
VISION: Practical work – implementation of several optical flow

methods

D. Béréziat
Sorbonne Université - Master IMA/DIGIT

February 4, 2025

Start up From the course web page: http://pequan.lip6.fr/~bereziat/cours/master/vision/, get
the pratical work archive, unzip it in your home directory.

Due date By Tuesday at noon, February 11 via Moodle. Provide an archive containing the following files
in a directory having your names. You are strongly encouraged to work in pair. The archive will contain
the following files:

• horn.py, lucas.py, nagel.py, gradhorn.py, horn xxx.py, lucas xxx.py, nagel xxx.py, where xxx
stand for one of seven data to process,

• you can also provide Jupyter notebooks or Matlab files (if you prefer Matlab),

• a short report where you discuss the results (do not detail the methods), and hyper-parameters. Each
experiment would be illustrated by figures and a table of statistics when the ground truth is available.
It also would be useful to compare the two methods between them,

• do not provide data sets in the archive unless it is new data.

1 Horn-Schunck method

Algorithm

1. Read two images I1, I2 (same size and dimensions)

2. Compute Ix, Iy, and It (see next subsection)

3. Choose N (number of iterations) and α (regularization)

4. u0 = v0 = 0, two images having same size than I1

5. For k = 0 to N − 1:

(a) compute ūk = A ⋆ uk, v̄k = A ⋆ vk with A =

 1
12

1
6

1
12

1
6 0 1

6
1
12

1
6

1
12


(b) compute: for i line index and j row index

uk+1(i, j) = ūk(i, j)− Ix(i, j)
Ix(i, j)ū

k(i, j) + Iy(i, j)v̄
k(i, j) + It(i, j)

α+ I2x(i, j) + I2y (i, j)

vk+1(i, j) = v̄k(i, j)− Iy(i, j)
Ix(i, j)ū

k(i, j) + Iy(i, j)v̄
k(i, j) + It(i, j)

α+ I2x(i, j) + I2y (i, j)

1

http://pequan.lip6.fr/~bereziat/cours/master/vision/


6. Visualization with function flowToColor()

7. If available: read the ground truth with the function readFlowFile() and compare with (uN , vN ) (see
next subsection).

Determination of image gradient

Horn and Schunck proposed the following filter:

Ix(i, j) ≃ 1

4
[I1(i, j + 1)− I1(i, j) + I1(i+ 1, j + 1)− I1(i+ 1, j)

+I2(i, j + 1)− I2(i, j) + I2(i+ 1, j + 1)− I2(i+ 1, j)]

Iy(i, j) ≃ 1

4
[I1(i+ 1, j)− I1(i, j) + I1(i+ 1, j + 1)− I1(i, j + 1)

+I2(i+ 1, j)− I2(i, j) + I2(i+ 1, j + 1)− I2(i, j + 1)]

It(i, j) ≃ 1

4
[I2(i, j)− I1(i, j) + I2(i+ 1, j)− I1(i+ 1, j)

+I2(i, j + 1)− I1(i, j + 1) + I2(i+ 1, j + 1)− I1(i+ 1, j + 1)]

Using provided functions

Functions computeColor() and readflow() take as parameter or return an array of dimension 3. The two
first dimensions are the image coordinates, the third dimension is of size 2, and describe the 2 components
of the velocity vector. Here an example in Python that reads an image and display the image gradient map
with computeColor():

from PIL import Image
nasa = Image . open ( ’ nasa9 . png ’ )
from numpy import g rad i en t
Ix , Iy = grad i en t ( nasa )
import matp lo t l i b . pyplot as p l t
from middlebury import computeColor
p l t . imshow ( computeColor ( Ix , Iy ) )
p l t . show ( )

Or in Matlab:

nasa = imread ( ’ nasa9 . png ’ ) ;
[ Ix , Iy ] = grad i en t ( nasa ) ;
w( : , : , 1 ) = Ix ;
w( : , : , 2 ) = Iy ;
imagesc ( FlowToColor (w) )

Expected work

1. Write the function gradhorn(I1,I2) that takes two images as parameter and returns the spatio-
temporal gradient of this pair of images.

2. Write the function horn(I1,I2,alpha,N) that returns compute the velocity map between images I1
and I2 according to the Horn and Schunck method.

3. Test your function on available data. For each data, you would provide a specific script that typically
loads the data, computes the optical flow, displays the velocity map with computeColor(). Moreover,
if a ground truth is available, you would compute several statistics (mean, standard deviation) of End

2



Point error, angular error, norm error. Angular error (in space-time, see lecture) at pixel (i, j) is given
by:

θ(i, j) = arccos

(
1 + wr(i, j).we(i, j)√

1 + ∥wr(i, j)∥2
√
1 + ∥we(i, j)∥2

)
where wr is the ground truth (reference) and we is the estimated map.

Tips:

• First, verify that the function gradhorn() is correct (check on data square for instance)

• Test la fonction horn() on data mysine. Find the optimal value alpha minimizing the angular
error or EPE.

• Verify the velocity map obtained by your algorithm is visually coherent with the change between
I1 and I2

4. Bonus: with the help of function quiver() visualize the velocity map as an under-sampled field of
vectors (for instance, display 1 vector among 10). A scaling parameter can also be applied if the vectors
has a low magnitude. Another data are available on web site mentioned in the lecture.

2 Lucas-Kanade method

Algorithm

1. Read two images I1 and I2

2. Determine Ix, Iy and It (with the Horn-Schunck gradient filter)

3. Choose a window size n

4. For each pixel p in the image domain (excepted pixels on domain border, i.e. those at distance n
2 from

the border), do:

(a) Center a squared window W , of size n× n, on pixel p

(b) Form the column vector B = (−It(p
′))p′∈W (of length n2)

(c) Form the matrix A =
(
(Ix(p

′))p′∈W (Iy(p
′))p′∈W

)
(of dimension n2 × 2)

(d) Compute velocity at pixel p: w =
(
ATA

)−1
ATB

Expected work

Repeat the questions from the previous section, but considering Lucas-Kanade method. For each experiment,
try to find the best parameter (n) and compare to the best run of Horn-Schunck. Test alternative neighboring
system, for instance a Gaussian window W . The same tips given in the previous section also apply here.

3 Nagel method

This method is similar to Horn and Schunck ones. However it requires second spatial derivatives from
images I1 and I2: Ixx, Iyy, and Ixy. Theses derivatives can be obtained by applying twice the gradhorn()

procedure. The iterative scheme (see lecture II, slide 8) also applies spatial derivatives on scalar image f :

fx, fy, fxy = ∂fx
∂y . We suggest to use the following operators: fx(i, j) ≃ f(i,j+1)−f(i,j−1)

2 for horizontal

derivative, and fy(i, j) ≃ f(i+1,j)−f(i−1,j)
2 for the vertical derivative.

3



Algorithm (see slides 6, 7, and 8 lecture II)

1. Read two images I1, I2 (same size and dimensions)

2. Compute Ix, Iy, It, Ixx, Iyy, and Ixy

3. Set N (number of iterations), α (regularization), δ (oriented regularization)

4. u0 = v0 = 0, two images having same size than I1

5. For k = 0 to N − 1:

(a) compute ũk = η(uk), ṽk = η(vk) with:

• η a function applying on a scalar image f such as η(f) = f̄ − 2IxIyfxy − q∇f

• q = 1
I2
x+I2

y+2δ∇IT
[(

Iyy −Ixy
−Ixy Ixx

)
+ 2

(
Ixx Ixy
Ixy Iyy

)
V

]
• V = 1

I2
x+I2

y+2δ

(
I2y + δ −IxIy
−IxIy I2x + δ

)
• and f̄ is as in Horn and Schunck algorithm step 5.(a)

(b) compute: for i line index and j row index

uk+1 = ũk − Ix
Ixũ

k + Iy ṽ
k + It

α+ I2x + I2y

vk+1 = ṽk − Iy
Ixũ

k + Iy ṽ
k + It

α+ I2x + I2y

4 Use automatic differentiation and optimizer (bonus)

One can leverage the capability of deep learning framework (such as Pytorch) to automatically determine
the gradient of a cost function and optimizer to minimize the cost function.

• You will be able to write in Python a function taking as parameters the velocity field u and v, and the
image gradient Ix, Iy, It and returning the Horn and Schunck cost function (i.e. ∥Ixu+ Iyv + It∥22 +
α(∥∇u∥22 + ∥∇v∥22)).

• The optimization procedure is similar to that used in deep learning training:

– initialize the optimizer, the parameters being the values of images u and v. We strongly suggest
to use LBFGS (see example below),

– iterate the following procedure: set to zero the gradient buffer, compute the cost function, retro-
propagate the gradient, perform a steepest descent.

• Example of steepest descent with Pytorch LBFGS:

opt imize r = torch . optim .LBFGS ( . . . )
def c l o s u r e ( ) :

opt imize r . z e ro g rad ( ) # n u l l i f y g rad i en t
L = co s t f un c t i on ( . . . ) # compute the co s t
L . backward ( ) ) # re t ropropaga t e and one s t ep o f descent d i r e c t i o n

opt imize r . s t ep ( c l o s u r e ) # perform the op t im i za t i on s t e p s

• Experiment with L2 norms and compare with Horn and Schunck. Experiment with L1 norms and
discuss the results.

4


	Horn-Schunck method
	Lucas-Kanade method
	Nagel method
	Use automatic differentiation and optimizer (bonus)

