- An improved and validated error bound
- Theoretical and experimental results exhibit the
 - actual accuracy: twice the current working precision behavior,
 - actual speed: twice faster than the corresponding double-double implementation

More accuracy, how ?

More internal precision:

- hardware
 - extended precision in x86 architecture
- software
 - fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
 - arbitrary length expansions libraries: Priest, Shewchuk
 - arbitrary multiprecision libraries: MP, MPFUN/ARPREC, MPFR

Correcting rounding errors:

- compensated summation (Kahan,1965) and doubly compensated summation (Priest,1991), etc.
- accurate sum and dot product: Ogita, Rump and Oishi (2005)
 → twice the current working precision behavior and fast compared to double-double library

More accuracy, how ?

More internal precision:

- hardware
 - extended precision in x86 architecture
- software
 - fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
 - arbitrary length expansions libraries: Priest, Shewchuk
 - arbitrary multiprecision libraries: MP, MPFUN/ARPREC, MPFR

Correcting rounding errors:

- compensated summation (Kahan,1965) and doubly compensated summation (Priest,1991), etc.
- accurate sum and dot product: Ogita, Rump and Oishi (2005)
 → twice the current working precision behavior and fast
 compared to double-double library

At current working precision

Rule of thumb for backward stable algorithms :

solution accuracy \approx condition number \times computing precision

- IEEE-754 precision: double ($u = 2^{-53} \approx 10^{-16}$)
- **2** Condition number for the evaluation of $p(x) = \sum_{i=0}^{n} a_i x^i$:

$$\operatorname{cond}(p,x) = \frac{\sum_{i=0}^{n} |a_i| |x|^i}{|\sum_{i=0}^{n} a_i x^i|} = \frac{\widetilde{p}(|x|)}{|p(x)|}, \text{ always } \geq 1.$$

• Accuracy of the solution $\hat{p}(x)$:

$$\frac{|p(x) - \widehat{p}(x)|}{|p(x)|} \le \alpha(n) \times \operatorname{cond}(p, x) \times \mathbf{u}$$

with $\alpha(n) \approx 2n$

What means "twice the working precision behavior"?

Compensated rule of thumb:

solution accuracy $\lesssim {\rm precision}$ + condition number $\times \, {\rm precision}^2$

Three regimes in precision for the evaluation of $\hat{p}(x)$:

1) condition number $\leq 1/u$: the accuracy of $\widehat{p}(x)$ is optimal

$$rac{|\widehat{p}(x)-p(x)|}{|p(x)|}pprox \mathbf{u}$$

What means "twice the working precision behavior"?

Compensated rule of thumb:

solution accuracy $\lesssim precision$ + condition number \times $precision^2$

Three regimes in precision for the evaluation of $\hat{p}(x)$:

2) $1/\mathbf{u} \leq \text{condition number} \leq 1/\mathbf{u}^2$: the result $\widehat{p}(x)$ verifies

What means "twice the working precision behavior"?

Compensated rule of thumb:

solution accuracy $\lesssim {\rm precision}$ + condition number $\times \, {\rm precision}^2$

Three regimes in precision for the evaluation of $\hat{p}(x)$:

3) no more accuracy when condition number $> 1/u^2$.

The Horner scheme

$$\gamma_n = n\mathbf{u}/(1 - n\mathbf{u}) pprox n\mathbf{u}$$
 $rac{|p(x) - ext{Horner}(p, x)|}{|p(x)|} \leq \underbrace{\gamma_{2n}}_{pprox 2n\mathbf{u}} ext{cond}(p, x)$

Error-free transformations for sum

$$x = fl(a \pm b) \Rightarrow a \pm b = x + y \text{ with } y \in \mathbb{F},$$

For the sum, algorithms by Dekker (1971) and Knuth (1974)

Algorithm 2 (Error-free transformation of the sum of 2 floating point numbers, needs $|a| \ge |b|$)

function
$$[x, y] = \texttt{FastTwoSum}(a, b)$$

 $x = \texttt{fl}(a + b)$
 $y = \texttt{fl}((a - x) + b)$

Algorithm 3 (Error-free transformation of the sum of 2 floating point numbers)

function
$$[x, y] = TwoSum(a, b)$$

 $x = fl(a + b)$
 $z = fl(x - a)$
 $y = fl((a - (x - z)) + (b - z))$

Error-free transformations for product (1/3)

$$x = fl(a \cdot b) \Rightarrow a \cdot b = x + y \text{ with } y \in \mathbb{F},$$

For the product : algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x + y and x and y nonoverlapping with $|y| \le |x|$.

Algorithm 4 (Error-free split of a floating point number into two parts)

```
function [x, y] = \text{Split}(a, b)
factor = 2^s + 1
c = fl(\text{factor} \cdot a)
x = fl(c - (c - a))
y = fl(a - x)
```

Error-free transformations for product (2/3)

Algorithm 5 (Error-free transformation of the product of two floating point numbers)

$$\begin{array}{l} \operatorname{function} \left[x,y \right] = \operatorname{TwoProduct}(a,b) \\ x = \operatorname{fl}(a \cdot b) \\ \left[a_1,a_2 \right] = \operatorname{Split}(a) \\ \left[b_1,b_2 \right] = \operatorname{Split}(b) \\ y = \operatorname{fl}(a_2 \cdot b_2 - \left(\left((x-a_1 \cdot b_1) - a_2 \cdot b_1 \right) - a_1 \cdot b_2 \right) \right) \end{array}$$

Error-free transformations for product (3/3)

What is a Fused Multiply and Add (FMA) in floating point arithmetic?

 \rightarrow Given *a*, *b* and *c* three floating point numbers, FMA(*a*, *b*, *c*) computes $a \cdot b + c$ rounded according to the current rounding mode \Rightarrow only one rounding error for two operations! FMA is available on Intel Itanium, IBM RS/6000, IBM Power PC, etc.

Algorithm 6 (Error-free transformation of the product of two floating point numbers with FMA)

function
$$[x, y] = TwoProductFMA(a, b)$$

 $x = a \cdot b$
 $y = FMA(a, b, -x)$

Error-free transformation for the Horner scheme

$$p(x) = ext{Horner}(p, x) + (p_\pi + p_\sigma)(x)$$

Algorithm 7 (Error-free transformation for the Horner scheme) function [Horner(p, x), p_{π}, p_{σ}] = EFTHorner(p, x) $s_n = a_n$ for i = n - 1 : -1 : 0 $[p_i, \pi_i] = \text{TwoProduct}(s_{i+1}, x)$ $[s_i, \sigma_i] = \text{TwoSum}(p_i, a_i)$ Let π_i be the coefficient of degree *i* of p_{π} Let σ_i be the coefficient of degree *i* of p_{σ} end Horner $(p, x) = s_0$

Compensated Horner scheme

Algorithm 8 (Compensated Horner scheme)

```
function res = CompHorner(p, x)

[h, p_{\pi}, p_{\sigma}] = \text{EFTHorner}(p, x)

c = \text{Horner}(p_{\pi} + p_{\sigma}, x)

res = fl(h + c)
```

Accuracy of the compensated Horner scheme

Theorem 1

Let p be a polynomial of degree n with floating point coefficients, and x be a floating point value. Then if no underflow occurs,

$$rac{| ext{CompHorner}(p,x)-p(x)|}{|p(x)|} \leq \mathsf{u} + \underbrace{\gamma_{2n}^2}_{pprox 4n^2\mathsf{u}^2} \operatorname{cond}(p,x).$$

• Key point in the proof:

$$(\widetilde{p_{\pi}} + \widetilde{p_{\sigma}})(|x|) \leq \gamma_{2n}\widetilde{p}(|x|)$$

• a similar bound is proved in presence of underflow

Numerical experiments: testing the accuracy

Evaluation of $p_n(x) = (x-1)^n$ for x = fl(1.333) and $n = 3, \dots, 42$

Numerical experiments: testing the speed efficiency

We compare

- Horner: IEEE 754 double precision Horner scheme
- CompHorner: our Compensated Horner scheme
- DDHorner: Horner scheme with internal double-double computation

All computations are performed in C language and IEEE 754 double precision

For every polynomials p_n with n varying from 3 to 42:

- we perform 100 runs measuring (100) numbers of cycles (TSC counter for IA-32),
- we keep the mean value, the min and the max of the 10 smallest numbers of cycles.

Speed efficiency: measured and theoretical ratios

Pentium 4: 3.0GHz, 1024kB cache L2 - GCC 3.4.1							
ratio	minimum	mean	maximum	theoretical			
CompHorner/Horner	1.5	2.9	3.2	13			
DDHorner/Horner	2.3	8.4	9.4	17			

Intel Celeron: 2.4GHz, 256kB cache L2 - GCC 3.4.1							
ratio	minimum	mean	maximum	theoretical			
CompHorner/Horner	1.4	3.1	3.4	13			
DDHorner/Horner	2.3	8.4	9.4	17			

 \rightarrow compensated Horner scheme = Horner scheme with double-double without renormalization

Motivations Accurate polynomial evaluation

The corrected algorithm runs twice faster than corresponding double-double

Stef Graillat Accurate polynomial evaluation

A dynamic error bound

Theorem 2

Given a polynomial p of degree n with floating point coefficients, and a floating point value x, we consider res = CompHorner(p, x). The absolute forward error affecting the evaluation is bounded according to

$$|\texttt{CompHorner}(p, x) - p(x)| \leq \\ \mathsf{fl}((\mathsf{u}|\texttt{res}| + (\gamma_{4n+2}\texttt{Horner}(\widetilde{
ho_{\pi}} + \widetilde{
ho_{\sigma}}, |x|) + 2\mathsf{u}^2|\texttt{res}|))).$$

Motivations Accurate polynomial evaluation

Accuracy of the bound for $p_5(x) = (x-1)^5$

Conclusion and future work

• The compensated Horner scheme provides

- actual accuracy as doubling the working precision,
- actual speed being twice faster than the corresponding double-double subroutine,
- together with a dynamic and validated error bound.
- Past, current and future developments
 - Compensated Horner scheme: underflow, with FMA, for FMA
 - same techniques with Newton methods

The new revision of IEEE 754 standard should include tailadd, tailsubtract and tailmultiply that compute the error during an addition, a subtraction and a multiplication.

Thank you for your attention