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Abstract
In this article, we derive accurate Horner methods in real and complex floating-point
arithmetic. In particular, we show that these methods are as accurate as if computed
in k-fold precision and then rounded into the working precision. When k is two, our
methods are comparable or faster than the existing compensated Horner routines.
When compared to multi-precision software, such as MPFR and MPC, our methods
are significantly faster, up to k equal to eight, that is, up to 489 bits in the significand.

Keywords Accurate polynomial evaluation · Error-free transformations · Error
analysis · k-fold accuracy

Mathematics Subject Classification 65Y20 · 65-04 · 65G99

1 Introduction

The use of error-free transformations to produce compensated arithmetic routines has
a long and interesting history, which includes the works of Dekker, Gill, Goldberg,
Kahan, Knuth, and Møller [4, 7, 8, 12, 13, 15]. These works were the first to extend
the working precision of a computation without the use of a hardware or software
implementation of a higher precision format [5, 6]. More recently, Rump, Ogita, and
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Oishi have developed algorithms for the summation (SumK) and dot product (DotK)
as accurate as if computed in k-fold precision and then rounded into the working
precision [17]. Even more recently, Rump developed algorithms for the summation
(SumKK) and dot product (DotKK) as accurate as if computed in k-fold precision
and stored in k parts, which was then used to develop methods for inverting arbitrary
ill-conditioned matrices [18].

Let c denote an exact calculation and c̄ denote the same calculation where all
operands are replaced by their absolute value. In addition, letμ denote the unit roundoff
of the working precision and ρ1, ρ2, ρ3 denote reasonably small positive values. Then,
r = flk,1 (c) denotes a floating-point calculation as accurate as if computed in k-fold
precision and then rounded into the working precision provided that

|r − c| ≤ ρ1μ |c| + ρ2μ
k c̄,

Also, {r1, . . . , rk} = flk,k (c) denotes a floating-point calculation as accurate as if
computed in k-fold precision and stored in k-parts provided that
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≤ ρ3μ
k c̄.

In this article, we use a strategy similar to Rump [18] to develop Horner methods
in real and complex arithmetic as accurate as if computed in k-fold precision and
then rounded into the working precision. Specifically, we compute each iteration of
Horner’s method as accurate as if computed in k-fold precision and stored in k parts,
see Theorem 3.1 for real arithmetic and Theorem 3.2 for complex arithmetic. After
the final iteration, we return the SumK value of the k parts so that the final com-
putation is as accurate as if computed in k-fold precision and then rounded into the
working precision, see Corollary 3.1 for real arithmetic and Corollary 3.3 for complex
arithmetic.

The outline of this article is as follows: In Sect. 2 we recall the basic properties of
real and complex floating-point arithmetic, error-free transformations, and the SumK
method from [17]. Then, in Sect. 3, we develop the accurate real and complex Horner
methods, which we denote by HornerK and HornerKCmplx, respectively. Also, we
provide flop counts for both methods and prove forward error bounds that show each
method is as accurate as if computed in k-fold precision and then rounded into the
working precision. Finally, in Sect. 4, we present the results of several numerical
experiments to demonstrate the relative forward error bound and computational time
of the HornerK and HornerKCmplx methods.

Note that, when k = 2, the HornerK method is comparable to the Compensat-
edHorner method from [9]. Also, the HornerKCmplx method is comparable to the
CompHorner method from [3], though we show that the HornerKCmplx method is
faster. Finally, we are not the first to develop a Horner’s method as accurate as if
computed in k-fold precision and then rounded into the working precision, see [14].
However, their method requires 2k − 1 evaluations of the EFTHorner method from
[9]. For this reason, our method is significantly faster, especially for large values of k.
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2 Floating-point arithmetic

Throughout this article, we assume that the computer arithmetic satisfies the IEEE
754 standard [2], and that no underflow nor overflow occurs. We denote byF the set
of floating-point numbers and by μ the unit roundoff. Note that for single precision,
μ = 2−24 and for double precision, μ = 2−53, where the exponent corresponds to the
precision of this floating-point format. Finally, we use the standard notation fl (·) to
denote floating-point operations in working precision.

2.1 Real floating-point arithmetic

For operations ◦ ∈ {+,−, ·}, the IEEE 754 standard requires the result of fl (a ◦ b) to
be correctly rounded, that is, as accurate as if computed exactly and then rounded to the
working precision [8]. Furthermore, the IEEE 754 standard requires all computations
to be performed with rounding to nearest, using round to even in the case of a tie. As
a result, for a, b ∈ F , floating-point operations satisfy

fl (a ◦ b) = (a ◦ b)(1 + ε),

where |ε| ≤ μ. This further implies that

|fl (a ◦ b) − a ◦ b| ≤ μ |a ◦ b| and |a ◦ b − fl (a ◦ b)| ≤ μ |fl (a ◦ b)| .

Throughout this article, we make use of the quantity:

γn = nμ

1 − nμ
,

where n ∈ N is assumed to satisfy nμ < 1. In addition, for x, y ∈ F n , we make use
of the following error bound on the floating-point summation:
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≤ γn−1

n
∑

i=1

|xi | (2.1)

and the following error bound on the floating-point dot-product:

|fl (x · y) − x · y| ≤ γn |x| · |y| . (2.2)

Both bounds are proven in [11] and from their proofs it is clear that similar bounds hold
for the complex floating-point summation and the complex floating-point dot-product,
see (2.3) and (2.4), respectively.

For each x = fl (a ◦ b), there exists a y ∈ F such that x + y = a ◦ b. The pair
(x, y) is called the error-free transformation of (a, b) for the operation ◦. For instance,
Algorithm 1 is attributed to Knuth [13] and returns the error-free transformation of
(a, b) for addition.
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Algorithm 1 Error-free transformation of (a, b) ∈ F 2 for addition [13, Thm B,
p.236].
function [x, y] = TwoSum (a, b) :

x = fl (a + b)
z = fl (x − a)

y = fl ((a − (x − z)) + (b − z))

The fused multiply-add operation, denoted FMA (a, b, c), results in the floating-
point number nearest to a · b+ c ∈ R. We make use of the FMA operation to perform
the error-free transformation of (a, b) for multiplication, see Algorithm 2. As was
done in [3, 9, 10, 17], we assume that the FMA operation constitutes a single flop.

Algorithm 2 Error-free transformation of (a, b) ∈ F 2 for multiplication [16, Thm
2].
function [x, y] = TwoProd (a, b) :

x = fl (a · b)
y = FMA (a, b, −x)

Theorem 2.1 summarizes the properties of Algorithm 1 and Algorithm 2. Note that
the 17 flops for the TwoProd function, as stated in [17, Theorem 3.4], is reduced to 2
flops with the use of the FMA operation over the split function from [4].

Theorem 2.1 ([17, Thm 3.4]) Let a, b ∈ F . Then, [x, y] = TwoSum (a, b) requires
6 flops and satisfies

a + b = x + y, x = fl (a + b) , |y| ≤ μ |x | , |y| ≤ μ |a + b| .

Also, [x, y] = TwoProd (a, b) requires 2 flops and satisfies

a · b = x + y, x = fl (a · b) , |y| ≤ μ |x | , |y| ≤ μ |a · b| .

Next, we state the vector transformation from [17], also known as the distillation
algorithm [13], see Algorithm 3, where we do not overwrite the input vector for clarity
in the analysis of the algorithm. Theorem 2.2 summarizes several important properties
of Algorithm 3. Note that a similar result holds in complex floating-point arithmetic,
see Theorem 2.6.

Algorithm 3 Transformation of the vector p ∈ F n without changing the vector sum
of p ([17, Alg 4.3])
function q = VecSum (p) :
q1 = p1
for i = 2, . . . , n do

[qi , qi−1] = TwoSum
(

pi , qi−1
)

end for
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Theorem 2.2 ([17, Lemma4.2])Letp ∈ F n. Then,q = VecSum (p) requires 6(n−1)
flops and satisfies

n
∑

i=1

qi =
n

∑

i=1

pi ,

qn = fl
(∑n

i=1 pi
)

, and

n−1
∑

i=1

|qi | ≤ γn−1

n
∑

i=1

|pi | .

We conclude this section with the k-fold summation from [17], see Algorithm 4.
Theorem 2.3 summarizes the properties of Algorithm 4. In particular, Theorem 2.3
shows that the result s = SumK (p, k) is as accurate as if computed in k-fold precision
and then rounded into the working precision.

Algorithm 4 Vector Summation of p ∈ F n in k-fold precision and rounded into the
working precision [17, Alg 4.8]
function s = SumK (p, k) :
for i = 1, . . . , k − 1 do
p = VecSum (p)

end for
s = fl

((
∑n−1

i=1 pi
)

+ pn
)

Theorem 2.3 ([17, Prop 4.5 and 4.10]) Let p ∈ F n, 4nμ ≤ 1, and k ≥ 2. Then,
s = SumK (p, k) requires (n − 1)(6k − 5) flops and satisfies

∣
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2n−2

n
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|pi | .

In particular, since 3γ 2
n−1 is negligible compared to μ and γ k

2n−2 is a multiple of μk ,
it follows that s = flk,1

(∑n
i=1 pi

)

.

2.2 Complex floating-point arithmetic

We define C = F + iF to be the set of complex floating-point numbers, where
i = √−1 is the imaginary unit. Also, we use the operators Re (·) and Im (·) to denote
the real and imaginary part of a complex number, respectively. As in the real case, we
denote by fl (·) the operations that are done in floating-point working precision. The
following holds for all a, b ∈ C and ◦ ∈ {+,−}:

fl (a ◦ b) = (a ◦ b)(1 + ε),
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where |ε| ≤ μ. In addition, we have

fl (a · b) = (a · b)(1 + ε),

where |ε| ≤ √
2γ2. This further implies that for ◦ ∈ {+,−}, we have

|fl (a ◦ b) − a ◦ b| ≤ μ |a ◦ b| and |a ◦ b − fl (a ◦ b)| ≤ μ |fl (a ◦ b)| ,

and

|a · b − fl (a · b)| ≤ √
2γ2 |a · b| .

Throughout this article, we make use of the quantity

γ̃n = n
√
2γ2

1 − n
√
2γ2

,

where n ∈ N is assumed to satisfy n
√
2γ2 < 1. In addition, for x, y ∈ C n , we make

use of the following error bound on the complex floating-point summation:
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≤ γn−1

n
∑

i=1

|xi | (2.3)

and the following error bound on the floating-point dot-product:

|fl (x · y) − x · y| ≤ γ̃n |x| · |y| . (2.4)

As in the real case, the error-free transformation of the pair of complex floating-
point numbers (a, b) for the operation ◦ is a pair (x, y) such that x = fl (a ◦ b) and
x + y = a ◦ b. The error-free transformation of (a, b) ∈ C 2 for complex addition is
a straightforward extension of Algorithm 1 and is shown in Algorithm 5.

Algorithm 5 Error-free transformation of (a, b) ∈ C 2 for addition ([10, Alg 3.1]).
function [x, y] = TwoSumCmplx (a, b) :

[Re (x) ,Re (y)] = TwoSum (Re (a) ,Re (b))
[Im (x) , Im (y)] = TwoSum (Im (a) , Im (b))

In contrast, the error-free transformation of (a, b) ∈ C 2 for complex multiplication
requires multiple products of the real and imaginary parts of a and b as shown in
Algorithm 6.
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Algorithm 6 Error-free transformation of (a, b) ∈ C 2 for multiplication ([10, Alg
3.2]).
function [w, x, y, z] = TwoProdCmplx (a, b) :

[g1, h1] = TwoProd (Re (a) ,Re (b)); [g2, h2] = TwoProd (Im (a) , Im (b))
[g3, h3] = TwoProd (Re (a) , Im (b)); [g4, h4] = TwoProd (Im (a) ,Re (b))
[g5, h5] = TwoSum (g1, −g2); [g6, h6] = TwoSum (g3, g4)
w = g5 + i g6; x = h1 + i h3; y = −h2 + i h4; z = h5 + i h6

Note that Theorem 2.4 summarizes the properties of Algorithm 5 and Algorithm 6.

Theorem 2.4 ([10, Thm 3.1 and 3.2]) Let a, b ∈ C . Then, [x, y] = TwoSumCmplx
(a, b) requires 12 flops and satisfies

a + b = x + y, x = fl (a + b) , |y| ≤ μ |x | , |y| ≤ μ |a + b| .

Also, [w, x, y, z] = TwoProdCmplx (a, b) requires 20 flops and satisfies

a · b = w + x + y + z, w = fl (a · b) , |x + y + z| ≤ √
2γ2 |a · b| .

In addition, we have the following result for Algorithm 6.

Theorem 2.5 Let a, b ∈ C and let [w, x, y, z] = TwoProdCmplx (a, b). Then,

|x | + |y| + |z| ≤ μ
(

3 + √
2γ2

)

|a| |b| .

Proof Note that x = h1 + i h3, where [g1, h1] = TwoProd (Re (a) ,Re (b)) and
[g3, h3] = TwoProd (Re (a) , Im (b)). Therefore, by Theorem 2.1, we have

|x | =
√

h21 + h23

≤
√

μ2 Re (a)2 Re (b)2 + μ2 Re (a)2 Im (b)2

= μ |Re (a)| |b| ≤ μ |a| |b| .

A similar argument shows that |y| ≤ μ |a| |b|. Finally, for z = h5 + i h6, where
[g5, h5] = TwoSum (g1,−g2) and [g6, h6] = TwoSum (g3, g4). Theorem 2.1 implies
that |h5| ≤ μ |g5| and |h6| ≤ μ |g6|. Therefore, we have

|z| =
√

h25 + h26 ≤
√

μ2g25 + μ2g26 = μ

√

g25 + g26

= μ |w| = μ |fl (a · b)| ≤ μ
(

1 + √
2γ2

)

|a| |b| .

��
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Next, we state the complex vector transformation, see Algorithm 7 where we do
not overwrite the input vector for clarity in the analysis of the algorithm. Theorem 2.6
summarizes several important properties of Algorithm 7. Note that the proof of Theo-
rem2.6 follows fromTheorem2.2 since the properties of TwoSum andTwoSumCmplx
are identical.

Algorithm 7 Transformation of the vector p ∈ C n without changing the vector sum
of p.
function q = VecSumCmplx (p) :
q1 = p1
for i = 2, . . . , n do

[qi , qi−1] = TwoSumCmplx
(

pi , qi−1
)

end for

Theorem 2.6 Let p ∈ C n. Then, q = VecSumCmplx (p) requires 12(n− 1) flops and
satisfies

n
∑

i=1

qi =
n

∑

i=1

pi ,

qn = fl
(∑n

i=1 pi
)

, and

n−1
∑

i=1

|qi | ≤ γn−1

n
∑

i=1

|pi | .

We conclude this section with the complex k-fold summation, see Algorithm 8.
Theorem 2.7 summarizes the properties of Algorithm 8. Note that the proof of Theo-
rem 2.7 follows from Theorem 2.3 since the properties of VecSumCmplx and VecSum
are identical. In particular, Theorem 2.7 shows that the result s = SumKCmplx (p, k)
is as accurate as if computed in k-fold precision and then rounded into the working
precision.

Algorithm 8 Vector Summation of p ∈ C n in k-fold precision and rounded into the
working precision.
function s = SumKCmplx (p, k) :
for i = 1, . . . , k − 1 do
p = VecSumCmplx (p)

end for
s = fl

((
∑n−1

i=1 pi
)

+ pn
)
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Theorem 2.7 Let p ∈ C n, 4nμ ≤ 1, and k ≥ 2. Then, s = SumKCmplx (p, k)
requires 2(n − 1)(6k − 5) flops and satisfies

∣
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∣
∣
s −

n
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pi

∣
∣
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≤

(

μ + 3γ 2
n−1

)
∣
∣
∣
∣
∣

n
∑

i=1

pi

∣
∣
∣
∣
∣
+ γ k

2n−2

n
∑

i=1

|pi | .

In particular, since 3γ 2
n−1 is negligible compared to μ and γ k

2n−2 is a multiple of μk ,
it follows that s = flk,1

(∑n
i=1 pi

)

.

3 Horner’s method

Consider the polynomial of degree m in the variable z defined by

p(z) = amz
m + · · · + a1z + a0, (3.1)

where a0, a1, . . . , am are real or complex floating-point numbers, and am 	= 0. If all
coefficients are real, thenwewrite p ∈ F [z], and if any of the coefficients are complex,
then wewrite p ∈ C [z]. Given a real or complex floating-point number z, Algorithm 9
defines Horner’s method, which is used to compute the polynomial evaluation p(z).
For i = 0, 1, . . . ,m, we use hi to denote the i th step of Horner’s method computed
in exact arithmetic, and we use Hi to denote the value obtained when all operands are
replaced by their respective absolute value. For example, h0 = p(z) and H0 = p̃(|z|),
where p̃(z) = ∑m

i=0 |ai | zi .

Algorithm 9 Horner’s method in exact arithmetic [11, p.94].
function h0 = Horner (p, z) :
hm = am
for i = m − 1 to i = 0 do
hi = z · hi+1 + ai

end for

If real or complex floating-point arithmetic in the working precision is used, then
we denote the result of each step of Horner’s method by fl (hi ), for i = 0, 1, . . . ,m. It
is well-known that in real floating-point arithmetic, we have the following error bound
for h0 [11]:

|h0 − fl (h0)| ≤ γ2m p̃(|z|). (3.2)

Similarly, in complex floating-point arithmetic, we have [10]:

|h0 − fl (h0)| ≤ γ̃2m p̃(|z|). (3.3)
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In what follows, we develop methods for the real and complex Horner’s method
as accurate as if computed in k-fold precision and then rounded into the working
precision.

3.1 Real HornerKmethod

The real Horner’s method in k-fold precision and then rounded into the working
precision is shown in Algorithm 10. Starting with {h(m)} = {am, 0, . . . , 0}, we let
{h(i)} denote the k-fold result of Horner’s method on the i-th iteration of Horner’s
method stored in k-parts, for i = m − 1, . . . , 0. In particular, h(i)

1 is the floating-point
result of Horner’s method on the i-th iteration and e(0) is a vector of size 2k that stores
the errors in that computation. Then, for j = 0, . . . , k−3, we set h(i)

j+2 to the floating-

point sum of the entries in e( j), and we set e( j+1) to be a vector of size 2k − ( j + 1)
that stores the errors in that computation. Upon completion of the final iteration, the
result of h = SumK

({h(0)}, k) is returned.

Algorithm 10 Horner’s method in k-fold precision and rounded into the working
precision.

function h = HornerK (p, z, k) :
{h(m)} = {am , 0, . . . , 0}, vector of size k
for i = m − 1 to i = 0 do

[r , e1] = TwoProd
(

z, h(i+1)
1

)

for j = 2 to j = k do

[s, e j ] = TwoProd
(

z, h(i+1)
j

)

[r , ek+ j−1] = TwoSum (r , s)
end for
[h(i)

1 , e2k ] = TwoSum (r , ai )

Set e(0) = e
for j = 0 to j = k − 3 do

e( j+1) = VecSum
(

e( j)
)

h(i)
j+2 = e( j+1)

2k− j

Delete entry e( j+1)
2k− j from e( j+1)

end for
h(i)
k = fl

(
∑k+2

j=1 e
(k−2)
j

)

end for
h = SumK

(

{h(0)}, k
)

The remainder of this section is devoted to the analysis of Algorithm 10. In partic-
ular, in Theorem 3.1 we show that {h(i)} = flk,k (hi ) and in Corollary 3.1 we show
that h = flk,1 (p(z)). To begin, Lemma 3.1 gives a bound on the sum of the absolute
value of the entries of e.
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Lemma 3.1 The vector e in Algorithm 10 satisfies

2k
∑

j=1

∣
∣e j

∣
∣ ≤ γk+1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ ,

for i = m − 1, . . . , 0.

Proof By Theorem 2.1, we have

k
∑

j=1

∣
∣e j

∣
∣ ≤ μ

k
∑

j=1

∣
∣
∣z · h(i+1)

j

∣
∣
∣ .

Also, by Theorem 2.2, we have

2k
∑

j=k+1

∣
∣e j

∣
∣ ≤ γk

⎛

⎝

k
∑

j=1

∣
∣
∣fl

(

z · h(i+1)
j

)∣
∣
∣ + |ai |

⎞

⎠

≤ γk

⎛

⎝(1 + μ)

k
∑

j=1

∣
∣
∣z · h(i+1)

j

∣
∣
∣ + |ai |

⎞

⎠

≤ γk(1 + μ)

⎛

⎝

k
∑

j=1

∣
∣
∣z · h(i+1)

j

∣
∣
∣ + |ai |

⎞

⎠ .

Since μ + (1 + μ)γk ≤ γk+1, we have

2k
∑

j=1

∣
∣e j

∣
∣ ≤ γk+1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ .

��
Next, Lemma 3.2 shows that the collection {h(i)} stores the floating-point result of

z
∑k

j=1 h
(i+1)
j + ai computed as if in k-fold precision and stored in k-parts.

Lemma 3.2 The floating-point collection {h(i)} in Algorithm 10 satisfies

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(i)
j −

⎛

⎝z
k

∑

j=1

h(i+1)
j + ai

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ γ k
2k−1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠

and

k
∑

j=1

∣
∣
∣h

(i)
j

∣
∣
∣ ≤

(

1 + 2γ2k−1 + · · · + 2γ k−1
2k−1 + γ k

2k−1

)

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ ,
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for i = m − 1, . . . , 0. In particular, since γ k
2k−1 is a multiple of μk , it follows that

{h(i)} = flk,k
(

z
∑k

j=1 h
(i+1)
j + ai

)

, for i = m − 1, . . . , 0.

Proof By successive application of Theorem 2.1, we have from line 4 − 9 of Algo-
rithm 10 that

h(i)
1 +

2k
∑

j=1

e j = z
k

∑

j=1

h(i+1)
j + ai .

Furthermore, by successive application of Theorem 2.2, we have from line 10− 15 of
Algorithm 10 that

2k
∑

j=1

e j =
k−1
∑

j=2

h(i)
j +

k+2
∑

j=1

e(k−2)
j ,

where

k+2
∑

j=1

∣
∣
∣e

(k−2)
j

∣
∣
∣ ≤ γk+2

k+3
∑

j=1

∣
∣
∣e

(k−3)
j

∣
∣
∣ ≤ · · · ≤

⎛

⎝

2k−1
∏

j=k+2

γ j

⎞

⎠

2k
∑

j=1

∣
∣e j

∣
∣ ≤ γ k−2

2k−1

2k
∑

j=1

∣
∣e j

∣
∣ .

Also, in line 16 of Algorithm 10, the error in the floating-point summation, see (2.1),
satisfies

∣
∣
∣
∣
∣
∣

h(i)
k −

k+2
∑

j=1

e(k−2)
j

∣
∣
∣
∣
∣
∣

≤ γk+1

k+2
∑

j=1

∣
∣
∣e

(k−2)
j

∣
∣
∣ .

Combining these observations with Lemma 3.1 gives

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(i)
j −

⎛

⎝z
k

∑

j=1

h(i+1)
j + ai

⎞

⎠

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

h(i)
k −

k+2
∑

j=1

e(k−2)
j

∣
∣
∣
∣
∣
∣

≤ γk+1

k+2
∑

j=1

∣
∣
∣e

(k−2)
j

∣
∣
∣

≤ γk+1γ
k−2
2k−1

2k
∑

j=1

∣
∣e j

∣
∣

≤ γk+1γ
k−2
2k−1γk+1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠

≤ γ k
2k−1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ .
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Note that Theorem2.1 implies that h(i)
1 = fl

(

z
∑k

j=1 h
(i+1)
j + ai

)

andTheorem2.2

implies that

h(i)
l = fl

⎛

⎝

2k−l+2
∑

j=1

e(l−2)
j

⎞

⎠ ,

for l = 2, . . . , k. Therefore, the error in floating-point dot product, see (2.2), gives us
the following bound

∣
∣
∣h

(i)
1

∣
∣
∣ ≤ (1 + γk+1)

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠

≤ (1 + γ2k−1)

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ .

Similarly, the error in floating-point summation, see (2.1), gives us the following bound

∣
∣
∣h

(i)
l

∣
∣
∣ ≤ (1 + γ2k−l+1)

2k−l+2
∑

j=1

∣
∣
∣e

(l−2)
j

∣
∣
∣

≤ (1 + γ2k−l+1) γ2k−l+2 · · · γ2k−1

2k
∑

j=1

∣
∣e j

∣
∣

≤
(

γ l−1
2k−1 + γ l

2k−1

)

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ ,

where the last line follows from Lemma 3.1. ��
Next, Theorem 3.1 shows that the collection {h(i)} stores the floating-point result

of hi computed as if in k-fold precision and stored in k-parts. To that end, let ρ =
1 + 2γ2k−1 + · · · + 2γ k−1

2k−1 + γ k
2k−1. Also, recall that for i = 0, 1, . . . ,m, hi denotes

the exact value from Algorithm 9 and Hi denotes the exact value when all operands
are replaced by their respective absolute value.

Theorem 3.1 The floating-point collection {h(m−i)} in Algorithm 10 satisfies

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i)
j − hm−i

∣
∣
∣
∣
∣
∣

≤ γ k
2k−1

(

1 + ρ + · · · + ρi−1
)

Hm−i

and

k
∑

j=1

∣
∣
∣h

(m−i)
j

∣
∣
∣ ≤ ρi Hm−i ,
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for i = 0, . . . ,m. In particular, since γ k
2k−1 is a multiple of μ

k , it follows that {h(i)} =
flk,k (hi ), for i = 0, . . . ,m.

Proof We proceed via induction on i . The base case, when i = 0, is clear. Now,
suppose the result holds for some i ≥ 0, and note that the triangle inequality implies

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i−1)
j − hm−i−1

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i−1)
j −

⎛

⎝z
k

∑

j=1

h(m−i)
j + am−i−1

⎞

⎠

∣
∣
∣
∣
∣
∣

+ |z|
∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i)
j − hm−i

∣
∣
∣
∣
∣
∣

.

Applying Lemma 3.2 and the induction hypothesis gives us

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i−1)
j − hm−i−1

∣
∣
∣
∣
∣
∣

≤ γ k
2k−1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(m−i)
j

∣
∣
∣ + |am−i−1|

⎞

⎠ + |z| γ k
2k−1

(

1 + ρ + · · · + ρi−1
)

Hm−i

≤ γ k
2k−1

(

|z| ρi Hm−i + |am−i−1|
)

+ |z| γ k
2k−1

(

1 + ρ + · · · + ρi−1
)

Hm−i

≤ γ k
2k−1

(

1 + ρ + · · · + ρi
)

Hm−i−1.

Moreover, by Lemma 3.2, we have

k
∑

j=1

∣
∣
∣h

(m−i−1)
j

∣
∣
∣ ≤ ρ

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(m−i)
j

∣
∣
∣ + |am−i−1|

⎞

⎠

≤ ρ
(

|z| ρi Hm−i + |am−i−1|
)

≤ ρi+1Hm−i−1,

and so the result holds for i + 1. ��
Finally, Corollary 3.1 gives a flop count for Algorithm 10 and shows that h =

HornerK (p, z, k) is as accurate as if computed in k-fold precision and then rounded
into the working precision. Note that when k = 2, the flop count is 19m + 7, which is
greater than the 11m−1 flops for the CompensatedHorner method from [9]. However,
the latter method only works for k = 2.

Corollary 3.1 Let p ∈ F [z] be a degree m polynomial, z ∈ F , 4nμ ≤ 1, and k ≥ 2.
Then, h = HornerK (p, z, k) requires m

(

9k2 − 6k − 5
)+ (

6k2 − 11k + 5
)

flops and
satisfies

|h − p(z)| ≤
(

μ + 3γ 2
k−1

)

|p(z)| + 2γ k
2k−1

(

1 + ρ + · · · + ρm)

p̃(|z|).
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In particular, since 3γ 2
k−1 is negligible compared to μ and γ k

2k−1 is a multiple of μk ,
it follows that h = flk,1 (p(z)).

Proof The flop count is left to the reader. For the error bound, note that the triangle
inequality implies

|h − p(z)| ≤
∣
∣
∣
∣
∣
∣

h −
k

∑

j=1

h(0)
j

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

k
∑

j=1

h(0)
j − h0

∣
∣
∣
∣
∣
∣

.

Applying Theorem 2.3 and Theorem 3.1 gives us

|h − p(z)|

≤
(

μ + 3γ 2
k−1

)

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(0)
j

∣
∣
∣
∣
∣
∣

+ γ k
2k−2

k
∑

j=1

∣
∣
∣h

(0)
j

∣
∣
∣ + γ k

2k−1

(

1 + ρ + · · · + ρm−1
)

H0

≤
(

μ + 3γ 2
k−1

) (

|h0| + γ k
2k−1

(

1 + ρ + · · · + ρm−1
)

H0

)

+ γ k
2k−1

(

1 + ρ + · · · + ρm)

H0

≤
(

μ + 3γ 2
k−1

)

|p(z)| + 2γ k
2k−1

(

1 + ρ + · · · + ρm)

p̃(|z|).

��
It may be unsettling to see the error bound in Corollary 3.1 have the term (1+ ρ +

· · · + ρm); however, the following proposition shows that this term can be replaced
by (m + 4) for reasonably sized k and m

Proposition 3.1 For 2 ≤ k ≤ 10 and 1 ≤ m ≤ 105, we have

1 + ρ + · · · + ρm ≤ (m + 4).

Proof Note that

1 + ρ + · · · + ρm = ρm+1 − 1

ρ − 1
,

where ρ = 1+ 2γ2k−1 + · · · + 2γ k−1
2k−1 + γ k

2k−1. Define θ = 2γ2k−1 + · · · + 2γ k−1
2k−1 +

γ k
2k−1, then ρ = 1 + θ and ρm+1 = ∑m+1

j=0

(m+1
j

)

θ j . Now, it is true that
(m+1

j

)

θ j >
(m+1
j+1

)

θ j+1, for j = 0, 1, . . . ,m; otherwise, there is a j for which θ ≥ j+1
m+1 , which

contradicts the reasonably sized k and m. Therefore, we have

ρm+1 = 1 + (m + 1)θ +
m+1
∑

j=2

(
m + 1

j

)

θ j
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≤ 1 + (m + 1)θ +
m+1
∑

j=2

(m + 1)!
2(m − 1)!θ

2

= 1 + (m + 1)θ + m2(m + 1)

2
θ2

≤ 1 + (m + 4)θ,

where the last line follows from m2(m + 1)θ2 ≤ 6θ ; otherwise, θ > 6
m2(m+1)

, which
contradicts the reasonably sized k and m. Finally, we have

1 + ρ + · · · + ρm = ρm+1 − 1

ρ − 1
≤ (m + 4)θ

θ
= (m + 4).

��
Now, we can re-write the error bound from Corollary 3.1.

Corollary 3.2 Let p ∈ F [z] be a degree m polynomial, where 1 ≤ m ≤ 105. Also, let
z ∈ F and 2 ≤ k ≤ 10. Then, h = HornerK (p, z, k) satisfies

|h − p(z)| ≤
(

μ + 3γ 2
k−1

)

|p(z)| + 2(m + 4)γ k
2k−1 p̃(|z|).

3.2 Complex HornerKmethod

The complex Horner’s method in k-fold precision and then rounded into the working
precision is shown in Algorithm 11. Starting with {h(m)} = {am, 0, . . . , 0}, we let
{h(i)} denote the k-fold result of Horner’s method on the i-th iteration of Horner’s
method stored in k-parts, for i = m − 1, . . . , 0. In particular, h(i)

1 is the floating-point
result of the i-th iteration of Horner’s method and e(0) is a vector of size 4k that stores
the errors in that computation. Then, for j = 0, . . . , k−3, we set h(i)

j+2 to the floating-

point sum of the entries in e( j), and we set e( j+1) to the vector of size 4k − ( j + 1)
that stores the error in that computation. Upon completion of the final iteration, the
result of h = SumKCmplx

({h(0)}, k) is returned.
The remainder of this section is devoted to the analysis of Algorithm 11. In partic-

ular, in Theorem 3.2 we show that {h(i)} = flk,k (hi ) and in Corollary 3.3 we show
that h = flk,1 (p(z)). To begin, Lemma 3.3 gives a bound on the sum of the absolute
value of the entries of e.

Lemma 3.3 The vector e in Algorithm 11 satisfies

4k
∑

j=1

∣
∣e j

∣
∣ ≤ γ̃k+2

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠

Proof By Theorem 2.5, for j = 1, . . . , k, we have
∣
∣e3 j−2

∣
∣ + ∣

∣e3 j−1
∣
∣ + ∣

∣e3 j
∣
∣ ≤

(

3μ + √
2γ2μ

)

|z|
∣
∣
∣h

(i+1)
j

∣
∣
∣ ,
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Algorithm 11 Complex Horner’s method in k-fold precision and rounded into the
working precision.
function h = HornerKCmplx (p, z, k) :

{h(m)} = {am , 0, . . . , 0}, vector of size k
for i = m − 1 to i = 0 do

[r , e1, e2, e3] = TwoProdCmplx
(

z, h(i+1)
1

)

for j = 2 to j = k do

[s, e3 j−2, e3 j−1, e3 j ] = TwoProdCmplx
(

z, h(i+1)
j

)

[r , e3k+ j−1] = TwoSumCmplx (r , s)
end for
[h(i)

1 , e4k ] = TwoSumCmplx (r , ai )

Set e(0) = e
for j = 0 to j = k − 3 do

e( j+1) = VecSumCmplx
(

e( j)
)

h(i)
j+2 = e( j+1)

4k− j

Delete entry e( j+1)
4k− j from e( j+1)

end for
h(i)
k = fl

(
∑3k+2

j=1 e(k−2)
j

)

end for
h = SumKCmplx

(

{h(0)}, k
)

which implies that

3k
∑

j=1

∣
∣e j

∣
∣ ≤ μ

(

3 + √

(2)γ2
)

|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ .

Also, by Theorem 2.6, we have

4k
∑

j=3k+1

≤ γk

⎛

⎝

k
∑

j=1

∣
∣
∣fl

(

z · h(i+1)
j

)∣
∣
∣ + |ai |

⎞

⎠

≤ γk

(

1 + √
2γ2

)

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ .

Since 3μ + √
2γ2μ + γk

(

1 + √
2γ2

)

≤ γ̃k+2, it follows that

4k
∑

j=1

∣
∣e j

∣
∣ ≤ γ̃k+2

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ .

��
Next, Lemma 3.4 shows that the collection {h(i)} stores the floating-point result of

z
∑k

j=1 h
(i+1)
j + ai computed as if in k-fold precision and stored in k-parts.
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Lemma 3.4 The floating-point collection {h(i)} in Algorithm 11 satisfies

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(i)
j −

⎛

⎝z
k

∑

j=1

h(i+1)
j + ai

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ γ̃ k
4k−1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠

and

k
∑

j=1

∣
∣
∣h

(i)
j

∣
∣
∣ ≤

(

1 + 2γ̃4k−1 + · · · + 2γ̃ k−1
4k−1 + γ̃ k

4k−1

)

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ ,

for i = m − 1, . . . , 0. In particular, since γ̃ k
4k−1 is a multiple of μk , it follows that

{h(i)} = flk,k
(

z
∑k

j=1 h
(i+1)
j + ai

)

, for i = m − 1, . . . , 0.

Proof By successive application of Theorem 2.4, we have from lines 4 − 9 of Algo-
rithm 11 that

h(i)
1 +

4k
∑

j=1

e j = z
k

∑

j=1

h(i+1)
j + ai .

Furthermore, by successive application of Theorem 2.6, we have from lines 10 − 15
of Algorithm 11 that

4k
∑

j=1

e j =
k−1
∑

j=2

h(i)
j +

3k+2
∑

j=1

e(k−2)
j ,

where

3k+2
∑

j=1

∣
∣
∣e

(k−2)
j

∣
∣
∣ ≤ γ3k+2

3k+3
∑

j=1

∣
∣
∣e

(k−3)
j

∣
∣
∣ ≤ · · · ≤

⎛

⎝

4k−1
∏

j=3k+2

γ j

⎞

⎠

4k
∑

j=1

∣
∣e j

∣
∣ ≤ γ k−2

4k−1

4k
∑

j=1

∣
∣e j

∣
∣ .

Also, in line 16 of Algorithm 11, the error in the complex floating-point summation,
see (2.3), satisfies

∣
∣
∣
∣
∣
∣

h(i)
k −

3k+2
∑

j=1

e(k−2)
j

∣
∣
∣
∣
∣
∣

≤ γ3k+1

3k+2
∑

j=1

∣
∣
∣e

(k−2)
j

∣
∣
∣ .

Combining these observations with Lemma 3.3 gives
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∣
∣
∣
∣
∣
∣

k
∑

j=1

h(i)
j −

⎛

⎝z
k

∑

j=1

h(i+1)
j + ai

⎞

⎠

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

h(i)
k −

3k+2
∑

j=1

e(k−2)
j

∣
∣
∣
∣
∣
∣

≤ γ3k+1

3k+2
∑

j=1

∣
∣
∣e

(k−2)
j

∣
∣
∣

≤ γ3k+1γ
k−2
4k−1

4k
∑

j=1

∣
∣e j

∣
∣

≤ γ3k+1γ
k−2
4k−1γ̃k+2

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠

≤ γ̃ k
4k−1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ .

Note that Theorem2.4 implies that h(i)
1 = fl

(

z
∑k

j=1 h
(i+1)
j + ai

)

andTheorem2.6

implies that

h(i)
l = fl

⎛

⎝

4k−l+2
∑

j=1

e(l−2)
j

⎞

⎠ ,

for l = 2, . . . , k. Therefore, the error in the complex floating-point dot-product,
see (2.4), gives us the following bound

∣
∣
∣h

(i)
1

∣
∣
∣ ≤ (1 + γ̃k+1)

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ .

Similarly, for l = 2, . . . , k, the error in the complex floating-point summation,
see (2.3), gives us the following bound

∣
∣
∣h

(i)
l

∣
∣
∣ ≤ (1 + γ4k−l+1)

4k−l+2
∑

j=1

∣
∣
∣e

(l−2)
j

∣
∣
∣

≤ (1 + γ4k−l+1) γ4k−l+2 · · · γ4k−1

4k
∑

j=1

∣
∣e j

∣
∣

≤
(

γ̃ l−1
4k−1 + γ̃ l

4k−1

)

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(i+1)
j

∣
∣
∣ + |ai |

⎞

⎠ ,

where the last line follows from Lemma 3.3. ��
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Next, Theorem 3.2 shows that the collection {h(i)} stores the floating-point result
of hi computed as in in k-fold precision and stored in k-parts. To that end, let ρ̃ =
1 + 2γ̃4k−1 + · · · + 2γ̃ k−1

4k−1 + γ̃ k
4k−1. Also, recall that for i = 0, 1, . . . ,m, hi denotes

the exact value from Algorithm 9 and Hi denotes the exact value when all operands
are replaced by their respective absolute value.

Theorem 3.2 The floating-point collection {h(m−i)} in Algorithm 11 satisfies

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i)
j − hm−i

∣
∣
∣
∣
∣
∣

≤ γ̃ k
4k−1

(

1 + ρ̃ + · · · + ρ̃i−1
)

Hm−i ,

and

k
∑

j=1

∣
∣
∣h

(m−i)
j

∣
∣
∣ ≤ ρ̃i Hm−i ,

for i = 0, 1, . . . ,m. In particular, since γ̃ k
4k−1 is a multiple of μk , it follows that

{h(i)} = flk,k (hi ), for i = 0, . . . ,m.

Proof We proceed via induction on i . The base case, when i = 0, is clear. Now,
suppose the result holds for some i ≥ 0, and note that the triangle inequality implies

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i−1)
j − hm−i−1

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i−1)
j −

⎛

⎝z
k

∑

j=1

h(m−i)
j + am−i−1

⎞

⎠

∣
∣
∣
∣
∣
∣

+ |z|
∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i)
j − hm−i

∣
∣
∣
∣
∣
∣

.

Applying Lemma 3.4 and the induction hypothesis gives us

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(m−i−1)
j − hm−i−1

∣
∣
∣
∣
∣
∣

≤ γ̃ k
4k−1

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(m−i)
j

∣
∣
∣ + |am−i−1|

⎞

⎠ + |z| γ̃ k
4k−1

(

1 + ρ̃ + · · · + ρ̃i−1
)

Hm−i

≤ γ̃ k
4k−1

(

|z| ρ̃i Hm−i + |am−i−1|
)

+ |z| γ̃ k
4k−1

(

1 + ρ̃ + · · · + ρ̃i−1
)

Hm−i

≤ γ̃ k
4k−1

(

1 + ρ̃ + · · · + ρ̃i
)

Hm−i−1.
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Moreover, by Lemma 3.4, we have

k
∑

j=1

∣
∣
∣h

(m−i−1)
j

∣
∣
∣ ≤ ρ̃

⎛

⎝|z|
k

∑

j=1

∣
∣
∣h

(m−i)
j

∣
∣
∣ + |am−i−1|

⎞

⎠

≤ ρ̃
(

|z| ρ̃i Hm−i + |am−i−1|
)

≤ ρ̃i+1Hm−i−1,

and so the result holds for i + 1. ��
Finally, Corollary 3.3 gives a flop count on Algorithm 11 and shows that h =

HornerK (p, z, k) is as accurate as if computed in k-fold precision and then rounded
into the working precision. Note that when k = 2, the flop count is 71m + 14, which
is less than the 100m − 7 flops for the CompHorner method from [3].

Corollary 3.3 Let p ∈ C [z] be a degree m polynomial, z ∈ C , 4nμ ≤ 1,
and k ≥ 2. Then, h = HornerKCmplx (p, z, k) requires m

(

42k2 − 43k − 11
) +

(

12k2 − 22k + 10
)

flops and satisfies

|h − p(z)| ≤
(

μ + 3γ 2
k−1

)

|p(z)| + 2γ̃ k
4k−1

(

1 + ρ̃ + · · · + ρ̃m)

p̃(|z|).

In particular, since 3γ 2
k−1 is negligible compared to μ and γ̃ k

4k−1 is a multiple of μk ,
it follows that h = flk,1 (p(z)).

Proof The flop count is left to the reader. For the error bound, note that the triangle
inequality implies

|h − p(z)| ≤
∣
∣
∣
∣
∣
∣

h −
k

∑

j=1

h(0)
j

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

k
∑

j=1

h(0)
j − h0

∣
∣
∣
∣
∣
∣

.

Applying Theorem 2.7 and Theorem 3.2 gives us

|h − p(z)|

≤
(

μ + 3γ 2
k−1

)

∣
∣
∣
∣
∣
∣

k
∑

j=1

h(0)
j

∣
∣
∣
∣
∣
∣

+ γ k
2k−2

k
∑

j=1

∣
∣
∣h

(0)
j

∣
∣
∣ + γ̃ k

4k−1

(

1 + ρ̃ + · · · + ρ̃m−1
)

H0

≤
(

μ + 3γ 2
k−1

) (

|h0| + γ̃ k
4k−1

(

1 + ρ̃ + · · · + ρ̃m−1
)

H0

)

+ γ̃ k
4k−1

(

1 + ρ̃ + · · · + ρ̃m)

H0

≤
(

μ + 3γ 2
k−1

)

|p(z)| + 2γ̃ k
4k−1

(

1 + ρ̃ + · · · + ρ̃m)

p̃(|z|).

��
Similar to the real case, see Proposition 3.1, we can simplify the error bound in

Corollary 3.3 by replacing the term (1 + ρ̃ + · · · + ρ̃m) with (m + 8), for reasonably
sized k and m.
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Proposition 3.2 For 2 ≤ k ≤ 10 and 1 ≤ m ≤ 105, we have

1 + ρ̃ + · · · + ρ̃m ≤ (m + 8).

Proof Note that

1 + ρ̃ + · · · + ρ̃m = ρ̃m+1 − 1

ρ̃ − 1
,

where ρ̃ = 1+ 2γ̃4k−1 + · · · + 2γ̃ k−1
4k−1 + γ̃ k

4k−1. Define θ̃ = 2γ̃4k−1 + · · · + 2γ̃ k−1
4k−1 +

γ̃ k
4k−1, then ρ̃ = 1 + θ̃ and ρ̃m+1 = ∑m+1

j=0

(m+1
j

)

θ̃ j . Now, it is true that
(m+1

j

)

θ̃ j >
(m+1
j+1

)

θ̃ j+1, for j = 0, 1, . . . ,m; otherwise, there is a j for which θ̃ ≥ j+1
m+1 , which

contradicts the reasonably sized k and m. Therefore, we have

ρ̃m+1 = 1 + (m + 1)θ̃ +
m+1
∑

j=2

(
m + 1

j

)

θ̃ j

≤ 1 + (m + 1)θ̃ +
m+1
∑

j=2

(m + 1)!
2(m − 1)! θ̃

2

= 1 + (m + 1)θ̃ + m2(m + 1)

2
θ̃2

≤ 1 + (m + 8)θ̃ ,

where the last line follows fromm2(m + 1)θ̃2 ≤ 14θ̃ ; otherwise, θ̃ > 14
m2(m+1)

, which
contradicts the reasonably sized k and m. Finally, we have

1 + ρ̃ + · · · + ρ̃m = ρ̃m+1 − 1

ρ̃ − 1
≤ (m + 8)θ̃

θ̃
= (m + 8).

��
Now, we can re-write the error bound from Corollary 3.3.

Corollary 3.4 Let p ∈ F [z] be a degree m polynomial, where 1 ≤ m ≤ 105. Also, let
z ∈ F and 2 ≤ k ≤ 10. Then, h = HornerKCmplx (p, z, k) satisfies

|h − p(z)| ≤
(

μ + 3γ 2
k−1

)

|p(z)| + 2(m + 8)γ̃ k
4k−1 p̃(|z|).

4 Numerical experiments

In this section, we present the results of several numerical experiments to demonstrate
the error bound and computational timeof theHornerKmethod inAlgorithm10and the
HornerKCmplx method in Algorithm 11. Note that all higher precision computations
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Fig. 1 Accuracy of HornerK for
k = 1, 2, . . . , 8

are implemented using the GNU MPC and MPFR libraries [5, 6]. All code is written
in C and compiled using Apple clang version 13.0.0 and is available at https://github.
com/trcameron/HornerK.

4.1 Error bound

In this section, we demonstrate the relative forward error bound for HornerK, see
Corollary 3.2, and HornerKCmplx, see Corollary 3.4. For HornerK, we test on the
expanded form of pm(z) = (z − 1)m . Note that

pm(z) =
m

∑

k=0

(
m

k

)

(−1)m−k zk,

which allows us to compute the coefficients of pm(z) exactly for reasonably sized m.
Furthermore,

p̃m(|z|) =
m

∑

k=0

(
m

k

)

|z|k = (|z| + 1)m ,

which means that the condition number of pm(z) can be written as

cond (pm(z)) = p̃m(|z|)
|pm(z)| =

( |z| + 1

|z − 1|
)m

For the experiment reported in Fig. 1, we select z = fl (220/119). So, as m ranges
from 2 to 50, the condition number of pm(z) ranges from 104 to 10132. For eachm, the
value of pm(z) is computed with high accuracy using the MPFR library. In addition,
we compute the value of pm(z) using the HornerKmethod, for k = 1, 2, . . . , 8, where
k = 1 corresponds to the standard Horner method shown in Algorithm 9. For each
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Fig. 2 Accuracy of
HornerKCmplx for
k = 1, 2, . . . , 8

k, we report the relative error in the HornerK computation, as compared to the high
accuracy MPFR computation. For viewing purposes, if the relative error is less than
μ then we replace its value by μ, and if the relative error is greater than 1 then we
replace its value by 1. The results of this experiment are shown in Fig. 1 on a log-log
axis, where the x-axis corresponds to the condition number of pm(z) and the y-axis
corresponds to the relative error in the computation of pm(z). Note that the tick marks
on the x-axis are on the order ofμ1−k , for k = 1, . . . , 8. Hence, this experiment clearly
illustrates the result in Corollary 3.1. That is, the relative error in HornerK is on the
order of μ until the condition number is on the order of μ1−k .

For HornerKCmplx, we test on the expanded form of pm(z) = (z − i )m . Note that

pm(z) =
m

∑

k=0

(
m

k

)

(−i )m−k zk,

which allows us to compute the coefficients of pm(z) exactly for reasonably sized m.
Furthermore,

p̃m(|z|) =
m

∑

k=0

(
m

k

)

|z|k = (|z| + 1)m ,

which means that the condition number of pm(z) can be written as

cond (pm(z)) = p̃m(|z|)
|pm(z)| =

( |z| + 1

|z − i |
)m

For the experiment reported in Fig. 2, we select z = fl (220/119) i . So, asm ranges
from 2 to 50, the condition number of pm(z) ranges from 104 to 10132. For eachm, the
value of pm(z) is computed with high accuracy using the MPC library. In addition, we
compute the value of pm(z) using the HornerKCmplx method, for k = 1, 2, . . . , 8,
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Table 1 Average elapsed time for real random polynomials

k/prec 2/113 3/175 4/237 5/300 6/363 7/426 8/489

HornerK 2.60E−04 4.35E−04 6.51E−04 9.86E−04 1.38E−03 1.85E−03 2.43E−03

MPFR 2.51E−03 2.62E−03 2.50E−03 2.57E−03 2.59E−03 2.62E−03 2.65E−03

Ratio 9.63 6.03 3.85 2.61 1.88 1.42 1.09

where k = 1 corresponds to the standard Horner method shown in Algorithm 9. For
each k, we report the relative error in the HornerKCmplx computation, as compared
to the high accuracy MPC computation. For viewing purposes, if the relative error is
less than mu then we replace its value by μ, and if the relative error is greater than 1
then we replace its value by 1. The results of this experiment are shown in Figure 1
on a log-log axis, where the x-axis corresponds to the condition number of pm(z) and
the y-axis corresponds to the relative error in the computation of pm(z). Note that
the tick marks on the x-axis are on the order of μ1−k , for k = 1, . . . , 8. Hence, this
experiment clearly illustrates the result in Corollary 3.3. That is, the relative error in
HornerKCmplx is on the order ofμ until the condition number is on the order ofμ1−k .

4.2 Computation time

In this section,we compare the time required forHornerK (HornerKCmplx) andMPFR
(MPC) to evaluate a random polynomial at a random value. Each time MPFR (MPC)
is used, the precision of the floating-point format must be specified. The IEEE 754
standard, see [1, Section 3.6], recommends that for a floating-point format of 64k bits,
where k ≥ 2, we use the following precision (number of bits in the significand):

prec = 64k − 4
log2(64k)� + 13, (4.1)

where 
·� denotes rounding to the nearest integer.
For k = 2, . . . , 8, m = 20, 40, . . . , 81920, we construct 100 real random poly-

nomials of degree m whose coefficients are selected from the uniform distribution
U[−1,1]. We evaluate each polynomial at a random value, selected from the uniform
distributionU[−1,1], using HornerK and MPFR, where the precision used in MPFR is
given by (4.1). In Table 1, we report the average time elapsed for both HornerK and
MPFR, given the k and corresponding precision value indicated in the header.

For k = 2, . . . , 8, m = 20, 40, . . . , 81920, we construct 100 complex random
polynomials of degree m whose coefficients have real and imaginary parts selected
from the uniform distributionU[−1,1].We evaluate each polynomial at a random value,
whose real and imaginary part is selected from the uniform distributionU[−1,1], using
HornerKCmplx andMPC,where the precision used inMPC is given by (4.1). Note that
the random value is normalized to avoid overflow in Horner’s method, which occurs
frequently for very high-degree polynomials. In Table 2, we report the average time
elapsed for both HornerKCmplx and MPC, given the k and corresponding precision
value indicated in the header.
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Table 2 Average elapsed time for complex random polynomials

k/prec 2/113 3/175 4/237 5/300 6/363 7/426 8/489

HornerKCmplx 7.52E−04 1.63E−03 2.96E−03 4.73E−03 6.91E−03 9.59E−03 1.25E−02

MPC 1.42E−02 1.43E−02 1.48E−02 1.56E−02 1.64E−02 1.76E−02 1.82E−02

Ratio 18.9 8.78 4.99 3.29 2.38 1.83 1.45

Fig. 3 Elapsed time for complex
random polynomials

Finally, we compare the elapsed time of HornerKCmplx (for k = 2), MPC (for
prec = 113), and the CompHorner method from [3]. Note that all methods have
a similar relative forward error bound, that is, they are as accurate as if computed
in twice the working precision and then rounded into the working precision. For
m = 20, 40, . . . , 81920, we construct 100 complex random polynomials of degree m
whose coefficients have real and imaginary parts selected from the uniformdistribution
U[−1,1]. We evaluate each polynomial at a random value, whose real and imaginary
part is selected from the uniform distribution U[−1,1], and then normalized to avoid
overflow. The average elapsed time for each degree m is reported in Fig. 3.

5 Conclusion

TheHornerK andHornerKCmplxmethods are effective for the accurate evaluation of a
polynomial in real and complex floating-point arithmetic, respectively. These methods
are as accurate as if computed in k-fold precision and then rounded into the work
precision, see Corollary 3.1 and Corollary 3.3, respectively. In Sect. 4, we illustrate
the accuracy of both methods and demonstrate that they are significantly faster than
multi-precision software MPFR and MPC, respectively, for k ≤ 8, that is up to 489
bits in the significand. Moreover, when k = 2, we show that HornerKCmplx is faster
than the CompHorner method from [3]. In future work, we will use HornerK and
HornerKCmplx to derive efficient methods for computing the roots of a polynomial
as accurate as if computed in k-fold precision and then rounded into the working
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precision. Also, we will derive a running error bound for these methods, which we
will use to develop a method for the faithful rounding of polynomial evaluation.
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