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ABSTRACT 

A common basis is suggested for the optical flow estimation approaches of Nagel (1983), Haralick 
and Lee (1983) and Tretiak and Pastor (1984). Based on a discussion of these approaches, an exact 
solution for the system of partial differential equations proposed by Horn and Schunck (1981) is 
given at gray value corners and extrema. The insight gained by this solution results in a modification 
of the "oriented smoothness" approach of Nagel (1983) which thereby becomes considerably 
simpler. In addition, the optical flow estimation approach of Hildreth (1983, 1984 ) can be shown to 
represent a kind of special case of this modified "oriented smoothness" approach in a more direct 
manner than discussed in Nagel (1984). 

1. Introduction 

It is well known that the temporal changes of a gray value structure recorded 
by an imaging sensor contain information which may allow to infer--in 
combination with certain assumptions--the relative three-dimensional motion 
between the sensor and its environment as well as the spatial structure of this 
environment. Many animals as well as man exploit this information in order to 
move around, to detect prey and to monitor their environment regarding threat 
from predators or moving objects. Koenderink and van Doom [14] present an 
especially illustrative exposition of some ideas how the relevant information 
could be extracted. The corresponding ability of "biological information 
processing systems" attracted quite naturally the attention of the vision com- 
munity (see, for example, the work by Ullman [27], Horn and Schunck [11], 
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Fro. 1. The first (a) and seventh (b) frame of a short image sequence recorded by a stationary 
TV-camera from a street scene (by permission from Enkelmann [5]). 



ON THE ESTIMATION OF OPTICAL FLOW 301 

~! 27 77~ 

fill 

82. . 87 

~6 2 56 ~6 96 106 I16 

FIG. 2. The optical flow field for the shift of gray value structures between the sixth and the 
seventh frame for a window around the moving car in the sequence shown in Fig. 1, estimated 
according to the method described by Enkelmann [5]. 

and Hildreth [9, 10]). A more recent survey of technical aspects can be found 
in Nagel [18, 19]. 

Relative motion between an imaging sensor and its environment will general- 
ly result in shifts of gray value structures in the image plane of the sensor. One 
may conceptually divide the task of extracting the desired information into two 
steps: 

(1) to estimate the shift of gray value structures (also denoted as optical 
flow), and 

(2) to interpret the estimated optical flow field. 
In order to illustrate the concept of optical flow, Figs. l(a) and (b) present 

the first and last frame of a short image sequence showing a moving car in a 
street scene taken from [5] (see also [7]). For each pixel of a window around 
the image of the moving car, Fig. 2 shows an estimate of the shift of the gray 
value structure between the preceding frame and the one shown in Fig. l(b). 
Selected optical flow vectors for prominent gray value structures are superim- 
posed on a reproduction of the image window from the next to last frame of 
this sequence in Fig. 3(a) and likewise from the last frame in Fig. 3(b). Optical 
flow vectors such as those shown in Fig. 3 have been used by Westphal and 
Nagel [28] to construct a 3-D description for a moving object (see also 
[1, 2, 4]). 

The remainder of this contribution will concentrate on the estimation of an 
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Fro. 3. Selected optical flow vectors, superimposed on the window from the sixth flame (a) and 
from the seventh frame (b). 

optical flow field. Section 2 recapitulates an equation which is employed during 
the estimation of optical flow vector fields from image sequences. This equa- 
tion does not provide enough constraints, however,  to fully determine the 
optical flow. Additional assumptions have to be introduced, therefore,  which 
provide further constraints on the optical flow field. Alternatively, one might 
attempt to exploit more fully the details of a gray value structure in order  to 
estimate both components of its shift between Consecutive image frames. A 
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combination of both these approaches appears to be necessary in general. This 
leads to two questions: 

(1) Which information in a local gray value structure can be exploited for 
the estimation of both components of an optical flow vector? 

(2) What are the minimal assumptions required for this goal? 
Section 3 recapitulates the concept of a gray value corner and how this idea 

about a specific gray value structure can be combined with the assumption that 
the optical flow vector is constant within a small image region in order to 
estimate both of its components. Sections 4 and 5 describe two approaches 
which start from apparently different premises but can be shown to result in 
expressions very similar to those derived in Section 2. A specific way to relax 
the assumption of constant optical flow within the image window exploited for 
the estimation is then discussed in Section 6, namely assuming a linear 
variation of the optical flow field as a function of the image plane coordinates. 
This is not quite sufficient to fully determine the optical flow, although the 
resulting expressions are of the same form as those discussed in Section 5. They 
need, however, to be supplemented with another, weaker, assumption in order 
to recover both components of the optical flow. The technique developed in 
Section 6 is used in Section 7 for an investigation of how the smoothness 
assumption of Horn and Schunck [ll] can be combined with assumptions about 
the local gray value structure in order to determine both components of the 
optical flow field. The resulting insights lead to a significant simplification for 
the formulation of an "oriented smoothness requirement" suggested earlier by 
Nagel [16] and investigated by Nagel and Enkelmann [21-23] as well as by 
Enkelmann [5-7]. The exposition of these ideas in Section 8 is followed by a 
discussion regarding how the approach of Hildreth [9, 10] can be understood as 
a special case of this simplified formulation of an "oriented smoothness 
requirement." 

2. The "Motion Constraint Equation" 

In order to simplify the subsequent exposition, the following discussion will be 
restricted to the situation where a single imaging sensor moves within an 
otherwise stationary environment. 

Let us assume that a surface element in the environment is imaged at time t 
onto the image plane element dx dy at location x = (x, y)T with gray value 
g(x, t). Let the instantaneous motion vector of the sensor relative to its 
three-dimensional (3-D) environment be essentially parallel to the image 
plane. Let us assume further that the 3-D surface element imaged at x is more 
or less parallel to the image plane and that its illumination does not vary 
substantially from time t to time (t + dt). Under these assumptions, the gray 
value g(x + dx, t + dt) for the image of this surface element at time (t + dt) 
remains essentially constant during the time dt, i.e. 
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Og(x, t) Og(x, t) dg(x ,  t) = O -  Og(x, t) dx  + - -  dy  + - -  dt  (1) 
Ox Oy Ot " 

Schunck and Horn [25] as well as Schunck [24] have shown that equation (1) 
can be considered valid even in the vicinity of strong gray value variations 
where a first-order Taylor approximation does not appear to be justified a 
priori. Schunck [24] discusses, too, a generalization of (1) for the case where 
some of the above-mentioned assumptions are not fully applicable. Such 
aspects, however, will not be pursued further in this contribution. 

Denoting partial derivatives by subscripts, equation (1) may be written in the 
form 

gx dx  + gy dy  + g, d t  = O, (la) 

o r  

dx dy 
gx ~ +gy -d~ + g , = 0 .  (lb) 

The vector d x / d t  = ( d x / d t ,  d y / d t )  x describes the instantaneous displacement 
velocity for the image of the surface element which is depicted at time t at the 
location x in the image plane. Provided the assumptions mentioned above are 
justified, this image plane displacement velocity is related to spatio-temporal 
changes of the recorded gray value structure according to (lb) 

The way in which (lb) has been introduced implies that the image position of 
the surface element in question is known as a function of time. This, however, 
will not be true in general. The only available knowledge consists in the 
observed spatio-temporal gray value structure g(x ,  t). In order to distinguish 
between the generally unknown displacement of depicted surface elements in 
the image plane and the observable positional shifts of prominent gray value 
structures, the term "optical flow" is used for the latter one. The two- 
dimensional time-dependent vector field 

(u(x, t) 
u(x, t) = \ v(x, t)) (2) 

is introduced as an instantaneous mapping of the gray value structure g(x ,  t) 
observed at time t onto another one observed at time (t + dt): 

g(x,  t + d t )  = g(x  - u(x ,  t) dt, t) . (3) 

Development of  (3)  into a Taylor series up to first order yields 

g, d t =  - (Vg) T u d t ,  (4a) 
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or 
(Vg) T U "4- gt = 0 ,  (4b) 

which formally corresponds to ( lb) .  Equation (3) alone, however, does not 
provide enough constraints in general to determine u(x, t) uniquely for all 
image plane locations x. Equation (4b) contains the unknown vector function 
u(x, t) explicitly, but represents only a single relation for the two unknown 
components  u(x, t) and v(x, t) of u(x, t) at each image plane location x. 
Additional assumptions about u(x, t) are required in order  to facilitate its 
estimation. 

3. Estimation of Optical Flow at Gray Value Corners 

Based on earlier investigations [1-4], Nagel [15] noticed the relation between a 
heuristic definition of a certain type of a prominent gray value structure [1-4] 
and a similar one first discussed by Kitchen and Rosenfeld [12, 13]. This led to 
the characterization of a "gray value corner"  as the location of maximum 
planar curvature in the locus line of steepest gray value slope (see Figs. 4-6) .  
This characterization can be formulated quantitatively if we assume that the 
local coordinate system is aligned with the directions of principal curvature of 
the gray value structure g(x, t) from which it follows that gxy = 0: 

FI6. 4. Enlarged section of a digitized image from an image sequence recording a parking lot 
scene. The two image subsections represented in Figs. 5 and 6 have been marked. 
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FIG. 5. (a) The  gray values f rom the window comer  on the  bright car in Fig. 4 shown as a function 
of the  image plane coordinates.  Dark  gray areas correspond to low values, bright ones  to high 
values. The subsection taken from Fig. 4 has  been rotated by 45 degrees.  The  same data are shown 
as a gray value representat ion.  (b) Idealized sketch of g(x, y) for a "gray value corner"  such as the 
one depiced in Fig. 5(a). 
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gx(x,  t) = extremum ~ 0 ,  

gxx(x, t) = O, 

gy (x, t) = O, 

gyy(x, t) = extremum ~ 0 .  

307 
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FIG. 6. (a) The gray values from the lamp post in Fig. 4 shown in analogy to Fig. 5(a) as an example 
for a gray value extremum. (b) Idealized sketch of g(x, y) for a "gray value extremum" such as the 
one depicted in Fig. 6(a). 



308 H.-H. NAGEL 

Equation (5a) expresses the requirement that the gray value slope in x- 
direction is extremal which implies that the second partial derivative of g(x ,  t) 
with respect to x must cross zero at this location (see (5b)). If the gradient is 
oriented along the x-axis, the first partial derivative of g(x ,  t) with respect to y 
must be zero (see (5c)), i.e. the locus line of maximal slope is locally an 
iso-intensity curve. The curvature of this planar curve is proportional to the 
second partial derivative of g(x ,  t) with respect to y. This curvature should be 
an extremum according to equation (5d). 

Whereas (4b) does not provide enough constraints to estimate both compo- 
nents of the optical flow vector u, Nagel [15] realized that this becomes 
possible at gray value corners. His approach is based on the assumption that a 
local combination of gray values is displaced as a rigid structure from time t o to 
time t 1 = (t o + dt) by a displacement u. This displacement, which is assumed to 
be constant for the entire gray value structure, has to be estimated by 
minimization of the squared differences between the gray value structures 
observed at times t o and tl: 

f f d x  d y [ g ( x ,  t:)  - g ( x  - u dt ,  t0)] 2 = minimum. (6) 

The dependence of g ( x  - u dt ,  to) on u is made explicit by developing g (x  - 
u dt, to) into a Taylor series up to second-order terms. Equating the partial 
derivatives of the integral in (6) with respect to the unknown components u 
and v to zero results in a system of two nonlinear equations in u and v. Nagel 
[15] could show that this system of nonlinear equations can be solved in closed 
form at gray value corners with the result, writing go(X) for g(x ,  to) and g l ( x )  
for g(x ,  t 1), 

1 2 
(-gl - go - ~go,yy v ) (7a) 

g0,x 

gy(Xo, t , )  g~,y (7b) 
gyy(Xo, to) go.yy " 

If the time interval dt -- (t 1 - to) between the two frame times is set to unity, 
one obtains the relation 

gl - -  go = gt A t  ~ gl - go = g, , (8) 

where the overbar indicates averaging of the gray values within the image 
region chosen to comprise the gray value structure in question. In order to 
relate this result to earlier ones, let us assume that the optical flow points 
essentially along the x-axis, i.e. v is assumed to be negligible. Using (8), 
equation (7a) will then simplify to 
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1 2 
(~1 - go - ~go ,yy  o ) gl - go g, 

u . . . . . . . .  (9) 
g0,~ g0,x g0,~ 

Under the same assumptions, equation (4b) will just yield the result given by 
the right-hand side of equation (9). 

The result given by (7) for u at a gray value corner could be used as a 
starting value for an iterative solution approach (see also [20]) which extends 
the solution of the nonlinear systems of equations for u and v into image areas 
surrounding this gray value corner. Nagel [15] linearized these equations in 
order to estimate a correction vector 

U ( k + l )  : U (k) + du  (10) 

with the result 

du = - C-l(ga(X) - go(X - u (k) dt)) Vgo(X - u <k) dt) (11) 

where the matrix C is given by 

C = (Vgo)(Vgo) T + x2(VVgo)(VVgo) T , (12a) 

o r  

C =  
( g2,x go,xgo,yl+-~( g2o,x,, + g2,xy go,xy( go,xx + gO,yy) ) 

go,xgo,y gZo,Y ] \go,xy(gO,xx -[- go,yy) (g2,xy "~- g2,yy) " 

(12b) 

As it has been shown by Nagel [16-18], the matrix C embodies important 
information about the gray value structure. It should be noted that with 
vanishing partial derivatives of second order, the solutions given by (7) as well 
as by (11) become undefined--a version of the matrix C containing only 
first-order partial derivatives is singular! At a gray value corner, the solution 
for the correction vector du according to equation (11) with starting vector 
u (k) = 0 will be equivalent to the solution given by (7) as it has been shown by 
Nagel [15]. 

4. The Approach of Haralick and Lee 

Based on the facet model for low-level image processing, Haralick and Lee [8] 
extended the interpretation of the optical flow estimation approach outlined in 
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connection with equation (4b). These authors interpret this equation as the 
intersection line of the iso-intensity contour plane at time t o with the gray value 
structure from a successive image frame at time t I. In order to single out a 
match point along this intersection line, they require that 

(i) the gray values match: this leads back to equation (4b); 
(ii) the first derivatives of g ( x  o - u dt ,  t) match those of g(xo ,  t + dt); 

(iii) the partial derivatives of third and higher order are negligible. 
Requirement (ii) implies 

g~(x  o, t + dt) = gx(Xo - u dt ,  t) , (13a) 

gy(Xo, t + dt) = gy(X o -  u dt ,  t ) ,  

g t (xo,  t + dt) = g , ( x  o - u dt ,  t) . 

(13b) 

(13c) 

In order to obtain the dependencies on dt explicitly, the expressions for the 
normal vectors at locations x 0 and (x 0 - u dt) are developed into first-order 
Taylor series in dt which yields 

gxt(Xo, t) dt = - {grr(X0, t)  U + gxy(Xo, t)  V} d t  , 

gy,(Xo, t) d t  = - {grx(Xo,  t)  u + gry(Xo, t)  v )  d t ,  

g , ( x  o, t) dt = - { g,x(x0, t)  u + gty(Xo, t)  v }  d t  , 

(14a) 

(14b) 

(14c) 

o r  

g~x u + g~yv + g~t = 0 ,  

gyx u + gyyv + gy, = O,  

gtx u + gtyv + g ,  = 0 .  

(15a) 

(15b) 

(15c) 

Equations (15), together with equation (4b), form an overdetermined system 
of four linear equations for the two unknown components u and v of u ( x  o, t) .  
This system of equations can be solved for u and v based on the pseudo-inverse 
formalism as it will be discussed in the following section. 

5. The Approach of Tretiak and Pastor 

Apparently without knowledge about the work by Haralick and Lee [8], 
Tretiak and Pastor [26] differentiated equation (4b) with respect to x and y, by 
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only regarding the gray value derivatives gx and gy. Tretiak and Pastor [26] did 
not give any argument for not differentiating the components of u, i.e. they 
implicitly considered u to be locally constant. They thus obtained two new 
equations, namely, 

gxx u + gyx v + g,x = 0,  

gxyU + gyrv + g,y = 0, 

in addition to equation (4b) 

(16a) 

(16b) 

gxU + gyv + gt=O. 

It is immediately seen that (16a) and (16b) are equivalent to (15a) and (15b) as 
derived by Haralick and Lee. In addition to using just two of the equations 
(4b), (16a) and (16b) to determine u and v, Tretiak and Pastor, too, suggested 
to employ the pseudo-inverse formalism in order to solve the overdetermined 
set of equations (4b), (16a), and (16b): 

(,x (,) 
gxx = -  g,x . 

\gxy gg;;)[~O) \gty/  
(17) 

( -1 
(ggXy gxx gxyllg~x gyx 

gyx gYY/\gxy gyy/ 
/ 2+ 2 -- 2 -1 

=(  gx gxx-l-gxy gxgy+gxy(gxx+gyy) I 
2 , 2 + 2 I 

\gxgy + gxy(gxx + gyy) gy -~ gxy gyy / 
(19) 

Apart from the average of X 2 which appears as a factor for those terms 
containing second partial derivatives of g, the matrix C defined in (12) 
corresponds to the matrix which has to be inverted on the right-hand side of 
(19). A specialization of (18) for the case of a gray value corner is discussed in 

The pseudo-inverse solution for this system of equations yields 

( u ) = _  (g; gxx gxylIg;x gyx (gy g= gxY~{~;t (18) 
gyx gYY/\gxy gyy/ gyx gYY/\gty]" 

The close similarity between (18) and the approach discussed in Section 3 will 
become even more obvious if the matrix which has to be inverted on the 
right-hand side of equation (18) is written explicitly: 
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Appendix A in order  to further illustrate the relation between the approach of 
Haralick and Lee [8] as well as that of Tretiak and Pastor [26] with the solution 
presented in Section 3. 

6. A Common Basis for the Approaches Discussed in the 
Preceding Sections 

Sections 3-5 reported different ways to formulate the basic requirement that 
the gray value structures observed at time t o around (x 0 - u dt) should match 
the one observed at time t 1 = (t o + dr) around x 0. If the gray value structure 
around x 0 is articulated well enough-- i .e ,  if the gradient of g(x)  changes 
rapidly enough in the vicinity of x 0, expressed by the fact that not all second 
partial derivatives of g(x)  with respect to x and y vanish at x0--then both 
components u and v of u can be estimated. All approaches required so far that 
the optical flow u is constant within the image region exploited for the 
estimation of u. 

It is suggested here to relax this requirement in favor of the assumption that 
the optical flow varies at most linearly with the image plane coordinates x, y 
within the image region considered. This assumption is equivalent to the 
neglect of higher than linear terms in the Taylor development of u(x)  around 
the center x 0 of the region. One may consider this assumption as a special kind 
of smoothness requirement.  It will be supplemented by the explicit introduc- 
tion of knowledge about the gray value variation around x0: the entities 7g and 
gt in the relation expressed by equation (4b) should vary at most linearly as a 
function of dx for all locations x 0 + dx within an entire environment dx around 

x0: 

Vg(x 0 + dx) T u(x  o + dx) + gt(x o + dx) = 0.  (20) 

The dependence of 7g, g,, and u on dx is made explicit by developing these 
entities into a Taylor  series: 

gx(Xo + dx) = g~ + gxx dx  + gxy dy  + O(d ~) , (21a) 

gy(x o + dx) = gy + gyx dx  + gyy dy  + O(d 2) , (21b) 

gt(x0 + dx)  = gt + gtx dx  + gty dy + O(d 2) . (21c) 

All partial derivatives on the right-hand sides of (21) are taken at x 0. O(d 2) 
denotes terms which are at least of second order  in the components  of 
dx = (dx, dy) x. Analogously, we have 

u(x  o + dx) = u + u x dx  + uy dy  + O(d2) ,  (22a) 
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o(x o + dx) = o + Og dx + Oy dy + O(d2) .  (22b) 

Inserting (21) and (22) into (20) and ordering by increasing powers of dx and 
dy yields 

0 = {gx u + gr v + g,} 

+ (gxx u + gyx 0 + g~u x + grog + gig} dx  

+ {gxr u + gyyv + gxUr + grOr + gty) dy  

+ (ggxUx + grgVg} dx 2 

+ {ggyU x + ggxUr + gyrVx + grxOy} dx dy  

+ (ggyUr + grrOr } dy 2 . (23) 

Since the coefficients of this binomial in (dx, dy) are constants---namely the 
partial derivatives of g and u taken at x0--the right-hand side of (23) can only 
vanish for all dx if each coefficient in braces is zero. We thus obtain six 
equations for the six unknown values of u, v, and their partial derivatives u~, 
u r, v x and Oy~ 

ggU + gyO + g, = 0 ,  (24a) 

gxgU + gygV + gxUg + grog + gtg = 0 ,  (24b) 

gxr u + gyr v + gxUy + gyVy + gtr = 0 ,  (24c) 

g~xUg + gygOg = 0,  (24d) 

ggyUg + gggUy + gyrVg + gygVy = 0 ,  (24e) 

gxrUr + gyrOr = 0 .  (24f) 

The coefficient matrix of this system of linear equations does not have a full 
rank of six, however,  as it can be easily seen if the coordinate system is aligned 
with the directions of principal curvature. In this case, ggy = 0 and we obtain 

[~x gr 0 0 0 ) 
xx 0 gx 0 gr ~ 

gry 0 gg 0 gr 
d e t l o  0 g~x 0 0 0 

0 0 gg~ gry 
\0 0 0 0 0 gyy 

= - ggggrr[gx(grggggry)  -- g , (gxgg~grr ) ]  = 0 .  (25)  
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In order to determine all unknowns, we might add an additional requirement 
for u, for example that 

(rot U)z = 0 

which implies 

V x -  Uy = 0. (26) 

We then obtain from (24e) with gxy "~" O: 

gx~Uy + gyyV x = (gx~ + gyy) Uy = 0 (27) 

from which we may conclude for g~,x + gyy ~ 0 that Uy = v x = 0. Since gxx + 
gyy ~ 0 implies that at least one of these two second partial derivatives must be 
different from zero, equation (24d) or (24f) will yield, in view of gxy = 0, the 
additional results u x = 0 or vy = 0 or both. 

If we consider these results, the following conclusion emerges. The ap- 
proaches discussed in Sections 3-5 selected a small, finite image region from 
one frame and described the structural gray value variation within this region 
as a low-order bivariate polynomial in the image plane coordinates. Assuming 
a constant displacement for the entire region, one had to search for a matching 
structural gray value variation in an adjacent image frame at a position not too 
far away from the center x0 of the original image region. These approaches are 
not concerned with potential local variations of the optical flow, but emphasize 
the match between structural gray value variations from adjacent image 
frames. 

The approach described by equations (20) through (24) admits a limited 
variability for the optical flow field. As it turns out in (25), even a considerable 
gray value structure--i.e, nonzero first and second partial derivatives of the 
picture function g(x ,  y )  with respect to the image plane coordinates x and 
y--does not allow to determine u(x  o + dx) in the form of U(Xo) and the first 
partial derivatives of u with respect to x and y at x 0. A weak additional 
assumption, however, is sufficient to fix the values of Vu(xo) to zero and, 
thereby, turn the underdetermined system of equations (24) for six variables 
into an overdetermined system of three equations resulting from (24a)-(24c) 
for the two unknowns u(xo)  and V(Xo). 

The assumptions made here are weaker than the requirement of constant u, 
but they have the same effect: 

(1) u = const follows from these assumptions as a solution. 
(2) The resulting equations are equivalent to equations (15a) and (15b) or 

equations (16) in combination with equation (4b). At a gray value corner, 
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these equations yield a solution very similar to the one discussed on the basis of 
different premises in Section 3. 

7. The Smoothness Requirement of Horn and Schunck 

This section will extend the investigation started in the preceding section by 
substituting the smoothness requirement of Horn and Schunck [11] for the 
assumption that the optical flow varies at most linearly as a function of the 
image plane coordinates x and y within the image region under consideration. 
The assumptions about the local gray value structure are again introduced by 
neglecting terms of higher than second order in the Taylor expansion of the 
gray value at the center x o of the image region, or, alternatively, by a 
first-order Taylor expansion of Vg(x) and g,(x) at x 0 = 0. Since the dependency 
of u(x, t) on t is not investigated in this context, this dependency will not be 
shown explicitly in the subsequent discussion. 

Horn and Schunck [11] introduced the following smoothness requirement for 
u(x): 

/ -f J 2 2 2 + Vx z + V2y)} = minimum (28) dx dy{(VgTu + gt) 2 + ct (u x + Uy 

In this equation, the partial derivatives of the gray value as well as u and its 
partial derivatives are functions of x = (x, y)a-. Equation (28) supplements the 
minimization requirement for the square of the left-hand side of (4b) by the 
smoothness requirement expressed as 

2 2 2 +  2 2 
Ol (U x + Uy V x + Vy). (29) 

This smoothness term limits the variation of u(x) as a function of x. The 
requirement expressed by (20) had been formulated with the same intention, 
although it is not strong enough to fully determine u(x). 

In order to simplify the subsequent discussion, we assume--without loss of 
generality--that the coordinate system has been aligned with the directions of 
principal curvatures of g(0), i.e. gxy = 0. Introduction of the first-order Taylor 
expansion for Vg(x) and gt(x) into (28) yields 

f f dxdy([(gx +gxxxlu+(g, +gyyY) v + ( g t + g t x x + g t y Y ) l  2 

z + v~ + oZy)} = minimum (30) + O/2(U2 + Uy 

It will now be shown that there exist solutions for this minimization problem 
which yield the value zero for the integral in (30). If it is possible to find 
constant values for u and v which let the expression in the square brackets 
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vanish identically, then the problem is already solved, because the smoothness 
term then vanishes identically, too. 

The first integrand of (30) represents a bivariate polynomial in the image 
plane coordinates x and y which should vanish identically. This is only possible, 
in general, if all coefficients of this bivariate polynomial vanish. We obtain, 
therefore, the following equations: 

0 = (g~u + gyv + g t ) ,  (31a) 

0 = (gx~u + g,~) ,  (31b) 

0 = (gyyv + g,r)" (31c) 

If all second partial derivatives of g(x)  vanish at x = 0, we encounter the 
same problem discussed with respect to (4b), i.e. there is not sufficient 
information in the gray value structure to estimate both components u and v of 
u. We assume, therefore, that at least one of the second partial derivatives gxx 
o r  gyy is nonzero. The possible solutions are now obtained by a case analysis: 

(1) Both g~ as well as gx~ are zero simultaneously. In this case, there is no 
gray value variation up to second order in the x direction and it is impossible to 
estimate u. An analogous observation can be made regarding the partial 
derivatives with respect to y. In accordance with our intuition, in these 
situations there is no solution for u of the kind we are currently interested in. 

(2) At least one of the partial derivatives of g(x)  with respect to x is 
different from zero at x = 0: 

(i) If g~ = 0, then gxx must be nonzero according to our assumptions, 
and we obtain from (31b) 

u = - g J g x x .  (32) 

(ii) If gx ~ 0, but gx~ = 0, then gyy must be different from zero according 
to our assumptions. Equation (31c) will yield 

O = -- g t y / g y y .  (33) 

Since v is thereby known, we can use (31a) to determine u: 

gy 0 + g, = gy  gty - gt gyy 
U - -  

gx gyygx 
(34) 

Analogous considerations with respect of gy and gyy will result again in the 
solutions given by (32) and (33). Instead of (34) we obtain 
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U = 
gx u + gt __ gxgtx - gtg~x 

gy gxxgy 
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(35) 

In the case of a gray value extremum, both first partial derivatives with respect 
to x and y vanish and the solution is given by (32) and (33). Equation (31a) 
then implies that gt = 0 which is nothing but a consequence of the assumption 
that g(Xo) is a gray value extremum: if the first-order change of g with respect 
to the spatial coordinates should vanish and if the change of g with respect to 
time should be due to a shift of the gray value structure, there can be no 
first-order change of g with respect to time either. 

In the case of a gray value corner, see equations (5), we obtain the solutions 
in the form discussed in Appendix A. This implies that g,x = 0 which is 
reasonable since g,x = gx, and we may interpret gxt = 0 as the requirement that 
a maximal slope of g in x-direction will not exhibit first-order changes with 
time. 

We thus see that gray value structures which are sufficiently well localized to 
support the expectation of a well defined optical flow vector, namely the gray 
value corner and the gray value extremum, lead indeed to an estimate for both 
components of the optical flow vector. The values for u which we obtain in 
these situations are equivalent to the results obtained earlier. Thus it has been 
shown that the smoothness requirement of Horn and Schunk [11] fully 
determines the optical flow vector without any additional approximations, 
provided the local gray value structure is characteristic enough. 

8. Consequences for the "Oriented Smoothness" Requirement 

The smoothness requirement of Horn and Schunck [11] does not take into 
account the consideration that a gray value transition front might be the image 
of an occluding edge across which the optical flow field needs not exhibit a 
smooth variation. Nagel [16] modified the smoothness requirement by the 
introduction of a weight matrix which depends on the gray value changes in 
such a way that the smoothness requirement would be retained essentially only 
for the optical flow component perpendicular to strong gray value transitions. 
The smoothness requirement for the optical flow component in the direction of 
the gray value change would be suppressed since this component could be 
determined from the gray value change itself. 

The formulation originally suggested by Nagel [16] was 

f dx  d y { ( g l ( x  ) - go( x - udt))  2 + 0/2 trace((Vu) T C-I(Vu))} 

= minimum, (36) 

where the weight matrix C -1 is the inverse of the matrix C given by (12). 
Extensive numerical experiments with the system of partial differential equa- 
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tions derived as Euler-Lagrange equations from (36) have shown that it is 
advantageous to use a different weight matrix [5-7, 21-23]: 

f f dx dy{(gl(x ) -go(X-u  d/)) 2 + a 2 trace((~'u) T W*(Vu))} 

= minimum (37) 

with 

w* + IT 
W* = trace(w* + IT) (38a) 

where y is a constant, I represents the 2 × 2 identity matrix and 

w.-{( ,y)( ,y;+2( 
-gx  -gx  / -gxy gxx -gxv 

(38b) 

w* is related to C by 

C _  1 _ w *  

det(w*) " 
(39) 

This formulation had been guided by the desire to incorporate the knowledge 
about the importance of second-order derivatives for the determination of 
optical flow vector fields as discussed in Sections 3-6 into the minimization 
approach. According to the insight gained in Section 7, we do not need to 
develop the term g(x -u  dt) in (37) into a Taylor series including up to 
second-order terms just to make sure that gray value corners can be handled 
appropriately. The structure of a gray value corner or extremum will enforce 
appropriate estimates for both flow vector components. As a consequence, we 
may write instead of (37) 

f f dx dy((VgTu + g,)2 + trace((Vu)T W*(Vu))) = minimum. o~ 2 

(40) 

The same argument leading from equation (37) to (40) suggests to drop the 
terms containing second-order derivatives of g from W* as well. We then 
obtain the following formulation: 

f ~ dx dy((VgTu + gt) 2 + a 2 trace((Vu) T W(Vu))} = minimum (41) 



ON THE ESTIMATION OF OPTICAL FLOW 319 

with the weight matrix W given by 

w + 13, 
W = (42a) 

trace(w + Iy ) ' 

where I represents the 2 x 2 identity matrix and 

w - 

The new version of the weight matrix may be written in a more concise way 

(g~ + 3' -gxg, 
W= -gxgy g2+ 3'] (43) 2 2 gx + gy + 23, 

This form of the weight matrix exhibits the basic idea behind the "oriented 
smoothness" requirement in an especially clear manner. If we set 3' = 0--i.e. 
omit the term which has been introduced just to make sure that the weight 
matrix specializes to the identity matrix if the gray value structure becomes 
locally constant--the smoothness term in (41) represents the square of the 
projection of the optical flow vector onto the direction perpendicular to the 
gradient: 

trace((Vu) T W(Vu)) 

= t r ace ( (  uxuy ::) TW( uxuy vyVX))/ 

Uy -g~gy g2 + 3"] Uy 
g2 + g~ + 23" 

) 
-gxgy g2 + 3"/\Vy. 

+ (44a) 2 2 
g~ + gy + 23' 

[ ( : ; ) T  ( gy/]2 [(Vy 
= + 

IlVgll 2 + 23' IlVgll 2 + 23' 
2 2+02  + 2 

u x + Uy Vy (44b) 
+ ~ IlVgll z + 2- /  

Since the norm of the tangent vector (gy, --gx) T to a gray value transition is 
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identical to the norm of the gradient vector (gx, gr)X, the first term of (44b) is 
equal to the square of the projection of Vu = (u~, Uy) "r o n t o  the tangent 
direction if we neglect y. The second term expresses the equivalent projection 
of Vv = (v~, vy)V. Equation (44b) illuminates the way in which a vanishing gray 
value gradient will transform the "oriented smoothness" requirement into a 
general, unoriented one as introduced originally by Horn and Schunck [11]. 

The Euler-Lagrange equations for the minimization problem of (41) can be 
written in the following form: 

-- gxy gxx gxy gyy / (Vg v u + g,) gx + 0/2 
2 2 

gx + gy + 2y 
2 

- a trace(WVVu) = O, (45a) 

(Vg x u + g,) gv + 0/2 -gxy gxx2 / 2 gxy g y y /  y 

• gx  + g r  + 2y 

- a 2 trace(WVVv) = O. (45b) 

In Nagel [16], the weight matrix W* comprised second-order partial derivatives 
of the picture function g(x). Since the derivative of this weight matrix with 
respect to x and y would have comprised third-order partial derivatives of g(x), 
the initial evaluation of this approach threatened to become a bit too compli- 
cated. Therefore, this derivative of the weight matrix had been dropped at that 
time. The approach formulated in (41), however, contains only first-order 
partial derivatives of g(x) even in the weight matrix W. The partial derivatives 
of this weight matrix, therefore, contain only partial derivatives of g(x) of 
second order. The formulation of (41) has thus the added advantage that no 
terms have to be neglected just in order to restrain the required computations. 

It is seen immediately that the solutions of equations (30) given by (32)-(35) 
are also solutions of (41): for constant values of u and v, the oriented 
smoothness term vanishes just like the smoothness term of Horn and Schunck 
[11] vanishes in (30). 

A final consideration will show that the minimization problem formulated by 
Hildreth [9, 10] can be considered as a special case of (41). Hildreth formu- 
lated the estimation of optical flow vectors as a one-dimensional minimization 
problem along a closed zero-crossing contour: 

Os / \ Os / J = minimum. 
.......... ing contour (46) 
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Here, n denotes the unit length normal vector to the zero-crossing contour at a 
point specified by the arclength s. u ± denotes the estimate of the optical flow 
vector component perpendicular to the zero-crossing contour. This estimate is 
obtained by Hildreth in a manner analogous to (4b) from the spatial and 
temporal derivatives of g(x) convolved with the Laplacian of a Gaussian. If we 
use (4b) directly instead of the first term in the integrand of (46), we obtain: 

+ 1  Ov 2 
as( (VgTu+gt)2 -fl [(Ou]e+(~s) 

zero-crossing 
contour (47) 

If we assume that all partial derivatives of g(x) are negligible except at the 
zero-crossing contours, then the integrand of (41) will yield essential contribu- 
tions only along a zero-crossing contour, apart from the smoothness terms 
proportional to % In this respect, the approach of Hildreth [9, 10] can be 
considered as a special case of (41). The second term in the integrand of (47) 
expresses the smoothness requirement for the component of the optical flow 
vector parallel to the zero-crossing contour. This discussion of the oriented 
smoothness requirement in connection with (44) shows the specialization of the 
more general requirement incorporated into (41) to the situation where the 
gray value gradient is taken to be constant along the zero-crossing contour as in 
the formulation of Hildreth. 

9. Conclusion 

The discussion started with the observation by Nagel [15] that the change in 
gradient direction, i.e. second-order partial derivatives of g(x), has to be taken 
into account in order to estimate locally both components of the optical flow 
field. The approaches formulated later by Haralick and Lee [8] as well as 
Tretiak and Pastor [26] have been related quantitatively to results obtained by 
Nagel [15]. All these estimation approaches are based on the assumption that 
the optical flow vector u is constant within an image region around the location 
of a gray value corner or extremum. 

Section 6 investigated whether one might substitute a less stringent require- 
ment for that of constant u: would it be sufficient to require that u is at most a 
linear function of the image plane coordinates, provided the gray value 
structure is well enough articulated within the region under consideration? It 
turned out that this is not quite sufficient to determine both componens of u, 
but a relatively weak additional assumption allowed to recover u together with 
a set of equations which are equivalent to those treated in preceding sections. 

The weaker assumption of Horn and Schunck [11], namely that the optical 
flow vector field is not constant, but exhibits only a smooth variation, resulted 
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in a system of partial differential equations for u(x).  Horn and Schunck 
presented an approximate solution for this system of partial differential 
equations. 

The main result of Section 7 from this contribution is the fact that an exact 
solution to the equations derived by Horn and Schunck [11] yields a locally 
constant optical flow vector field at gray value corners or extrema. Thereby, 
the approach of Horn and Schunck could be unified with the observations by 
Nagel [15]. This result suggested to modify the "oriented smoothness" ap- 
proach proposed by Nagel [16] in such a manner that the resulting system of 
equations becomes much simpler. It turns out that this simplification has two 
additional benefits: 

(1) no terms have to be dropped from the Euler-Lagrange equations 
resulting from (41), and 

(2) the approach by Hildreth [9, 10] can be seen as a kind of special case for 
equation (41) in an even more direct way than discussed previously by Nagel 
[17]. 

Multigrid methods especially developed by Enkelmann [5-7] for the solution 
of the Euler-Lagrange equations resulting from the original "oriented smooth- 
ness" proposal by Nagel [16] will be used in order to explore the new system of 
partial differential equations (45) derived in this contribution. 

Appendix A. The Approach of Tretiak and Pastor Analyzed at 
a Gray Value Corner 

We may specialize the result of equation (18) to the situation where the 
coordinate system has been aligned with the directions of principal curvature, 
i.e. gxy = 0, and to a gray value corner as characterized by (5): 

( °)t 0 0 (U)~__ (gXo gYy/]~ 0 gyy (gxo ~YY)\ gtygtX'] (A. 1 a) 

o r  

0 t / 
gyy] \gyygty] = - \gly/gyy / " 

This corresponds to the result obtained in (7b) as will be shown by the 
following considerations. We write 

gy(X, y, t + dt) = gy(O, O, t) + gyx(0, 0, t) x 

+ gyy(O, O, t) y + gy,(O, O, t) d t .  (A.2) 

Since we assume that gxy = 0 due to the alignment of the coordinate axes with 
the directions of principal curvature at x 0 = 0 and that gy (0, 0, t) = 0 according 
to the requirements for a gray value corner, we have for dt = 1 
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gy(O, 0, t + 1) = gy,(0, 0, t ) ,  

which can be written for (t + dt) = t x as 

(A.3a) 

gy(0, 0, t + 1) = gy(x o, tl) 

= gl,y = gyt(0, 0, t) = gty" (A.3b) 

The lower half of the vector equation (A. lb)  is, therefore, equal to (7b). The 
upper half of the vector equation (A. lb)  corresponds to the expected solution 
for u in the case where the gradient of g is aligned with the x-axis. The term 
with v 2 in (7a) is due to the nonlinear approach and does not show up in 
(A. lb) .  
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