Accurate polynomial evaluation in floating point arithmetic

Stef Graillat

Université de Perpignan Via Domitia
Laboratoire LP2A
Équipe de recherche en Informatique DALI
MIMS Seminar, February, $10^{\text {th }} 2006$

General motivation

Provide numerical algorithms and software being

- a few times more accurate than the result from IEEE 754 working precision:
\triangleright the actual accuracy is proved to satisfy improved versions of the "classic rule of thumb";
- efficient in term of running-time without too much portability sacrifice:
\triangleright only working with IEEE 754 precision: single,double;
- together with a residual error bound to control the accuracy of the computed result:
\triangleright dynamic and validated error bound computable in IEEE 754 arithmetic.
Example for polynomial evaluation with Horner scheme:
\rightarrow the Compensated Horner Scheme ${ }^{1}$

[^0]
Loss of accuracy in the polynomial evaluation

Evaluation of the polynomial $p(x)=(x-2)^{3}=x^{3}-6 x^{2}+12 x-8$ for about 200 points near $x=2$ in single and double precision

Problems in finite precision computation

Aims: Solving the previous problems being accurate and reliable

- Understanding the influence of the finite precision on the numerical quality of numerical software
- inaccurate results;
- numerical instabilities.
- controlling and limiting harmful effect

How to be more accurate without large overheads?

Problems in computing with uncertainties

Understanding the difficulties to deal with uncertainties:

- Controlling the effects of uncertainties:
- How to measure the difficulty of solving the problem?
- How to appreciate the reliability of the algorithm?
- How to estimate the accuracy of the computed solution?
- Limiting the effect of finite precision
- How to improve the accuracy of the solution?

Which notions to answer these questions?

Error analysis

- Forward error analysis
- Backward error analysis

Identify \widehat{x} as the solution of a perturbed problem: $\widehat{x}=G(y+\Delta y)$.

Error analysis

- Forward error analysis
- Backward error analysis

Identify \widehat{x} as the solution of a perturbed problem: $\widehat{x}=G(y+\Delta y)$.

Advantages of backward error analysis

- How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb: forward error \lesssim condition number \times backward error.
- How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data
- How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Advantages of backward error analysis

- How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb:
forward error \lesssim condition number \times backward error.
- How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data

Condition number : $K(P, y):=\lim _{\varepsilon \rightarrow 0} \sup _{\Delta y \in \mathcal{P}(\varepsilon)}\left\{\frac{\|\Delta x\|_{\mathcal{R}}}{\|\Delta y\|_{\mathcal{D}}}\right\}$

- How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Advantages of backward error analysis

- How to estimate the accuracy of the computed solution? At the first order, we have the rule of thumb:
forward error \lesssim condition number \times backward error.
- How to measure the difficulty of solving the problem ? Condition number measures the sensitivity of the solution to perturbation in the data

Condition number : $K(P, y):=\lim _{\varepsilon \rightarrow 0} \sup _{\Delta y \in \mathcal{P}(\varepsilon)}\left\{\frac{\|\Delta x\|_{\mathcal{R}}}{\|\Delta y\|_{\mathcal{D}}}\right\}$

- How to appreciate the reliability of the algorithm? Backward error measures the distance between the problem we solved and the initial problem.

Backward error : $\eta(\widehat{x})=\min _{\Delta y \in \mathcal{D}}\left\{\|\Delta y\|_{\mathcal{D}}: \widehat{x}=G(y+\Delta y)\right\}$

Outline

(1) Motivations

(2) Accurate polynomial evaluation

Floating point number

Floating point system $\mathbb{F} \subset \mathbb{R}$:

$$
x= \pm \underbrace{x_{0} \cdot x_{1} \ldots x_{p-1}}_{\text {mantissa }} \times b^{e}, \quad 0 \leq x_{i} \leq b-1, \quad x_{0} \neq 0
$$

b : basis, p : precision, e : exponent range s.t. $e_{\min } \leq e \leq e_{\max }$
Machine epsilon $\epsilon=b^{1-p},\left|1^{+}-1\right|=\epsilon$
Approximation of \mathbb{R} by \mathbb{F}, rounding $\mathrm{fl}: \mathbb{R} \rightarrow \mathbb{F}$ Let $x \in \mathbb{R}$ then

$$
f|(x)=x(1+\delta), \quad| \delta \mid \leq \mathbf{u}
$$

Unit roundoff $\mathbf{u}=\epsilon / 2$ for round-to-nearest

Standard model of floating point arithmetic

Let $x, y \in \mathbb{F}$,

$$
\mathfrak{f l}(x \circ y)=(x \circ y)(1+\delta), \quad|\delta| \leq \mathbf{u}, \quad \circ \in\{+,-, \cdot, /\}
$$

IEEE 754 standard (1985)

Type	Size	Mantissa	Exponent	Unit roundoff	Range
Single	32 bits	$23+1$ bits	8 bits	$\mathbf{u}=2^{-24} \approx 5,96 \times 10^{-8}$	$\approx 10^{ \pm 38}$
Double	64 bits	$52+1$ bits	11 bits	$\mathbf{u}=2^{-53} \approx 1,11 \times 10^{-16}$	$\approx 10^{ \pm 308}$

For a more precise evaluation scheme

- Accurate evaluation of $p(x)$: the compensated Horner scheme and the compensated rule of thumb
- An improved and validated error bound
- Theoretical and experimental results exhibit the
- actual accuracy: twice the current working precision behavior,
- actual speed: twice faster than the corresponding double-double implementation

More accuracy, how ?

More internal precision:

- hardware
- extended precision in $\times 86$ architecture
- software
- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk
- arbitrary multiprecision libraries: MP, MPFUN/ARPREC, MPFR

Correcting rounding errors
 - compensated summation (Kahan,1965) and doubly compensated summation (Priest,1991), etc.
 - accurate sum and dot product: Ogita, Rump and Oishi (2005) \rightarrow twice the current working precision behavior and fast compared to double-double library

More accuracy, how ?

More internal precision:

- hardware
- extended precision in $\times 86$ architecture
- software
- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk
- arbitrary multiprecision libraries: MP, MPFUN/ARPREC, MPFR
Correcting rounding errors:
- compensated summation (Kahan,1965) and doubly compensated summation (Priest,1991), etc.
- accurate sum and dot product: Ogita, Rump and Oishi (2005) \rightarrow twice the current working precision behavior and fast compared to double-double library

At current working precision ...

Rule of thumb for backward stable algorithms:
solution accuracy \approx condition number \times computing precision
(1) IEEE-754 precision: double $\left(\mathbf{u}=2^{-53} \approx 10^{-16}\right)$
(2) Condition number for the evaluation of $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$:

$$
\operatorname{cond}(p, x)=\frac{\sum_{i=0}^{n}\left|a_{i}\right||x|^{i}}{\left|\sum_{i=0}^{n} a_{i} x^{i}\right|}=\frac{\widetilde{p}(|x|)}{|p(x)|}, \text { always } \geq 1
$$

(3) Accuracy of the solution $\widehat{p}(x)$:

$$
\frac{|p(x)-\hat{p}(x)|}{|p(x)|} \leq \alpha(n) \times \operatorname{cond}(p, x) \times \mathbf{u}
$$

with $\alpha(n) \approx 2 n$

What means "twice the working precision behavior"?

Compensated rule of thumb:
solution accuracy \lesssim precision + condition number \times precision 2
Three regimes in precision for the evaluation of $\widehat{p}(x)$:

1) condition number $\leq 1 / \mathbf{u}$: the accuracy of $\hat{p}(x)$ is optimal

$$
\frac{|\widehat{p}(x)-p(x)|}{|p(x)|} \approx \mathbf{u}
$$

What means "twice the working precision behavior"?

Compensated rule of thumb:
solution accuracy \lesssim precision + condition number \times precision 2
Three regimes in precision for the evaluation of $\widehat{p}(x)$:
2) $1 / \mathbf{u} \leq$ condition number $\leq 1 / \mathbf{u}^{2}$: the result $\widehat{p}(x)$ verifies

What means "twice the working precision behavior'?

Compensated rule of thumb:

$$
\text { solution accuracy } \lesssim \text { precision }+ \text { condition number } \times \text { precision }^{2}
$$

Three regimes in precision for the evaluation of $\widehat{p}(x)$:
$3)$ no more accuracy when condition number $>1 / \mathbf{u}^{2}$.

The Horner scheme

Algorithm 1 (Horner scheme)

function res $=\operatorname{Horner}(p, x)$

$$
\begin{aligned}
& s_{n}=a_{n} \\
& \text { for } i=n-1:-1: 0 \\
& p_{i}=\mathrm{fl}\left(s_{i+1} \cdot x\right) \\
& s_{i}=\mathrm{fl}\left(p_{i}+a_{i}\right) \\
& \text { end } \\
& \text { res }
\end{aligned}
$$

\% rounding error π_{i}
$\%$ rounding error σ_{i}
$\gamma_{n}=n \mathbf{u} /(1-n \mathbf{u}) \approx n \mathbf{u}$

$$
\frac{|p(x)-\operatorname{Horner}(p, x)|}{|p(x)|} \leq \underbrace{\gamma_{2 n}}_{\approx 2 n u} \operatorname{cond}(p, x)
$$

Error-free transformations for sum

$$
x=\mathrm{fl}(a \pm b) \Rightarrow a \pm b=x+y \quad \text { with } y \in \mathbb{F}
$$

For the sum, algorithms by Dekker (1971) and Knuth (1974)
Algorithm 2 (Error-free transformation of the sum of 2 floating point numbers, needs $|a| \geq|b|$)
function $[x, y]=\operatorname{FastTwoSum}(a, b)$

$$
\begin{aligned}
& x=f 1(a+b) \\
& y=f(((a-x)+b)
\end{aligned}
$$

Algorithm 3 (Error-free transformation of the sum of 2 floating point numbers)
function $[x, y]=\operatorname{TwoSum}(a, b)$

$$
\begin{aligned}
& x=\mathrm{fl}(a+b) \\
& z=\mathrm{fl}(x-a) \\
& y=\mathrm{fl}((a-(x-z))+(b-z))
\end{aligned}
$$

Error-free transformations for product (1/3)

$$
x=\mathrm{fl}(a \cdot b) \Rightarrow a \cdot b=x+y \quad \text { with } y \in \mathbb{F}
$$

For the product : algorithm TwoProduct by Veltkamp and Dekker (1971)

$$
a=x+y \quad \text { and } \quad x \text { and } y \text { nonoverlapping with }|y| \leq|x| .
$$

Algorithm 4 (Error-free split of a floating point number into two parts)

```
function [x,y] = Split( }a,b
    factor = 2s}+
    c=fl(factor }\cdot\textrm{a}
    x=fl(c-(c-a))
    y=fl(a-x)
```


Error-free transformations for product (2/3)

Algorithm 5 (Error-free transformation of the product of two floating point numbers)
function $[x, y]=\operatorname{TwoProduct}(a, b)$
$x=\mathrm{fl}(a \cdot b)$
$\left[a_{1}, a_{2}\right]=\operatorname{Split}(a)$
$\left[b_{1}, b_{2}\right]=\operatorname{Split}(b)$
$y=\mathrm{fl}\left(a_{2} \cdot b_{2}-\left(\left(\left(x-a_{1} \cdot b_{1}\right)-a_{2} \cdot b_{1}\right)-a_{1} \cdot b_{2}\right)\right)$

Error-free transformations for product (3/3)

What is a Fused Multiply and Add (FMA) in floating point arithmetic?
\rightarrow Given a, b and c three floating point numbers, $\operatorname{FMA}(a, b, c)$ computes $a \cdot b+c$ rounded according to the current rounding mode \Rightarrow only one rounding error for two operations! FMA is available on Intel Itanium, IBM RS/6000, IBM Power PC, etc.

Algorithm 6 (Error-free transformation of the product of two floating point numbers with FMA)
function $[x, y]=\operatorname{TwoProductFMA}(a, b)$
$x=a \cdot b$
$y=\operatorname{FMA}(a, b,-x)$

Error-free transformation for the Horner scheme

$$
p(x)=\operatorname{Horner}(p, x)+\left(p_{\pi}+p_{\sigma}\right)(x)
$$

Algorithm 7 (Error-free transformation for the Horner scheme)
function $\left[\operatorname{Horner}(p, x), p_{\pi}, p_{\sigma}\right]=\operatorname{EFTHorner}(p, x)$
$s_{n}=a_{n}$
for $i=n-1:-1: 0$
$\left[p_{i}, \pi_{i}\right]=\operatorname{TwoProduct}\left(s_{i+1}, x\right)$
$\left[s_{i}, \sigma_{i}\right]=\operatorname{TwoSum}\left(p_{i}, a_{i}\right)$
Let π_{i} be the coefficient of degree i of p_{π}
Let σ_{i} be the coefficient of degree i of p_{σ} end
Horner $(p, x)=s_{0}$

Compensated Horner scheme

Algorithm 8 (Compensated Horner scheme)
function res $=$ CompHorner (p, x)
$\left[h, p_{\pi}, p_{\sigma}\right]=$ EFTHorner (p, x)
$c=\operatorname{Horner}\left(p_{\pi}+p_{\sigma}, x\right)$
res $=\mathrm{fl}(h+c)$

Accuracy of the compensated Horner scheme

Theorem 1

Let p be a polynomial of degree n with floating point coefficients, and x be a floating point value. Then if no underflow occurs,

$$
\frac{\mid \text { CompHorner }(p, x)-p(x) \mid}{|p(x)|} \leq \mathbf{u}+\underbrace{\gamma_{2 n}^{2}}_{\approx 4 n^{2} \mathbf{u}^{2}} \operatorname{cond}(p, x) .
$$

- Key point in the proof:

$$
\left(\widetilde{p_{\pi}}+\widetilde{p_{\sigma}}\right)(|x|) \leq \gamma_{2 n} \widetilde{p}(|x|)
$$

- a similar bound is proved in presence of underflow

Numerical experiments: testing the accuracy

$$
\text { Evaluation of } p_{n}(x)=(x-1)^{n} \text { for } x=f \mathrm{f}(1.333) \text { and } n=3, \ldots, 42
$$

Numerical experiments: testing the speed efficiency

We compare

- Horner: IEEE 754 double precision Horner scheme
- CompHorner: our Compensated Horner scheme
- DDHorner: Horner scheme with internal double-double computation
All computations are performed in C language and IEEE 754 double precision
For every polynomials p_{n} with n varying from 3 to 42 :
- we perform 100 runs measuring (100) numbers of cycles (TSC counter for IA-32),
- we keep the mean value, the min and the max of the 10 smallest numbers of cycles.

Speed efficiency: measured and theoretical ratios

Pentium 4: 3.0GHz, 1024kB cache L2 - GCC 3.4.1				
ratio	minimum	mean	maximum	theoretical
CompHorner/Horner	1.5	2.9	3.2	13
DDHorner/Horner	2.3	8.4	9.4	17

Intel Celeron: $2.4 \mathrm{GHz}, 256 \mathrm{kB}$ cache L2 - GCC 3.4.1				
ratio	minimum	mean	maximum	theoretical
CompHorner/Horner	1.4	3.1	3.4	13
DDHorner/Horner	2.3	8.4	9.4	17

\rightarrow compensated Horner scheme $=$ Horner scheme with double-double without renormalization

The corrected algorithm runs twice faster than corresponding double-double

A dynamic error bound

Theorem 2

Given a polynomial p of degree n with floating point coefficients, and a floating point value x, we consider res $=\operatorname{CompHorner}(p, x)$. The absolute forward error affecting the evaluation is bounded according to
\mid CompHorner $(p, x)-p(x) \mid \leq$

$$
\mathrm{fl}\left(\left(\mathbf{u} \mid \text { res } \mid+\left(\gamma_{4 n+2} \text { Horner }\left(\widetilde{p_{\pi}}+\widetilde{p_{\sigma}},|x|\right)+2 \mathbf{u}^{2} \mid \text { res } \mid\right)\right)\right) .
$$

Accuracy of the bound for $p_{5}(x)=(x-1)^{5}$

Conclusion and future work

- The compensated Horner scheme provides
- actual accuracy as doubling the working precision,
- actual speed being twice faster than the corresponding double-double subroutine,
- together with a dynamic and validated error bound.
- Past, current and future developments
- Compensated Horner scheme: underflow, with FMA, for FMA
- same techniques with Newton methods

The new revision of IEEE 754 standard should include tailadd, tailsubtract and tailmultiply that compute the error during an addition, a subtraction and a multiplication.

Thank you for your attention

[^0]: ${ }^{1}$ SG, N. Louvet, Ph. Langlois. Compensated Horner Scheme. Submitted to SISC

