
Équipe de Recherche DALI

Laboratoire LP2A, EA 3679
Université de Perpignan

Applications of fast and accurate

summation in computational geometry

Stef Graillat 16 mai 2005

Research Report No RR2005-03

Université de Perpignan
52 avenue Paul Alduy, 66860 Perpignan cedex, France

Téléphone : +33(0)4.68.66.20.64
Télécopieur : +33(0)4.68.66.22.87

Adresse électronique : dali@univ-perp.fr

Applications of fast and accurate summation in computational

geometry

Stef Graillat

16 mai 2005

Abstract

In this paper, we present a recent algorithm given by Ogita, Rump and
Oishi [39] for accurately computing the sum of n floating point numbers. They
also give a computational error bound for the computed result. We apply
this algorithm in computing determinant and more particularly in computing
robust geometric predicates used in computational geometry. We improve
existing results that use either a multiprecision libraries or extended large
accumulators.

Keywords: accurate summation, finite precision, floating-point arithmetic, computational geometry,
robust geometry predicate, determinant

Résumé

Dans ce papier, nous présentons un algorithme récent de Ogita, Rump et Oi-
shi [39] pour sommer de façon précise n nombres flottants. Dans leur papier,
Ogita, Rump et Oishi fournissent aussi une borne calculable de l’erreur com-
mise par rapport au résultat exact. Nous appliquons cet algorithme pour cal-
culer des déterminants de matrices et en particulier pour calculer des prédicats
géométriques utilisés en géométrie algorithmique. Nous améliorons les algo-
rithmes existants qui utilisent soit la multiprécision soit des accumulateurs très
larges.

Mots-clés: sommation précise, précision fine, arithmétique flottante, géométrie algorithmique
prédicat géometrique, déterminant

Applications of fast and accurate summation in

computational geometry

Stef Graillat∗

May 16, 2005

Abstract

In this paper, we present a recent algorithm given by Ogita, Rump and Oishi [39] for
accurately computing the sum of n floating point numbers. They also give a computational
error bound for the computed result. We apply this algorithm in computing determinant and
more particularly in computing robust geometric predicates used in computational geometry.
We improve existing results that use either a multiprecision libraries or extended large
accumulators.

Key words: accurate summation, finite precision, floating-point arithmetic, computational
geometry, robust geometry predicate, determinant

AMS Subject Classifications: 15-04, 65G99, 65G50, 65-04

1 Introduction

Floating point summation is one of the most basic operation in scientific computing, and many
algorithms have been developped [3, 13, 17, 18, 25, 26, 31, 27, 28, 32, 33, 34, 36, 35, 39, 40, 41,
42, 43, 44, 46, 47]. A good survey of these algorithms is presented in chapter 4 of the book [22]
and in the article [21].

Algorithms that make decisions based on geometric test such as determining which side of a
line a point falls on, often fail due to roundoff error. A solution to answer these problems is to
use software implementations of exact arithmetic often at great expense. Improving the speed
of correct geometric computation has received recent attention [4, 11, 30], but the proposals
tale integer or rational inputs of small precision. These methods do not seem to be usable if it
is important to use ordinary floating point inputs.

A possible way to improve the accuracy is to increase the working precision. For this
purpose, some multiprecision libraries have been developed. One can divide those libraries into
three parts :

• Arbitrary precision library using a multiple-digit format where a number is expressed as
a sequence of digits coupled with a single exponent. Examples of this format are Bailey’s
MPFUN [5, 6], Brent’s MP [9], MPFR [2] or GMP [1].

• Extended fixed precision library using the multiple-component format but with a limited
number of components. Examples of this format are Bailey’s double-double [7], Brigg’s

∗Laboratoire LP2A, Université de Perpignan, 52, avenue Paul Alduy, F-66860 Perpignan Cedex, France
(graillat@univ-perp.fr,http://gala.univ-perp.fr/~graillat).

1

graillat@univ-perp.fr, http://gala.univ-perp.fr/~graillat

doubledouble [10] (double-double numbers are represented as an unevaluated sum of a
leading double and a trailing double) and quad-double [20] (quad-double numbers are
represented as an unevaluated sum of four IEEE doubles).

• Arbitrary precision library using a multiple-component format where a number is ex-
pressed as unevaluated sums of ordinary floating point words. Examples of this format
are Priest [42, 43] and Shewchuk [45, 46].

Shewchuk [45, 46] used an arbitrary precision library to obtain fast C implementation of
four geometric predicates, the 2D and 3D orientation and incircle tests. The inputs are single
or double precision floating point numbers. The speed of these algorithms is due to two fea-
tures. First, they employ fast algorithms for arbitrary precision arithmetic and second they are
adaptive; the running time depends on the degree of uncertainty of the result.

Recently, Demmel and Hida presented algorithms using a wider accumulator [17, 18]. Float-
ing point numbers pi, 1 ≤ i ≤ n, given in working precision with f bits in the mantissa are
added in an extra-precise accumulator with F bits, F > f . Some algorithms are presented with
and without sorting the input data. The authors give a detailed analysis of the accuracy of the
computed result depending on f ,F and the number of summands.

Those algorithms bear one or more of the following disadvantages:

• sorting of input data is necessary, either

– by absolute value or,

– by exponent,

• besides working precision, some extra (higher) precision is necessary,

• access to mantissa and/or exponent is necessary.

Each of those properties can slow down the performance significantly and restrict application
fo specific computer architectures or compilers.

In this paper, we use recent algorithms from Ogita, Rump and Oishi [39] to provide fast
and accurate algorithms to compute determinants of matrices and geometric predicates. The
advantages of these algorithms is that they use one working precision and are adaptive. If the
computed result has the wanted relative error, we stop. Otherwise, we continue the computation
still in the same working precision. Contrary to Demmel and Hida [18], we do not need extra-
precise floating point format and contrary to Shewchuk [45, 46], we do not need renormalisation
that slow down the performance.

The rest of the paper is organized as follows. In Section 2, we present basic notation we will
use in the rest of the paper and in particular on floating point arithmetic. In Section 3, we recall
the so-called error-free transformation introduced by Ogita, Rump and Oishi [39]. In Section 4,
we present the summation algorithm of Ogita, Rump and Oishi presented in [39]. They designed
accurate and fast algorithm to compute the sum of floating point number. Section 3 and
Section 4 borrow heavily from Ogita, Rump and Oishi [39]. In Section 5, we present applications
of those algorithm for computing determinant of matrices and robust geometric predicates used
in computational geometry.

2 Notations

Throughout the paper, we assume a floating point arithmetic adhering to IEEE 754 floating
point standard [23]. We do not address issues of overflow and underflow [16, 19]. The set of

2

floating point numbers is denoted by F, and the relative rounding error by eps. For IEEE 754
double precision we have eps = 2−53.

We denote by fl(·) the result of a floating point computation, where all operations inside
parentheses are done in floating point working precision. Floating point operations in IEEE 754
satisfy [22]

fl(a ◦ b) = (a ◦ b)(1 + ε) for ◦ = {+,−, ·, /} and |ε| ≤ eps.

This implies that

(2.1) |a ◦ b − fl(a ◦ b)| ≤ eps|a ◦ b| and |a ◦ b − fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ = {+,−, ·, /}.

One can notice that a◦b ∈ R and fl(a◦b) ∈ F but in general we do not have a◦b ∈ F. It is known
that for the basic operations +,−, ·, the approximation error of a floating point operation is
still a floating point number (see for example [15]):

(2.2)
x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F

x = fl(a · b) ⇒ a · b = x + y with y ∈ F

These are error-free transformations of the pair (a, b) into the pair (x, y).
We use standard notation for error estimations. The quantities γn are defined as usual [22]

by

γn :=
neps

1 − neps
for n ∈ N.

3 Error-free transformations

Fortunately, the quantities x and y in (2.2) can be computed exactly in floating point arithmetic.
For the algorithm, we use Matlab-like [24] notation. For addition, we can use the following
algorithm by Knuth [29, Thm B. p.236].

Algorithm 3.1 (Knuth [29]). Error-free transformation of the sum of two floating point
numbers.

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))

Another algorithm to compute an error-free transformation is the following algorithm from
Dekker [15]. The drawback of this algorithm is that we have x + y = a + b if |a| ≥ |b|.

Algorithm 3.2 (Dekker [15]). Error-free transformation of the sum of two floating point
numbers.

function [x, y] = FastTwoSum(a, b)
x = fl(a + b)
y = fl((a − x) + b)

For the error-free transformation of a product, we first need to split the input argument
into two parts. Let p be given by eps = 2−p and define s = dp/2e. For example, if the working
precision is IEEE 754 double precision, then p = 53 and s = 27. The following algorithm by
Dekker [15] splits a floating point number a ∈ F into two parts x and x such that

a = x + y and x and y nonoverlapping with |y| ≤ |x|.

3

Algorithm 3.3 (Dekker [15]). Error-free split of a floating point number into two part.

function [x, y] = Split(a, b)
factor = 2s + 1
c = fl(factor · a)
x = fl(c − (c − a))
y = fl(a − x)

With this function, an algorithm from Veltkamp (see [15]) enables to compute an error-
free transformation for the product of two floating point numbers. This algorithm returns two
floating point numbers x and y such that

a · b = x + y with x = fl(a · b).

Algorithm 3.4 (Veltkamp [15]). Error-free transformation of the product of two floating
point numbers.

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x − a1 · b1) − a2 · b1) − a1 · b2))

The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

Theorem 3.1 (Ogita, Rump and Oishi [39, Thm. 3.4]). Let a, b ∈ F and let x, y ∈ F such
that [x, y] = TwoSum(a, b) (Algorithm 3.1). Then, also in the presence of underflow,

(3.3) a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|.

Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 3.4). Then, if no
underflow occurs,

(3.4) a · b = x + y, x = fl(a · b), |y| ≤ eps|x|, |y| ≤ eps|a · b|,

and, in the presence of underflow,

(3.5) a · b = x + y + 5η, x = fl(a · b), |y| ≤ eps|x| + 5eta,

|y| ≤ eps|a · b| + 5eta with |η| ≤ eta.

The TwoProduct algorithm can be re-written in a very simple way if a Fused-Multiply-
and-Add (FMA) operation is available on the targeted architecture [37, 8]. This means that for
a, b, c ∈ F, the result of FMA(a, b, c) is the nearest floating point number of a · b + c ∈ R.

Algorithm 3.5 (Ogita, Rump and Oishi [39, Algo. 3.5]). Error-free transformation of
the product of two floating point numbers using a FMA.

function [x, y] = TwoProductFMA(a, b)
x = a · b
y = FMA(a, b,−x)

If we suppose that we have ADD3(a, b, c) which compute the nearest floating point number
of the exact sum a + b + c ∈ R for a, b, c ∈ F then the algorithm TwoSum can be replaced by the
following one.

4

Algorithm 3.6 (Ogita, Rump and Oishi [39, Algo. 3.6]). Error-free transformation of
the sum of two floating point numbers using ADD3.

function [x, y] = TwoSumADD3(a, b)
x = a + b
y = ADD3(a, b,−x)

An error-free algorithm for the FMA has been recently given by Boldo and Muller [8]. The
approximation cannot be represented by a single floating-point number anymore. It is now the
sum of two floating point numbers.

Algorithm 3.7 (Boldo and Muller [8]). Error-free transformation of the FMA of three
floating point numbers.

function [x, y, z] = ErrFMA(a, b, c)
x = fl(a · b + c)
[u1, u2] = TwoProduct(a, b)
[α1, α2] = TwoSum(b, u2)
[β1, β2] = TwoSum(u1, α1)
γ = fl(fl(β1 − r1) + β2)
[y, z] = TwoSum(γ, α2)

4 Summation

Let floating point numbers pi ∈ F, 1 ≤ i ≤ n, be given. The aim of this section is to present
algorithms for Ogita, Rump and Oishi [39] that compute a good approximation of the sum
s =

∑

pi. In [39], they cascade TwoSum Algorithm and sum up the errors to improve the result
of the ordinary floating point sum fl(

∑

pi). Their cascading algorithm summing up errors terms
is as follows.

Algorithm 4.1 (Ogita, Rump and Oishi [39, Algo. 4.1]). Cascaded summation.

function res = Sum2s(p)
π1 = p1; σ1 = 0;
for i = 2 : n

[πi; qi] = TwoSum(πi−1, pi)
σi = fl(σi−1 + qi)

res = fl(πn + σn)

This is a compensated summation [22]. One can rewrite Algorithm 4.1 in order to overwrite
the vector entries. This can be done as follows.

Algorithm 4.2 (Ogita, Rump and Oishi [39, Algo. 4.3]). Error-free vector transformation
for summation.

function p = VecSum(p)
for i = 2 : n

[pi, pi−1] = TwoSum(pi, pi−1)

Using ideas of Algorithm 4.2, Algorithm 4.1 can be written in the following equivalent way.

Algorithm 4.3 (Ogita, Rump and Oishi [39, Algo. 4.4]). Cascaded summation equivalent
to Algorithm 4.1.

5

function res = Sum2(p)
for i = 2 : n

[pi; pi−1] = TwoSum(pi, pi−1)

res = fl

((

n−1
∑

i=1

pi

)

+ pn

)

Proposition 4.1 (Ogita, Rump and Oishi [39, Prop. 4.5]). Suppose Algorithm 4.4 (Sum2)
is applied to floating point numbers pi ∈ F, 1 ≤ i ≤ n, set s :=

∑

pi ∈ R and S :=
∑

|pi| and
suppose neps < 1. Then, also in the presence of underflow,

(4.6) |res− s| ≤ eps|s| + γ2
n−1S.

The error bound (4.6) for the result res of Algorithm 4.1 is not computable since it involves
the exact value s of the sum. The following theorem [39, Cor. 4.7] compute a valid error bound
in floating point in round to nearest, which is also less pessimistic.

Proposition 4.2 (Ogita, Rump and Oishi [39, Cor. 4.7]). Let floating point numbers
pi ∈ F, 1 ≤ i ≤ n, be given. Append the statements

if 2neps ≥ 1, error(′dimension too large′), end

β = (2neps/(1 − 2neps)) ·
(

∑n−1
i=1 |pi|

)

err = eps|res| + (β + (2eps2|res| + 3eta))

(to be executed in working precision) to Algorithm 4.4 (Sum2). If the error message is not
triggered, err satisfies

res− err ≤
∑

pi ≤ res + err.

A computation shows that the algorithm Sum2 transform a vector pi begin ill-conditioned
with respect to summation into a new vector with identical sum but with a condition number
improved by a factor eps. This is why it is interesting to cascade the error-free transformation.
The algorithm is as follows.

Algorithm 4.4 (Ogita, Rump and Oishi [39, Algo. 4.8]). Summatin as in K-fold precision
by (K − 1)-fold error-free transformation.

function res = SumK(p, K)
for k = 1 : K − 1

p = VecSum(p)

res = fl

((

n−1
∑

i=1

pi

)

+ pn

)

The following theorem gives an estimate error for Algorithm 4.4.

Proposition 4.3 (Ogita, Rump and Oishi [39, Prop. 4.10]). Let floating point numbers
pi ∈ F, 1 ≤ i ≤ n, be given and assume 4neps ≤ 1. Then, also in the presence of underflow, the
result res of Algorithm 4.8 (SumK) satisfiees for K ≥ 3

|res− s| ≤ (eps + 3γ2
n−1)|s| + γK

2n−2S,

where s :=
∑

pi and S :=
∑

|pi|.

6

5 Applications in robust computational geometry

5.1 Accurate computation of determinant

The literature for the computation of accurate determinant is quite large (see for example [13, 12,
14] and the references therein). They often use multiprecision arithmetic to compute accurately
the determinant. Here, we present an algorithm to compute the determinant of a floating-point
matrix using only one working precision (IEEE 754 double precision) to compute the result up
to a given relative error ε. Let us study the case of a 2 × 2 determinant

det2 =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad − bc.

Using TwoProduct, we can write [x, y] = TwoProduct(a, d) and [z, t] = TwoProduct(b, c).
Then we have det2 = x + y + z + t. We have transformed the problem of computing the
determinant into a problem of computing a sum accurately. We can then apply the accurate
summation algorithm 4.1. to compute this sum.

We can do the same thing for example with a 3 × 3 determinant

det3 =

∣

∣

∣

∣

∣

∣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣

∣

∣

∣

∣

∣

=
∑

σ∈S3

signature(σ)a1,σ(1) · a2,σ(2) · a3,σ(3),

using ThreeProduct to transform a1,σ(1)·a2,σ(2)·a3,σ(3) into a sum of four floating point numbers..

Algorithm 5.1. Error-free transformation of the product of three floating point numbers.

function [x, y, z, t] = ThreeProduct(a, b, c)
[p, e] = TwoProduct(a, b)
[x, y] = TwoProduct(p, c)
[z, t] = TwoProduct(e, c)

This can be used to compute for example the area of a planar triangle or the volume of a
tetrahedron as shown in [38].

The following algorithm computes the determinant of a matrix up to a give relative error.
We suppose we have a function DetVector that transforms the computation of the determinant
into a summation like mentioned above. We then compute the sum and compute an error
bound. If this error bound is less than the desired relative error ε then we stop. Otherwise, we
continue the computation.

Algorithm 5.2. Algorithm to compute the determinant up to a relative error ε.

function resdet = det(A, ε)
p = DetVector(A)
p = VecSum(p)
res = pn

β = (2neps/(1 − 2neps)) ·
(

∑n−1
i=1 |pi|

)

err = eps|res| + (β + (2eps2|res|))
while (err > ε|res|)

p = VecSum(p)
res = pn

β = (2neps/(1 − 2neps)) ·
(

∑n−1
i=1 |pi|

)

err = eps|res| + (β + (2eps2|res|))
resdet = pn

7

5.2 Robust geometric predicates

An application requiring guaranteed accuracy is the computation of geometric predicates. Some
algorithm like Delaunay triangulation and mesh generation need self-consistent geometric tests.
Shewchuck [45, 46] gives a survey of the issues involved and presents an adaptative (and ar-
bitrary) precision floating point arithmetic to solve this problem. Most of these geometric
predicates require the computation of the sign of a small determinant. Recent work on this is-
sue are [45, 46, 4, 11, 30, 18]. Consider for example the predicate Orient3D which determines
whether a point D is to the left or right if the oriented plane defined by the points A, B and
C. The result of the predicate depend on the sign of the determinant

Orient3D(a, b, c, d) = sign

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az 1
bx by bz 1
cx cy cz 1
dx dy dz 1

∣

∣

∣

∣

∣

∣

∣

∣

= sign

∣

∣

∣

∣

∣

∣

ax − dx ay − dy az − dz

bx − dx by − dy bz − dz

cx − dx cy − dy cz − dz

∣

∣

∣

∣

∣

∣

.

The computed result is of the same sign that the exact result if the relative error is less that
one. As a consequence, it is sufficient to compute an approximate value of the determinant only
with a relative error less than one. Recently, Demmel and Hida [17, 18] provide another method
to certified the sign of a small determinant. They used an accurate sommation algorithm using
large accumulators. Here, we use algorithms developped in [39] with accurate computation of
an error bound. Indeed, the determinant can be evaluated as a sum of 24 monomials of the
form ±aibjck. Each monomial can be expressed as the sum of four numbers with the algorithm
ThreeProduct. It follows that the determinant can be expressed as a sum of 4×24 = 96 terms.
We can then apply a summation algorithm until the relative error is less than one. This can be
done using the error bound of Proposition 4.2. In the following algorithm, we suppose we have
a function DetVector that transforms the matrix of the determinant into a vector whose the
sum is the determinant (using ThreeProduct). We denote by n the length of the vector (here
n = 94).

Algorithm 5.3. Algorithm to compute the predicate Orient3D(a,b,c,d).

function sign = Orient3D(A)
p = DetVector(A)
p = VecSum(p)
res = pn

β = (2neps/(1 − 2neps)) ·
(

∑n−1
i=1 |pi|

)

err = eps|res| + (β + (2eps2|res|))
while (err > |res|)

p = VecSum(p)
res = pn

β = (2neps/(1 − 2neps)) ·
(

∑n−1
i=1 |pi|

)

err = eps|res| + (β + (2eps2|res|))
sign = sign(pn)

6 Conclusion

We have tested one geometric predicate that is Orient3D. Of course, the same techniques can
be easily applied to compute other predicates like InCircle and InSphere for example (see
[45, 46]. The potential of our algorithms is in providing a fast and simple way to extend

8

slightly the precision of critical variable in numerical algorithms. The techniques used here are
simple enough to be coded directly in numerical algorithms, avoiding function call overhead and
conversion costs.

References

[1] GMP, the GNU Multi-Precision library. Available at URL = http://www.swox.com/gmp/.

[2] MPFR, the Multiprecision Precision Floating Point Reliable library. Available at URL =
http://www.mpfr.org.

[3] I. J. Anderson. A distillation algorithm for floating-point summation. SIAM J. Sci. Com-
put., 20(5):1797–1806 (electronic), 1999.

[4] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. P. Preparata, and M. Yvinec. Evaluating
signs of determinants using single-precision arithmetic. Algorithmica, 17(2):111–132, 1997.

[5] David H. Bailey. Algorithm 719; multiprecision translation and execution of fortran pro-
grams. ACM Trans. Math. Softw., 19(3):288–319, 1993.

[6] David H. Bailey. A fortran 90-based multiprecision system. ACM Trans. Math. Softw.,
21(4):379–387, 1995.

[7] David H. Bailey. A Fortran-90 double-double library, 2001. Available at URL = http:

//crd.lbl.gov/~dhbailey/mpdist/index.html.

[8] Sylvie Boldo and Jean-Michel Muller. Some functions computable with a fused-mac. In
Proceedings of the 17th Symposium on Computer Arithmetic, Cape Cod, USA, 2005.

[9] Richard P. Brent. A fortran multiple-precision arithmetic package. ACM Trans. Math.
Softw., 4(1):57–70, 1978.

[10] Keith Briggs. Doubledouble floating point arithmetic, 1998. Available at URL = http:

//members.lycos.co.uk/keithmbriggs/doubledouble.html.

[11] H. Brönnimann and M. Yvinec. Efficient exact evaluation of signs of determinants. Algo-
rithmica, 27(1):21–56, 2000.

[12] Hervé Brönnimann and Mariette Yvinec. Efficient exact evaluation of signs of determinants.
In SCG ’97: Proceedings of the thirteenth annual symposium on Computational geometry,
pages 166–173, New York, NY, USA, 1997. ACM Press.

[13] Kenneth L. Clarkson. Safe and effective determinant evaluation. In 33rd annual symposium
on Foundations of computer science (FOCS). Proceedings, Pittsburgh, PA, USA, October
24–27, 1992. Washington, DC: IEEE Computer Society Press, 387-395 .

[14] Marc Daumas and Claire Finot. Division of floating point expansions with an application
to the computation of a determinant. J. UCS, 5(6):323–338, 1999.

[15] T. J. Dekker. A floating-point technique for extending the available precision. Numer.
Math., 18:224–242, 1971.

[16] James Demmel. Underflow and the reliability of numerical software. SIAM J. Sci. Statist.
Comput., 5(4):887–919, 1984.

9

[17] James Demmel and Yozo Hida. Accurate and efficient floating point summation. SIAM J.
Sci. Comput., 25(4):1214–1248 (electronic), 2003.

[18] James Demmel and Yozo Hida. Fast and accurate floating point summation with applica-
tion to computational geometry. Numer. Algorithms, 37(1-4):101–112, 2004.

[19] John R. Hauser. Handling floating-point exceptions in numeric programs. ACM Trans.
Program. Lang. Syst., 18(2):139–174, 1996.

[20] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-double precision floating
point arithmetic. In Proc. 15th IEEE Symposium on Computer Arithmetic, pages 155–162.
IEEE Computer Society Press, Los Alamitos, CA, USA, 2001.

[21] Nicholas J. Higham. The accuracy of floating point summation. SIAM J. Sci. Comput.,
14(4):783–799, 1993.

[22] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.

[23] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.
Institute of Electrical and Electronics Engineers, New York, 1985. Reprinted in SIGPLAN
Notices, 22(2):9–25, 1987.

[24] The MathWorks Inc. MATLAB User’s Guide, 2000.

[25] M. Jankowski, A. Smoktunowicz, and H. Woźniakowski. A note on floating-point summa-
tion of very many terms. J. Information Processing and Cybernetics-EIK, 19(9):435–440,
1983.

[26] M. Jankowski and H. Woźniakowski. The accurate solution of certain continuous problems
using only single precision arithmetic. BIT, 25:635–651, 1985.

[27] W. Kahan. Further remarks on reducing truncation errors. J. Assoc. Comput. Mach.,
8(1):40, 1965.

[28] W. Kahan. A survey of error analysis. In Proc. IFIP Congress, Ljubljana, Information
Processing 71, pages 1214–1239, Amsterdam, The Netherlands, 1972. North-Holland.

[29] Donald E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical Algo-
rithms. Addison-Wesley, Reading, MA, USA, third edition, 1998.

[30] Shankar Krishnan, Mark Foskey, Tim Culver, John Keyser, and Dinesh Manocha. Precise:
efficient multiprecision evaluation of algebraic roots and predicates for reliable geometric
computation. In SCG ’01: Proceedings of the seventeenth annual symposium on Computa-
tional geometry, pages 274–283, New York, NY, USA, 2001. ACM Press.

[31] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jimmy Iskandar,
William Kahan, Suh Y. Kang, Anil Kapur, Michael C. Martin, Brandon J. Thompson,
Teresa Tung, and Daniel J. Yoo. Design, implementation and testing of extended and
mixed precision blas. ACM Trans. Math. Softw., 28(2):152–205, 2002.

[32] Seppo Linnainmaa. Analysis of some known methods of improving the accuracy of floating-
point sums. BIT, 14:167–202, 1974.

10

[33] Seppo Linnainmaa. Software for doubled-precision floating-point computations. ACM
Trans. Math. Software, 7(3):272–283, 1981.

[34] Michael A. Malcolm. On accurate floating-point summation. Comm. ACM, 14(11):731–736,
1971.

[35] Ole Møller. Note on quasi double-precision. BIT, 5:251–255, 1965.

[36] Ole Møller. Quasi double-precision in floating point addition. BIT, 5:37–50, 1965.

[37] Yves Nievergelt. Scalar fused multiply-add instructions produce floating-point matrix arith-
metic provably accurate to the penultimate digit. ACM Trans. Math. Software, 29(1):27–48,
2003.

[38] Yves Nievergelt. Analysis and applications of priest’s distillation. ACM Trans. Math.
Softw., 30(4):402–433, 2004.

[39] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput., 2005. to appear.

[40] M. Pichat. Correction d’une somme en arithmétique à virgule flottante. Numer. Math.,
19:400–406, 1972.

[41] Michèle Pichat. Contributions à l’etude des erreurs d’arrondi en arithmétique à virgule
flottante. PhD thesis, Université Scientifique et Médicale de Grenoble, Grenoble, France,
1976.

[42] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic. In P. Kornerup
and D. W. Matula, editors, Proceedings of the 10th IEEE Symposium on Computer Arith-
metic (Arith-10), pages 132–144, Grenoble, France, 1991. IEEE Computer Society Press,
Los Alamitos, CA.

[43] Douglas M. Priest. On Properties of Floating Point Arithmetics: Numerical Stability and
the Cost of Accurate Computations. PhD thesis, Mathematics Department, University of
California, Berkeley, CA, USA, November 1992. ftp://ftp.icsi.berkeley.edu/pub/

theory/priest-thesis.ps.Z.

[44] D. R. Ross. Reducing truncation errors using cascading accumulators. J. Assoc. Comput.
Mach., 8(1):32–33, 1965.

[45] Johnathan Richard Shewchuk. Robust adaptive floating-point geometric predicates. In
SCG ’96: Proceedings of the twelfth annual symposium on Computational geometry, pages
141–150, New York, NY, USA, 1996. ACM Press.

[46] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete Comput. Geom., 18(3):305–363, 1997.

[47] Jack M. Wolfe. Reducing truncation errors by programming. Comm. ACM, 7(6):355–356,
1964.

11

	Introduction
	Notations
	Error-free transformations
	Summation
	Applications in robust computational geometry
	Accurate computation of determinant
	Robust geometric predicates

	Conclusion

