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Abstract 

The robust measurement of visual motion from digitized image sequences has been an important but dif- 
ficult problem in computer vision. This paper describes a hierarchical computational framework for the 
determination of dense displacement fields from a pair of images, and an algorithm consistent with that 
framework. Our framework is based on a scale-based separation of the image intensity information and 
the process of measuring motion. The large-scale intensity information is first used to obtain rough es- 
timates of image motion, which are then refined by using intensity information at smaller scales. The es- 
timates are in the form of displacement (or velocity) vectors for pixels and are accompanied by a 
direction-dependent confidence measure. A smoothness constraint is employed to propagate measure- 
ments with high confidence to neighboring areas where the confidences are low. At all levels, the com- 
putations are pixel-parallel, uniform across the image, and based on information from a small 
neighborhood of a pixel. Results of applying our algorithm to pairs of real images are included. In addi- 
tion to our own matching algorithm, we also show that two different hierarchical gradient-based 
algorithms are consistent with our framework. 

1 Introduction 

1.1 Background 

Motion is an important and fundamental source 
of visual information. It is well known that the 
pattern of image motion contains information 
useful for the determination of the three-dimen- 
sional structure of the environment and the rela- 
tive motion between the camera and the objects in 
the scene. However, the accurate measurement of 
image motion from a sequence of real images has 
proved to be difficult. 

While there seems to be widespread agreement 
that the measurement of motion should be based 
on primitive image events (such as intensity fluc- 
tuations, points, lines, etc.) and that it should be 
an early visual process, there seems to be less 
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agreement on its exact definition. In computer vi- 
sion, the primary emphasis has been on the deter- 
mination of instantaneous image velocities [17, 
21,27,34] and the displacements of points between 
successive frames [8,22], although a few techni- 
ques have attempted to track lines and curves 
[26,43]. Recent developments in psychophysics, 
however, have focused on "spatiotemporal en- 
ergy models" [1,25,40,41] which equate the mea- 
surement of motion with the measurement of 
spatiotemporal energy. 

Although many of these techniques are based 
on solid theoretical foundations, they have 
generally not been successful in practice. The 
primary reason for the dfificulty seems to be due 
to a lack of proper recognition of the fact that in 
discrete video sequences, the interframe image 
displacements are often considerably larger than 
one pixel. Also, if the scene contains multiple in- 
dependently moving objects, the image motion 
may not be globally coherent, and there will be 
discontinuities in the image velocity (or displace- 
ment) field. 
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In this paper, we describe a hierarchical 
framework for the computation of dense dis- 
placement fields from a pair of images. We also 
describe a matching algorithm consistent with 
our framework and demonstrate its performance 
when applied to real images. A major contribu- 
tion of our work is the synthesis of an orientation- 
selective confidence measure and a well-defined 
smoothness constraint within the hierarchical 
approach, thereby leading to a robust algorithm 
for measuring large interframe displacements. In 
addition, we have also adapted the "overlapped- 
pyramid" projection strategy [12] to improve our 
results, especially around locations of discon- 
tinuities in image motion. 

An important reason for developing a com- 
putational framework is the unification of a varie- 
ty of different techniques so that we may be able 
to identify the elements that are common to these 
techniques and recognize their differences. His- 
torically, the gradient-based and the matching 
techniques have been seen as completely un- 
related (or even somewhat opposed) to each 
other. We will show that the computational 
framework described here is sufficiently general 
that hierarchical verions of gradient-based al- 
gorithms are also consistent with it. In particular, 
the recent techniques of Enkelmann [17] and 
Glazer [21], which are, respectively, the hierarchi- 
cal versions of the second-order technique of 
Nagel [35] and the first-order technique of Horn 
and Schunck [27] can be shown to contain all the 
components of our framework, although some of 
them in an implicit form. 

1.2 Framework Overview 

The key idea underlying our framework is the 
separation of computations according to scale. 
This idea is based on the following observation: 
usually, the large scale (or low spatial-frequency) 
intensity variations provide imprecise measure- 
ments over a large range of magnitudes of motion, 
while the small-scale (or high spatial-frequency) 
variations can provide more accurate measure- 
ments over a smaller range. This leads to three 
components of our framework: spatial-frequency 
decomposition, which is the method of separating 

the intensity variations according to scale, a local, 
parallel match criterion within each scale, and a 
control strategy, which is a method for controlling 
the measurement processes at the different scales 
and combining their results. 

Although the scale-based separation of com- 
putation provides a useful principle for process- 
ing scenes containing large displacements, there 
will always be situations when an image area 
lacks sufficient local information for displace- 
ment computation at a particular scale. Also, 
since the image displacement is a vector quantity, 
its reliability can vary according to direction. 
Therefore, another essential component of our 
framework is a direction-dependent confidence 
measure. The presence of unreliable dis- 
placements also means that in order to obtain a 
dense displacement field, it may be necessary to 
propagate the reliable displacements to their less 
reliable neighbors. This leads to the last essential 
component of our framework: a smoothness con- 
straint, which specifies the criterion for the pro- 
pagation of reliable displacements. 

A visual illustration of this framework is pro- 
vided in figure 1. The five major components 
mentioned in the above description are discussed 
in detail in section 2. 

Readers familiar with the literature on motion 
and stereopsis will have already noticed the 
similarity of our framework to other past ap- 
proaches for the measurement of motion, es- 
pecially [14,22,29], and to the Marr-Poggio 
stereopsis algorithm [23,30]. In many ways, our 
work was inspired by these approaches; however, 
as it will become evident during the course of this 
paper, our technique differs from each of these 
past approaches in significant ways. For a 
detailed examination of the various approaches 
in the context of our framework, see [6]. 

1.3 Paper Organization 

The detailed description of our framework for 
computing dense displacement fields from a pair 
of images is contained in section 2. First, the goals 
of the displacement computation are stated. This 
statement consists of specifying the nature of the 
input, the requirements on the output, and the 
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Fig. 1. The hierarchical computational framework. 
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computational constraints for this process. This 
is followed by the detailed descriptions of the five 
components of the framework. 

Section 3 describes the specific choices made 
for the matching algorithm. Of these, the primary 
areas of our original contribution are the for- 
mulation of the confidence measure, the exact 
method of using the coarse-to-fine strategy, and 
the formulation of the smoothness constraint. 
Hence, the description will emphasize these as- 
pects of our algorithm. Section 4 describes a set of 
experimental results obtained by applying this 
algorithm to two pairs of real images. While the 
success of the algorithm is immediately obvious 
upon visual inspection of these results, our dis- 
cussion of  these results focuses on the failures of 
this algorithm, so as to indicate the limitations 
that are inherent in our framework, and to some 
extent in any low-level approach to the measure- 
ment of motion. 

Section 5 briefly outlines two hierarchical 
gradient-based approaches due to Glazer and 
Enkelmann respectively, and explains how these 
algorithms are consistent with our framework. In 
addition, section 5 also describes the mathemati- 
cal relationship between the gradient-based 
techniques and the matching techniques. In sec- 
tion 6, we briefly discuss the issues involved in 
processing discontinuities in image motion, while 
section 7 contains a summary of the main ideas 
covered in the paper. 

2 The Computational Framework 

2.1 The Computational Goals 

The goals of the process of computing image dis- 
placements are determined by three major fac- 
tors: the nature of the image input, the re- 
quirements on the output, and constraints on 
computational efficiency. The input is a pair of 
digitized frames belonging to a discrete image se- 
quence. The image displacements may be due to a 
general 3D motion of the camera or the indepen- 
dent motion of objects in the scene. The output 
should be a dense field of displacement vectors 
with associated confidence measures. All the 
computations must be pixel-parallel and use 

local image information. We elaborate these 
points below. 

2.1.1 The Input. In typical video sequences, the 
interframe displacements are usually con- 
siderably larger than a pixel. If independently 
moving objects are present, a single set of 3D mo- 
tion parameters will not be consistent with the en- 
tire image. It may be possible to assume, however, 
that the objects in the environment are composed 
of continuous and opaque surfaces and that they 
undergo rigid or nearly rigid motions. These 
assumptions mean that (i) within the image area 
covered by a single surface, the displacement field 
varies smoothly, and (ii) the image motion can be 
described as "locally translational", i.e., within a 
small area of the image, the displacement field 
can be approximated by a translational flow field. 
Thus, image sequences containing rotational mo- 
tion can be processed, as long as the magnitude of 
rotation between frames is not large. Finally, we 
may also be able to assume that discontinuities in 
image motion occur at the boundaries of surfaces 
and objects. 

It should be noted that the assumptions of opa- 
queness and near-rigid motions are essential for 
the successful performance of any algorithm 
based on our current computational framework. 
Although there are many situations (especially in 
indoor scenes) where such assumptions hold, it is 
clear there are cases (e.g., transparent surfaces, 
scenes with fences or trees) when they will be 
violated. In such cases, however, a purely 
"bottom-up" technique for measuring visual mo- 
tion may be simply inappropriate; rather, a tech- 
nique that simultaneously performs measure- 
ment and grouping may be necessary. 

2.1.2 The Output. The requirement that the out- 
put should be a dense displacement field with an 
associated confidence measure is derived from 
the conclusions of the various studies concerning 
the problem of extracting structure from motion 
[2,3,18,42]. These studies indicate that a large 
number of image displacements are necessary for 
the accurate determination of the structure of the 
environment. If the scene contains i~ependent ly  
moving objects, there may be no a priori knowl- 
edge of the image locations of such objects. 
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Therefore, the density of the displacement vector 
field should be uniformly high across the image, 
with a confidence measure indicating the relia- 
bility of each vector. 

2.1.3 Computational Considerations. The con- 
siderations of computational efficiency and ease 
of implementation suggest that the following 
three properties are desirable for all com- 
putations: parallelism, uniformity, and locality. 

Parallelism simply means that it should be pos- 
sible to perform all computations simultaneously 
at all locations on the image plane. This is re- 
quired in order to reduce the computational cost. 
Uniformity implies that the process should be 
similar at all locations. This is required because 
of the lack of a priori knowledge about image mo- 
tion. In particular, it should be possible to de- 
scribe any differences between the computations 
at different locations in terms of a few simple 
parameters. Locality means that the com- 
putations at any point on the image should be 
based on information local to that point. This is 
important in order to reduce the communication 
cost between processors, as well as to deal with the 
fact that the displacement field may not be 
globally coherent. 

be sampled at a lower rate without loss of 
information. 

These observations lead to the following prin- 
ciple: large-scale image structures can be used to 
measure displacements over a large range with low 
accuracy and at a low sampling density, while small- 
scale image structures can be used to measure dis- 
placements over a short range with higher accuracy 
and at a higher sampling density. An  obvious way to 
enforce this principle is to decompose the image 
into its spatial-frequency components. Such a 
decomposition and the subsequent processing 
can be achieved by using a set of spatial-fre- 
quency channels. 

Since the lower-frequency information can be 
sampled at a lower rate without any significant 
loss of information, the spatial-frequency decom- 
position process is usually accompanied by a cor- 
responding reduction of resolution [11,47]. Such 
an approach leads to a pyramid representation of 
the spatial-frequency channels and fits naturally 
into a pyramid [28,37] or a processing-cone [24] 
architecture. However, since the final choice of a 
representation scheme depends on the type of 
hardware used, a pyramid representation is not 
an essential part of the framework. 

2.3 The Match Criterion 

2.2 Spatial-frequency Decomposition 

As noted briefly at the beginning of this paper, the 
key idea underlying the proposed computational 
strategy is the separation of computation on the 
basis of scale. Intuitively, it is clear that while 
small-scale intensity structures can be used to 
measure displacements over a short range, they 
may have many duplicate matches over a large 
range. This leads to ambiguities in the computa- 
tion of the displacements. Therefore, in order to 
process large displacements, large-scale intensity 
information must be used. However, a single dis- 
placement computed on the basis of a large-scale 
intensity structure will be some form of the aver- 
age of the displacements over the area covered by 
that structure and hence, its accuracy will be low. 
Such a "smoothed" displacement field will also 
vary slowly over the image plane and thus can 

As noted earlier, the match criterion is a method 
for determining the displacements within each 
channel. Since the displacement measured is 
small with respect to the scale of the intensity 
variations within a channel, a gradient-based ap- 
proach can be used (see [17,21]). Alternatively, a 
correlation-matching approach [6,14,22] or a 
symbolic matching approach based on primitive 
tokens [23,30] can also be used. The separation of 
matching according to scale implies that the 
match criterion should have a scaling property-- 
i.e., the measurement processes within different 
channels should be scaled versions of each other. 
Note that such a scaling property is directly pro- 
vided in a pyramid representation. 

2.4 The Control Strategy 

The control strategy determines how the measure- 
ment processes at different scales are controlled 
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and how their results are combined. In our 
framework, the control strategy is based on a spec- 
tral continuity principle [23,32], which can be des- 
cribed as follows: 1 For images of opaque surfaces, 
it can be assumed that the displacement estimates 
at corresponding image locations in the different 
channels must be similar because they are due to 
relative motion between the camera and the same 
environmental area. This means that at any 
image location, a displacement computed from a 
high-frequency channel must be consistent with 
the estimates from the low-frequency channel at 
the corresponding image location. 

A simple way of enforcing the principle of spec- 
tral continuity is with a coarse-to-fine control 
strategy. In this strategy, the processing proceeds 
from the low- to the high-frequency channels. 
The displacement estimate for a pixel in a low- 
frequency channel determines the center of the 
search area for the corresponding pixels in the 
next-higher-frequency channel. The scale in- 
variance property of the measurement process 
suggests that the radius of the search areas be- 
tween two adjacent channels should be propor- 
tional to the scale factor in order to ensure scale 
invariance of the computations. Once again, note 
that such scaling is automatically achieved in the 
pyramid representation. 

2.5 The Confidence Measure 

In general, there will be many areas of the image 
with insufficient information at a particular scale 
for the local determination of displacements. 
Therefore, a confidence measure should be com- 
puted along with each match at each scale to indi- 
cate whether or not to accept that match for 
further processing and also the degree to which 
the match can be trusted. 

Since the image displacement is a vector quan- 
tity, it is possible that different directional com- 
ponents of the displacements may be locally com- 
putable with different degrees of reliability. For 

INote that this principle is usually violated wherever there is a 
discontinuity in image motion--i.e., in particular at surface 
and object boundaries. This issue is discussed in greater detail 
in section 6. 

instance, it is intuitively clear that in a homo- 
geneous area of the image no component of the 
displacement can be reliably estimated. At a 
point along a line (or an edge), the component 
perpendicular to the line can be reliably com- 
puted, while the component parallel to the line 
may be ambiguous. Finally, at a point of high cur- 
vature along an image contour it may be possible 
to completely and reliably determine the dis- 
placement vector on the basis of local informa- 
tion. These observations suggest that the con- 
fidence measure should be directionally selec- 
tive-i.e.,  that it should associate different con- 
fidences with the different directional com- 
ponents of the displcement vector. In addition, 
while an area may be homogeneous at one scale, 
it may have information useful for reliable 
matching at a different scale. Hence, the con- 
fidence measures should be separately computed 
within each spatial-frequency channel. 

2.6 Smoothness Constraint 

The computation of a dense displacement field 
will necessitate "filling in" areas with unreliable 
displacements. Such a filling-in process can be 
based on the assumption that the displacement 
field varies smoothly over the image area covered 
by a single surface. Thus, reliable displacements 
may be used to determine the values of less reli- 
able neighbors. 

The most common use of the smoothness 
assumption can be found in gradient-based 
techniques for determining image velocities. In 
these techniques, a smoothness constraint is for- 
mulated as a variational problem involving the 
minimization of an error associated with a veloci- 
ty field. In our framework, we use a similar 
smoothness constraint within every spatial-fre- 
quency channel. After the displacements and the 
associated confidences are computed within each 
channel, the displacement field should be 
smoothed before it is projected to the next higher- 
frequency channel. During the smoothing pro- 
cess, the confidence measures should be used to 
retain the reliable displacements while allowing 
the less reliable estimates to change. 

The smoothness assumption is violated at 
locations of discontinuities in the image motion. 
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Such discontinuities arise at surface boundaries 
of a single object, or at object boundaries due to 
the independent movement of two different ob- 
jects. Any scheme that uses the smoothness 
assumption should also include mechanisms for 
detecting such violations and processing them in 
an appropriate manner. We consider some ap- 
proaches for the detection of discontinuities in 
section 6 of this paper. It should be noted that in 
general this remains a major unsolved problem. 

3 The Hierarchical Matching Algorithm 

In this section, we describe a matching algorithm 
that is consistent with our computational frame- 
work. There are five major components to the 
algorithm, corresponding to the five framework 
components described above. Of these, we will 
provide only brief outlines of the spatial-fre- 
quency decomposition, the match criterion, and 
the control strategy, since they are similar to well- 
known techniques in computer vision. The bulk 
of this section will focus on the confidence 
measure and the smoothness constraint, since 
their exact forms are rather new and, therefore, re- 
quire more detailed discussion. For a detailed de- 
scription of the entire algorithm the reader is 
referred to [61. 

Any algorithm consistent with a computational 
framework will also be influenced by the archi- 
tecture of the machine for which that algorithm is 
designed. As mentioned earlier, since pyramid 
representations and computations are naturally 
suited for our framework, our primary choice is a 
pyramid architecture [24,37]. However, it should 
be noted that we have also developed versions of 
the algorithm suitable for implementation on a 
simple mesh-connected computer [6,45]. 

For descriptive purposes, we have adopted the 
convention that the levels of the pyramid are 
numbered l = 0, 1 , . . . ,  where, at any level l, the 
size of the processor arry is 2 l × 2z; level 0 is called 
the "top" of the pyramid, while level L containing 
the input image is considered its "bottom." 

3.1 Spatial-Frequency Decomposition 

A suitable method for spatial-frequency decom- 
position is provided by the Laplacian pyramid 

transform proposed by Burt [11]. 2 This algorithm 
consists of two stages: the first stage involves the 
construction of a Gaussian low-pass-filter pyra- 
mid from the input image; while the second stage 
involves computing the difference between the 
images at adjacent levels of the low-pass pyramid 
to obtain the set of band-pass-filtered images. 

The finest level L of the Gaussian pyramid con- 
tains the input image. The image at any level 
l = L -  1 , . . . ,  0 is formed by applying a 5×5 
Gaussian convolution operation to the image at 
level l + 1 and subsampling the filtered image. 
The Laplacian pyramid image at level l is created 
by taking the pixel-wise difference between the 
Gaussian pyramid image at level l and the expan- 
ded version of the Gaussian pyramid image at 
level I - l. For our algorithm, one such Laplacian 
pyramid is constructed from each input image. 

3.2 Match Criterion 

The match criterion chosen was the minimiza- 
tion of a type of correlation measure. Correlation- 
based matching is a traditional, well-known ap- 
proach in computer vision and image analysis. 
Apart from the fact that such a measure captures 
the intuitive notion of the similarity (or differ- 
ence) between two intensity structures, it is simple 
to compute and is suitable for parallel and uni- 
form computations. There are several types of 
correlation measures--e.g., direct correlation, 
mean-normalized correlation, variance-normal- 
ized correlation, and sum of squared differences 
(SSD). The definitions and the descriptions of 
these different measures can be found in [36]. An 
empirical study by Burt, Yen, and Xu [13] com- 
paring these different correlation measures in- 
dicates that, when used on band-pass filtered im- 
ages, the computationally simpler measures such 
as the direct correlation measure and SSD per- 
form nearly as well as the more complex mea- 
sures. The SSD measure is always positive, a fact 
that proved to be particularly useful when we con- 
sidered the normalization of the confidence 

2See [211 for a discussion of Burt's algorithm and other related 
algorithms for spatial frequency decomposition. 
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measure (described in section 3.4). Hence, our 
matching algorithm is based on the minimization 
of the SSD measure. 

The exact details of the matching process are as 
follows: Within each processing level, each pixel 
in the first image is assigned a set of candidate 
matches according to the control strategy des- 
cribed in section 3.3. The SSD measure between 
each source and candidate pixel pair is deter- 
mined by computing the Gaussian weighted sum 
of the squared differences between the values 
(from the Laplacian pyramid) of corresponding 
pixels in 5X5 windows centered around the 
source and the candidate pixels. The best match 
for each source pixel is selected as the candidate 
with the minimum SSD. 

Although correlation matching can fail dra- 
matically when used in arbitrary situations, it ap- 
pears to perform reasonably well when used 
within the spatial-frequency channels, par- 
ticularly if the candidate matches are selected ac- 
cording to a hierarchical control strategy such as 
ours. Also, an important parameter is the window 
size. In a simple single-level correlation al- 
gorithm, the window size should increase with the 
width of the search area; otherwise, the likelihood 
of duplicate matches will increase. However, the 
use of band-pass filtering, pyramid representa- 
tion, and the coarse-to-fine control strategy 
together allow us to use a single fixed-window size 
(in terms of number ofpixels) for all points in the 
images at all levels of the Laplacian pyramid. Our 
choice of a 5X5 window was based on a combina- 
tion of theoretical and empirical reasons, which 
are described in detail in [6]. 

3.3 Control Strategy 

The control strategy used in our algorithm is a 
coarse-to-fine sequential processing of the im- 
ages in the Laplacian pyramid. In particular, we 
used an overlapped pyramid projection scheme, 
which is outlined below; a more detailed descrip- 
tion can be found in [6]. 

If the input images are at level L of the pyramid 
and the maximum displacement of any pixel 
along either coordinate direction is less than 8, 
the processing begins at level L - log (8) and pro- 

ceeds via sequential projection to image level L. 
At the coarsest level, no displacement exceeds a 
pixel. Hence, the search area is the 3X3 pixel area 
centered around the corresponding pixel location 
in the second image. At all other levels, an initial 
set of displacements for a pixel are obtained by 
projecting the displacements from the adjacent 
coarser level. The search area is the 3 X 3 area sur- 
rounding this projection. 

The traditional approach (e.g., see [22]) used for 
the projection of displacements is based on the 
quad-tree type of connectivity between adjacent 
levels of the pyramid. The displacement at a pixel 
at level l - I is projected to the four pixels below at 
level l. However, in this scheme, if the displace- 
ment computed for a coarse-level pixel is in- 
correct, the search areas of none of its descen- 
dents at any of the subsequent levels will contain 
its correct match. Hence, a single match error 
made at a coarse level causes a large block of pix- 
els at the image resolution to have incorrect 
displacements. 

To overcome some of the problems due to the 
quad-tree connectivity scheme, we have used an 
alternate scheme for projection of displacements, 
called the overlapped pyramid projection 
scheme. This scheme was used by Burt, Hong, 
and Rosenfeld [12] in connection with the prob- 
lem of image segmentation. The displacement of 
a pixel at a coarse level I is transmitted to all the 
pixels in a 4X4 area at the next finer level I + 1. 
Thus, each pixel at level l + 1 obtains information 
from four pixels at level l, and can be regarded as 
having four potential parents--the parent of 
which it is a direct descendent and the three other 
parents whose projections are adjacent to it (see 
figure 2). The displacement of each of the four 
parents is considered a possible initial estimate 
for the search at level l; often, however, two or 
more of these estimates will be identical. The 
search area consists of the union of the 3x3 areas 
centered around each distinct coarse-level es- 
timate, and the SSD measure is minimized over 
all the pixels in this expanded search area. 

The advantage of using the overlapped pyra- 
mid projection algorithm is the following. Al- 
though a particular coarse-level pixel may be 
assigned an incorrect displacement, if the dis- 
placements of any of its neighbors are correct, the 
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Fig. 2. The overlapped pyramid projection scheme. 

search area for its descendents at the finer level 
will still contain their correct matches. A demon- 
stration of the improvement in the results 
achieved by the use of this scheme can be found 
in [5]. 

In spite of the use of the overlapped pyramid 
projection scheme, there are still situations when 
the coarse-to-fine control strategy will lead to 
possibly avoidable mistakes at the. finer levels. 
This issue is discussed further in section 6. 

3.4 Confidence Measure 

The confidence measure used in our algorithm is 
based on the variation of the SSD values over the 
set of candidate matches. Intuitively, it is clear 
that if the values of the SSD measures for dif- 
ferent candidate matches are equal, then all those 
candidates are equally good matches. Thus, if the 
variation of the SSD measure along a particular 
line in the search area around the best-match 
pixel is small, then all the pixels along that line 
are equally good matches; i.e., the component of 
the displacement along the direction of that line 
cannot be uniquely determined. Also, if the SSD 
measure corresponding to the best match is large, 
then it is likely that even the best match is not a 
reliable match (implications of this are discussed 
later in this section). 

Our approach for computing a confidence 
measure is based on the two intuitions mentioned 
above. In order to verify that the variation of the 
SSD measure reflects these properties, we con- 
ducted an empirical study involving a pair ofsyn- 

thetic images. This section first describes the 
results of the empirical study; this is followed by a 
formal definition of the confidence measure and 
a discussion of its behavior in various typical 
situations encountered in real images. 

3.4.1 The Behavior of the SSD Surface. The SSD 
suoCace is defined over the space of displacements, 
and its height is the SSD value corresponding to 
each displacement. For our empirical study, we 
created a pair of synthetic images by digitally 
"cutting and pasting" pieces from two real images 
photographed in the robotics laboratory at the 
University of Massachusetts. We selected a num- 
ber of specific points corresponding to typical 
image structures such as comers, edges, homo- 
geneous areas, and occluded areas, and studied 
the behavior of the SSD surface computed based 
on the finest-level images of the Laplacian 
pyramids created from the input images. 

The details of our study are too long for this 
paper, and can be found in [6]. Figures 3, 4, 5, and 
6 are examples of SSD surfaces. Figure 3 shows 
the SSD surface at an intensity comer; figure 4 
shows the surface at an edge; figure 5 shows the 
surface at a point in an area of homogeneous in- 
tensity; and figure 6 shows the shape of the sur- 
face at an occluded comer point. The surfaces are 
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Fig. 3. The SSD surface at a corner point. 
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elevation =0, rotation = 20 

Fig. 4. The  SSD surface at an  edge point.  

shown inverted in order to enhance visibility; the 
viewing position of the surface is noted in each 
figure; and the maximum and minimum el- 
evations of the surface are indicated. In each 
figure, we have also marked the point of mini- 
mum SSD value with the symbol "O", and the 
point corresponding to the correct displacement 
with an "X." 

From the figures shown it is evident that at the 
corner point the SSD surface shows a unique 
peak (in actuality, a minimum), and that the loca- 
tion of the minimum corresponds to the correct 
displacement. In the case of the edge-like point, a 
ridge-like structure is seen, and the location of the 
minimum along the ridge seems ambiguous; this 

O X 

~ / rain 24, max=  320 
elevation -- rotation =0  

Fig. 5. The SSD surface at a point  in a h o m o g e n e o u s  are~ 

suggests that the component of the displacement 
vector in the direction parallel to the ridge is un- 
certain. At the homogeneous area the SSD 
measure shows very little variation, suggesting 
that the selection of a unique match is impossible. 
Finally, the shape of the SSD surface at the oc- 
cluded corner point is erratic, indicating that the 
match may be entirely unreliable. 

The types of shapes of the SSD surface illus- 
trated in the accompanying figures, and des- 
cribed above, were observed over many images. 
In particular, the curvatures of the SSD surface 
along particular directions were usually large (or 
small) when the corresponding component of the 
displacement vector were correct (or incorrect). 
The formal definition of the confidence measure 
given below is based on these observations. 

3.4.2 Definition of the Confidence Measure. The 
curvature of a surface at a point along any arbit- 
rary direction can be determined if the two prin- 
cipal curvatures at that point and the directions of 
the associated principal axes are known [15]. The 
principal axes are defined as the directions along 
which the curvature of the surface is either a max- 
imum or a minimum, and the principal cur- 
vatures are the curvatures of the surface along 
those directions. We denote the maximum prin- 
cipal axis by the unit vector ~,,,x and the 
associated curvature as C~,x, and the minimum 
principal axis by the unit vector em,. and the 
associated curvature as Cmin .3 

3We have  followed the notat ional  convent ion  o f  us ing  
boldface lowercase letters for vectors, boldface lowercase let- 
ters with "hats" for un i t  vectors, boldface uppercase  letters for 
matrixes,  a n d  nonboldface  letters for scalars. 
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Our confidence measure consists of two magni- 
tudes (called "confidences")--Cmax and c . . . .  and 
two directions (or unit vectors)--~m,~, and e~m. As 
mentioned above, the unit vectors denote the 
principal axes of the SSD surface, while 

Crnax 
kl + k2Smin + k3Cmax 

Cma x 

and 

Cmln 
Cram = kL + k2Smm + k3Crnm 

where kl, k2, and k 3 a r e  normalization parameters, 
and &l ,  is the SSD value corresponding to the 
best match. 

The exact form of the normalization function 
was derived from the following considerations. 
The confidence measure is made proportional to 
the corresponding principal curvature according 
to the intuition that the reliability of the displace- 
ment should be proportional to the curvature of 
the SSD surface. Since a large value for Smm in- 
dicates an unreliable match due to occlusion, 
noise, or deformation of the image area, the con- 
fidence is inversely proportional to Smi n. The pres- 
ence of the term containing the curvature in the 
denominator is useful to maintain the confidence 
value in the range (0, l/k3). If it is desired not to re- 
strict the range, k3 can be set to zero. The constant 
term kl is used to maintain a finite value for the 
confidence measure when Sm~, tends to zero. 

Computation of the principal curvatures in- 
volves knowing the second partial derivatives of 
the SSD surface along the coordinate directions. 
Given that we have a discrete set of SSD values, 
we need to introduce a specific surface-fitting 
model and an appropriate window size for the fit. 
The minimum window size necessary to nu- 
merically determine the second derivatives is 
3×3. Although a larger window may yield more 
reliable estimates, the attendant computational 
cost is higher. Hence we used a 3×3 set of SSD 
values around the best match as our data, and 
determined the quadratic surface that fit that data 
by using a best-least-square method due to 
Beaudet [9]. This method involves computing 
weighted sums of the 3×3 values to obtain the 
various first- and second-order derivatives of a 
surface. The principal curvatures can be ex- 

pressed as nonlinear combinations of the sec- 
ond derivatives. 

3.4.3 Discussion. Intuitively, the vectors 6ma x and 
~m~n and the confidences Cmax and Cm,n can be un- 
derstood as follows: At a point along an edge in 
the image, the vector ~ax will be approximately 
oriented in the direction normal to the edge, and 
~min will be oriented parallel to the edge. At such a 
point, Coax will be large and C~ln will be small. On 
the other hand, in an area of the image with small 
intensity variations, both the measures will be 
small, whereas at a point along a contour with 
high curvature, both will be high. 

An important issue that was somewhat side- 
stepped in this section was the sensitivity to occlu- 
sion. Although we have so far assumed that a 
large value for Stain indicates a "false match" (i.e., a 
match does not exist), in general Sm,n can be large 
due to a variety of reasons. Some of these reasons 
are listed below: 

1. The search area does not contain the true 
match, either because of an incorrect initial 
displacement or because of occlusion. 

2. The template window contains a discontinuity 
in image flow. This arises at points near depth 
or motion discontinuities. In this case, since 
the window straddles the boundary, the inten- 
sity structure within the window varies be- 
tween frames. 

3. The magnitudes of rotation and/or the transla- 
tion in depth are large or the image area un- 
dergoes nonrigid motion. In this case, the tem- 
plate window undergoes an area deformation, 
which violates the assumption of locally trans- 
lational motion. 

4. The SNR (signal-to-noise ratio) is low. In this 
case, the intensity values of corresponding 
areas in the two images differ due to the pres- 
ence of noise. 

In all the cases listed above, Smm will be large only 
if the local "spectral energy" (i.e., the RMS value 
of the intensities in the template window) is large. 
A small value for the spectral energy suggests that 
the intensity varies very little--i.e., the point is in a 
homogeneous intensity area; hence, all the values 
on the SSD surface will be uniformly small. 

Finally, at a homogeneous occluded area, Sm~n 
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will be small, even though the match estimate will 
usually be incorrect. As noted above, this arises 
due to the low spectral energy of the area. In these 
cases, the curvatures of the SSD surface may also 
be low, thereby making our confidence measures 
small. However, if the occluded homogeneous 
area straddles a textured area (where the spectral 
energy is high), then the curvatures of the SSD 
surface may be large, because the displacements 
on one side of the best match will have large SSD 
values, since they are a result of comparing a 
homogeneous area with a textured area. There- 
fore, although no match for the occluded point 
exists in the second image, the confidence 
measure may be large for some (incorrect) match 
in the homogeneous area of the second image. The 
estimated displacement is likely to equal the rela- 
tive displacement between the textured area and 
the homogeneous area. Thus, there maybe  points 
in homogeneous areas that are occluded by tex- 
tured areas, where our matching process may pro- 
vide incorrect displacements with high values for 
the confidence measures. This type of problem 
seems not to have been considered seriously in 
the literature on the measurement of motion, per- 
haps because the idea of using explicit confidence 
measures is uncommon? 

During our empirical study of the SSD surfaces 
[6[, we also observed that the shapes of the auto- 
and the cross-SSD surfaces are usually different 
for most occluded areas. Therefore, an additional 
clue for the presence of occlusion may be ob- 
tained by comparing the shape of these two sur- 
faces. We expect to further develop these and 
other ideas for the detection of false matches dur- 
ing our own future research on the measurement 
of image motion. 

3.5 Smoothness Constraint 

The problem of finding a smooth displacement 
field that approximates the displacement es- 
timates computed at a discrete set of points by the 
local match process can be formulated as a 
minimization problem. That is, a vector field {u} 

nq'here are, however, examples of confidence measures being 
used for disparity measurements--see [201 for an example. 

is needed which minimizes a quadratic func- 
tional E({u}) = E~m({Ul) + Eap({U}) where the 
smoothness error E~m measures the spatial varia- 
tion of {u} and the "approximation error" Eap 
measures howwell {u} approximates the set of dis- 
placements provided by the matching process. 

Intuitively, a displacement field can be con- 
sidered smooth in an area of the image if its varia- 
tion over the area is small. An example of a 
measure of the spatial variation of a displacement 
field is 

Esm({U}) = fftrace {(Vur)r(Vu )} dx dy 

f f  2+ 2 = (u2~+u e v x + o  2 ) d x d y  (1) 

where {u} is the set of the displacement vectors 
u(x,y) = (u(x,y),o(x,y)) r, and V represents the 
gradient operator. The domain of integration is 
usually the whole image. For notational con- 
venience, we have used u to mean the vector 
u(x,y). The above formulation of a smoothness 
error is due to Horn and Schunck [27], who used 
this measure in a gradient-based approach for the 
computation of optical flow. Other examples of 
such measures will be discussed later in this 
section. 

Let {d} be the set of estimates provided by the 
match process; these are represented in the local 
orthogonal basis (6max, 6mm), which denote the 
principal axes of the SSD surface. For a given dis- 
placement field {u}, the approximation error is a 
weighted sum of the deviations of the com- 
ponents of the displacement vectors u(x,y) of the 
field along the basis directions from the corres- 
ponding components of the match estimates 
d(x,y). The weights are the confidences c~x and 
Cmin- Mathematically, 

Eap({U}) = Z [Cmax(U" emax -- d-emax) 2 x,y 

+ Cmi.(U " 6mi. - d" 6=i~) 2] (2) 

Note that our formulation of Esm implies that 
the space of  admissible functions are a subclass 
of Co functions. The following alternate form, 
which regards the admissible functions as a sub- 
class of Cl functions, is also possible: 
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f f  2 Esm = (U2x + 2Uxy + Uyy 

2 2 2 + Oxx + 2vxy + oyy) dx dy (3) 

Although we have also implemented an al- 
gorithm based on this formulation (see [7]), most 
of our experiments have been based on the sim- 
pler formulation given above in equation (1). This 
is because results from early experiments with the 
two formulations did not show significant quali- 
tative differences, while the solution to the 
second-order formulation given above requires 
more computational effort. 

3.5.1 Solving the Minimization Problem. The two 
functionals Esm and Eap have been chosen in such 
a manner  that under certain weak conditions 
there will always exist a unique solution for our 
minimization problem. In particular, it is easy to 
show that a unique minimum exists if there is at 
least one comer point in the image (both Cmax and 
c~,  are nonzero), and/or there are two points with 
different emax vectors. A proof can'be found in 
[6]. 

The most common approaches for solving the 
variational problem formulated here are the 
finite-difference method, a type of gradient- 
descent approach, and the finite-element method. 
For instance, Horn and Schunck [27], Glazer [21], 
and Nagel [35] all have used the finite-difference 
method. Hildreth [26] has used the conjugate- 
gradient approach, while Terzopoulos [38] has 
used the finite-element method for his surface 
reconstruction problem. We have also chosen the 
finite-element method because it has a well- 
developed theory for the inclusion of known dis- 
continuities in the field. 

The basic idea behind the finite-element 
method is the tessellation of the image plane 
using a set of elements with predefined shapes, 
and representing the field using piecewise poly- 
nomials defined over these elements. The order of 
the polynomials is determined according to the 
order of the derivatives involved in the error 
functional. A key requirement is that the discrete 
solution should converge to the true minimum as 
the element sizes tend to zero. 

Terzopoulos has developed finite-element 
method algorithms for both first- and second- 

order smoothness constraints for the surface- 
interpolation problem. Since our variational 
problem can be regarded as a vector generaliza- 
tion of his scalar formulation, his solution 
methods can also be adapted. Since we have 
adapted Terzopoulos' approach for solving the 
variational problem, we do not discuss the 
mathematical details here. A clear description of 
such an analysis can be found in chapters 5 and 6 
of [38]. Here, we simply describe the steps in- 
volved in our algorithmic implementation. 

3.5.2 Computation of Masks. In order to solve the 
discrete minimization problem, linear equations 
in the values at the nodes of a square grid (which 
is in registration with the image array) are 
derived. These equations are used to update the 
values u = (u,v) at a point in terms of its 
neighbors. In particular, solving the discrete 
problem can be shown to be the same as solving 
the following system of coupled equations: 

(U --  U)  "4- Cmax(ll" emax --  d "  ~max)emax 

q- Cmm( u "  emin -- d .  emin)emin = 0 (4) 

where for each point on the grid, fi is a weighted 
average of the displacements of its neighbors. For 
the first-order smoothness constraint the weights 
are distributed as follows: 

1 
~X1 0 1 

1 

3.5.3 Relaxation Algorithm. There are a number 
of numerical methods for solving the system of 
coupled linear equations described above. One of 
the simplest methods is the Gauss-Seidel relaxa- 
tion algorithm. This is an iterative process, where 
during each iteration the value of u at each point 
in the image is solved in terms of the values of 
its neighbors. 

The iterative update equation for the displace- 
ment field smoothing problem is, 

un+l  = ~n _[_ Cmax ( ( d  - -  un)  " emax)ema x 
Cma x "4- 1 

"[- Cram ( ( d  - l i n )  • emin)emm (5 )  
Crnin "1- 1 
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Fig. 7. A geometric interpretation of the relaxation process. 

where the superscripts denote the number of 
the iteration. 

The updating scheme described above has the 
following geometric interpretation: n n+l is a point 
in the (u, o) space which is a combination of fin 
and d. The manner in which this combination 
takes place is illustrated in figure 7, where the dis- 
placements have been represented in a cartesian 
coordinate system with its axes parallel to (6 . . . .  
,emln)- Since Cmax /> Cmin, the location of u "+1 will 
always be on or above the line joining d and fin. In 
particular, it can be seen that u n+~ will always be 
within the triangle shown in the figure, moving 
toward the line joining d and fin as c.~i, gets closer 
to Cma x. 

The two key parameters are Cmax/(1 + Cmax) and 
Cmin/(1 + Cmm), which vary between 0 and 1, as Cm,x 
and Cm,n vary between 0 and ~. When c/(1 + c) 
(where e = Cmax or era,, appropriately), is close to 
zero, the updated value is close to the average of 
the neighbors, whereas when it is close to 1, the 
updated value is close to the initial local displace- 
ment estimate. The function c/(1 + c) rises rapid- 
ly and approaches its maximum value, 1, so that 
even a small value of c (e.g., 10) orients the up- 
dated value strongly (e/(1 + c) = 0.91) toward the 

initial local estimate. For our experiment, the 
choice of the normalization prameters for the 
confidence measures was based on this observa- 
tion concerning the behavior of the updating 
algorithm. 

Finally, note that during the projection of the 
displacements to the next-finer-level, the values 
will be rounded to the nearest integer value; 
hence, it is not necessary to wait until the com- 
plete convergence of the smoothing algorithm. 
The relaxation process can be stopped when the 
rounded-off values of the displacements do not 
change during an iteration. In practice, we found 
that 10 iterations were usually sufficient to 
achieve this condition. 

4 Experimental Results 

This section describes the results applying the 
ideas described in this paper to two pairs of real 
images. The two experiments are called the 
dinosaur-image experiment and the hallway-scene 
experiment. 

The key parameters involved in the computa- 
tion of our confidence measures are the nor- 
malization coefficients kl, k2, and k3. For our ex- 
periment, we chose kl = 150, k2 = 1, and k3 = 0. 
As noted in section 3.4, kl is an overall scaling fac- 
tor, k2 controls the influence of S .... and k3 is use- 
ful to restrict the range of the confidence values. 
The choice of k3 = 0 simply means that the 
reanges of the confidences are unrestricted. The 
choice of k2 = 1 means that the influence Of Sm,n is 
of the same order as that of the curvatures. Our 
choice of kl = 150 was based on the empirical ob- 
servation that the mean values of Cmax was be- 
tween 100 and 200. Therefore, barring the effects 
of Stain, on the average Cmax will be approximately 
1, and the factor e~ax/(1 + Cma~) will be approx- 
imately V2. This means that on the average, the 
local displacement estimate and the weighted av- 
erage of the neighbors' estimates have equal effect 
during each iteration of the relaxation process. 

4.1 The Dinosaur-Image Experiment 

The input images used in this experiment are the 
two 128X 128 resolution images shown in figure 8. 
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Fig. 8. The dinosaur-image experiment--input. 

The scene consists of a toy dinosaur, a toy chicken 
in the background, and a tea box in the fore- 
ground, all of which rest on a table top which has 
a grid pattern on it. The toy chicken, which is 
somewhat hard to see in the images shown here, 
is behind the neck area of the toy dinosaur. The 
3D motion between the two frames consists of a 
translation of the camera to the right along with a 
leftward rotation of 1.5 ° about the vertical axis (in 
order to bring the scene back into view), as well as 
an independent 4.2 ° anticlockwise rotation of the 
dinosaur about the optical axis. The magnitudes 
of the image displacements induced by these 3D 
motions are as follows: the toy chicken appears to 
have moved right by about 3 to 5 pixels: the tea 
can appears to have moved left by about 4 to 6 pix- 
els; the grid pattern on the floor is almost 
stationary; and the points on the surface of the 
dinosaur appear to have moved by about 7 to 10 
pixels. This scene is of interest for the obvious 
reason that it contains a distinct and prominent 
independently moving object besides containing 
a complex camera motion. 

Figure 9 shows the displacement fields at the 
four levels of  the pyramid computed by the 

hierarchical matching process without smooth- 
ing, while figure 10 displays the displacement 
field at the same four levels produced by the 
hierarchical algorithm with smoothing. Figure 11 
dispalys the displacement field at the finest 
resolution superimposed on the first frame. 
Figure 12 displays the confidence measure Cmax at 
the four levels with the direction vectors ~max su- 
perimposed, as well as the confidence measure 
Cram. 

Qualitatively, figure 11 shows that the al- 
gorithm performs remarkably well in this real 
image containing complex motion. Note that 
while the toy chicken and the tea box undergo the 
same 3D relative motion with respect to the 
camera, (i.e., a translation parallel to the image 
plane combined with a rotation about the vertical 
axis), the movement of their images appears to be 
in opposite directions. This is because, while the 
leftward rotation of the camera induces a right- 
ward image flow in both the regions, the effect of 
the compensatory rightward translation is greater 
on the image of the tea box, since it is closer to the 
camera. Figure 11 shows that our algorithm has 
correctly determined the image displacements of 
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Fig. 9. The dinosaur-image experiment--unsmoothed results. The results of the dinosaur-image experi- 
ment without smoothing and with 5× 5 Gaussian template windows. The top left and fight quadrants con- 
rain results from levels 4 and 5 respectively, while the bottom left and fight quadrants contain the results 
from levels 6 and 7. In order to enhance visibility, only a 32×32 sample of the displacements has been 
shown at levels 6 and 7. 

these two objects. It is also clear that the indepen- 
dent movement of the dinosaur has been suc- 
cessfully computed. The expected behaviors of 
the confidence measures at corners, edges, and 
homogeneous areas are confirmed by the dis- 
plays in figure 12. 

The improvement obtained by the smoothing 
process is easily seen by comparing the results 
shown in figures 9 and 10. Note that at the two 
coarsest resolutions, the displacement field has 
been smoothed across surface and object boun- 

daries, whereas at the finer levels there are sudden 
changes near such boundaries. This is due to the 
use of the overlapped pyramid projection strate- 
gy, as well as the fact that the input images con- 
tain significant contrast at high frequencies. 
Hence, the finer-level matching processes were 
able to correct some of the errors made at the 
coarser levels. In particular, note that the bound- 
ary between the chicken and the dinosaur has 
been maintained during the finer-level smooth- 
ing processes, primarily due to the proper de- 
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F i g .  1 0 .  The dinosaur-image experiment--smoothed results. The results of the dinosaur- 
image experiment with smoothing and with 5X5 Gaussian template windows. Once again, 
the top left and right quadrants contain results from levels 4 and 5 respectively, while the bot- 
tom left and fight quadrants contain the results from levels 6 and 7. Also, only a 3 2 ×  32  sample 
of the displacements has been shown at levels 6 and 7. 

coupling via the confidence measures. 
Although the area on top of  the dinosaur is part 

of  the background, the vectors in that area seem to 
be influenced by the motion of  the dinosaur. 
Similarly, the area of  the floor just left of  the tea 
box has displacements that are obviously in- 
correct. This is because both these areas are some- 
what homogeneous, and are adjacent to areas 
containing high-contrast information. In addi- 
tion, parts of  the floor have been occluded, or are 
near the occlusion boundary, and therefore do 
not have reliable local estimates. Hence, the 
more-reliable neighboring vectors have been 

propagated by the smoothing process to these 
areas with unreliable local estimates. Such prob- 
lems due to occlusion are pervasive in the field of  
motion analysis. 

Note that near the displacements on one of the 
lines of  the grid pattern near the top of  the tea box 
(which is visible in both frames) are obviously in- 
correct. This error occurs because the vertical line 
on the floor is adjacent to the occlusion bound- 
ary, and the intensity structure of  its neighbor- 
hood undergoes significant changes between the 
two frames. The problems here have been made 
more severe by the use of a coarse-to-fine control 
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Fig. 11. The dinosaur-image experiment--finestqevel results. 
The smoothed displacement-vector field at the finest level for 
the dinosaur-image experiment superimposed on the first 
input frame• In order to enhance visibility, only a 32×32 sam- 
ple of the displacements has been shown. 

strategy, since at low frequencies the area affected 
by the occlusion increases; it appears that even 
the use of the overlapped pyramid projection 
strategy has not corrected these errors. However, 
as illustrated in figure 12, the confidences asso- 
ciated with the incorrect displacements on the 
line are small. 

The area of the floor just below the nose of the 
dinosaur also has incorrect displacements. In this 
case, however, the problem is not due to the 
smoothness constraint. Instead, it arises because 
the grid pattern on the floor is periodic, and the 
difference in the displacement of the nose of the 
dinosaur and the floor is approxiamtely equal to 
the period of the grid pattern. Hence, at the coarse 
levels of processing, the grid pattern near the nose 
of the dinosaur appears to have moved one 
period, whereas its actual image motion is much 
smaller (almost zero). This may be a harder prob- 
lem to solve by a low-level two-frame matching 
technique, because all displacements that are 
multiples of the period of the grid pattern are 
equally valid. In order to resolve them, either 
higher-level texture-based grouping processes, or 

i 
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Fig. 12. The dinosaur-image experiment--confidence mea- 
sures. The confidence measures are computed in the dino- 
saur-image experiment with smoothing• The confidence 
measures are shown at the tbur finest levels. (a) Shows Cmax 
and samples of emax. (b) Displays Cmin. 
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Fig. 14. The hallway-scene experiments--finest-level results. 
The finest-level displacements for the hallway-scene experi- 
ment are superimposed on the first input frame. In order to en- 
hance visibility, only a 32× 32 sample of the displacements has 
been shown. 

(a) 

Co) 

Fig. 13. The hallway-scene experimentwinput images. 

constraints involving the temporal coherence of 
the movement maybe necessary. For a discussion 
of the mechanisms for incorporating the tem- 
poral coherence assumption, refer to [6]. 

4.2 The Hallway-Scene Experiment 

The input images for this experiment are shown 
in figure 13. These 256X256 pixel resolution im- 
ages were produced at the UMass Computer Vi- 
sion Laboratory. Once again all image motion is 
due to a camera undergoing translational motion. 
The reason for choosing this image pair is the 
presence of the many long linear structures in the 
image. Since the confidence measure separates 
such areas from corners and homogeneous areas, 
it is interesting to study its behavior in this 
experiment. 

For the sake of brevity, we only show the results 
of the algorithm with smoothing at the finest 
level. Figure 14 shows these displacements su- 
per-imposed on the first iamge frame. 

In order to further illustrate the accuracy of our 
computations, and to confirm our statement 
regarding the normal and the tangential com- 
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Fig. 15. The hallway-scene experiment--lines. The lines are extracted by Boldt's 
algorithm from the two input frames. The thick lines are from the first frame; the thin 
lines are from the second input frame. The area within the rectangular box in the upper 
left comer of the image will be more closely examined in the next two figures. 

ponents, we superimposed our displacement vec- 
tors on the set of lines obtained from the two input 
images by a line-extraction and grouping al- 
gorithm developed by Boldt [10,44]. Figure 15 dis- 
plays the lines extracted from the two images; the 
lines extracted from the first frame are shown as 
thick dark lines, while the thinner lines are those 
obtained from the second frame. Only lines 
whose associated contrast is greater than 15 grey- 
levels and which are longer than 7 pixels have 
been shown. In figures 16 and 17, we have su- 
perimposed our displacement vectors on the sets 
of  lines obtained from the two frames in a 90×90 
pixel area, which is marked in figure 15. Figure 16 
displays the unsmoothed displacement vectors for 
a sample of pixels which lie on the lines belong- 

ing to the first frame, while figure 17 shows the 
smoothed displacement vectors for the same sam- 
ple of pixels. 

It is obvious from figure 17 that the lines are 
correctly matched by our displacement vectors. 
From figure 16, it is clear that the normal com- 
ponents of the unsmoothed vectors are also cor- 
rect, whereas their tangential components are 
often incorrect. Finally, the remarkable consis- 
tency of the results obtained by Boldt's line- 
extraction algorithm and our matching algorithm 
suggests that it may be possible to combine them 
to extract stable line tokens from image sequen- 
ces. This idea is currently being pursued at the 
UMass Computer Vision Laboratory [46]. 
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\ 

Fig. 16. The hallway-scene experiment--lines with unsmoothed displacements. The un- 
smoothed displacements are superimposed on the lines extracted by Boldt's algorithm. 

5 Relationship to the Gradient-Based Techniques 

In this section, we describe the general principles 
underlying the gradient-based techniques for 
computing image velocity fields, describe two 
specific gradient-based algorithms, and show 
that both these techniques are consistent with our 
framework. Further, we will also show that there 
is a clear mathematical relationship between the 
two gradient-based techniques and our match- 
ing algorithm. 

5.1 The Gradient-Based Techniques--An Overview 

Almost all the techniques for measuring instan- 
taneous image velocities use the gradient-based 

approach. This approach is based on the assump- 
tion that the intensity of light reflected by a point 
on an environmental surface and recorded in the 
image remains constant during a short time inter- 
val, although the location of the image of that 
point may change due to motion. This assump- 
tion leads to the following equation, which is 
called the intensity constraint: 

WI[u ± = - I t  (6) 

where [VII is the magnitude of the intensity- 
gradient' vector, VI = (Ix,Iy), L is the temporal 
derivative of the intensity function, and u" is the 
component of the image velocity u parallel to VI. 
The other component u r, along the direction per- 
pendicular to VI, is unspecified by the constraint. 
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Fig. 17. The hallway-scene experiment--lines with smoothed displacements. The smoothed 
displacements are superimposed on the lines extracted by Boldt's algorithm. 

Since the orientation of  the intensity-gradient 
vector is normal to the direction of the "edge" at a 
point, u ± and u r are respectively called the 
normal-flow and the tangential-flow components 
of  the edge. The lack of  information regarding the 
tangential-flow component is known as the aper- 
ture problem [39]. 

Since the intensity constraint specifies only one 
component of the image velocity at a point, an ad- 
ditional constraint is necessary to completely 
determine the velocity vector; this is usually given 
in the form of a smoothness constraint on the 
velocity field [26,27,34]• For this paper, Horn and 
Schunk's formulation [27] and Nagel's formula- 
tion [35] are of  particular interest, because they 
are, respectively, used in the multiresolution 
gradient-based algorithms of Glazer [21] and En- 

kelmann [17]. These two formulations of the 
smoothness constraints are discussed in detail 
within the descriptions of  the hierarchical techni- 
ques given below. It should be noted that both 
techniques apply the intensity constraint for the 
computation of displacement• Such an approx- 
imation of  velocities by displacements is reason- 
able because of  the hierarchical processing 
schemes used, in which all displacement mea- 
surements are small compared to the scale of 
image intensity variations• 

5.1.1 Enkelmann's Approach. Enkelmann [17] 
uses the low-passpyramid transform described by 
Crowley and Stern [16] to create a set of  Gaussian 
low-pass filters. After the construction of a low- 
pass pyramid from each image, the processing 
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begins at a particular coarse level. The descrip- 
tion of his technique does not specify how this 
level is chosen. At the coarsest level, the initial 
displacement field consists of vectors of zero 
length. At all other levels the initial displacement 
field is determined by projecting the field com- 
puted at the adjacent coarser level. The projection 
process involves a bilinear interpolation of the 
displacement vectors in a small neighborhood of 
the field at the coarse level. 

Within each level, the process of refining the in- 
itial displacements is based on Nagel's gradient- 
based approach [35]. In this approach, an area 
around each pixel in the image is shifted accord- 
ing to the initial displacement vector at that pixel. 
The refinement to the initial displacement field is 
computed by minimizing the functional E = 
E,m + a2E~ where E~n~ is a formulation of the in- 
tensity constraint mentioned above, Esm rep- 
resents the smoothness assumption, and mea- 
sures the spatial variation of the displacement 
field, and ct indicates the relative importance at- 
tached to the two error terms. Mathematically, 

El, t = f fdx  dy (I(x,y) - J(x + u,y + v)) 2 (7) 

and 

Esm = (fdx dy trace [(Vur)rW(Vur)] (8) 
Jd 

where I is the intensity function of the first image; 
J is the intensity function of the second image 
shifted according to the displacements computed 
from the previous coarse level; and W is a weight 
matrix which depends on the spatial derivatives 
of the image intensity function I. In particular W 
is chosen to allow the propagation of the smooth- 
ness constraint along directions with small or no 
variation of image intensities, while attempting to 
prevent its propagation along directions with 
large variations in the intensities. This corres- 
ponds roughly to the intuition that large intensity 
variations may be indicative of region or sur- 
face boundaries. 

By using the Euler-Lagrange equations, and ig- 
noring the second-order terms of (u, v), as well as 
the third- and higher-order spatial derivatives of 
the intensity function, the functional minimiza- 
tion problem is.transformed to that of solving the 

following differential equations: 

ed[trace {WVVu}] 
Au + b - Ltrace {WVVv}J = 0 (9) 

where 

A = ( v / ) ( v r / +   72(vv/)(vvt) T (10) 

and 

b = AI(V/) + 22(VV/)V(A/) (11) 

where AI is the temporal change in intensity at 
the image location (x,y), the VV operator rep- 
resents the matrix of second derivatives, i.e., 

w e = ( / x x  Ixy) 
/x, I , , .  

and ~2 denotes the size of a small image window 
which represents the location (x,y). Note that in 
the limit, when the time interval between the two 
frames tends to zero, the displacements in the 
above differential equation can be replaced by 
the corresponding image velocities, provided A I  
is replaced byIt, the temporal intensity derivative. 

By using the finite-difference approach, the dif- 
ferential equations are further transformed into a 
large sparse system of linear equations. These 
linear equations are then solved using a mul- 
tiresolution relaxation approach. The details of 
the relaxation process are not relevant for the pur- 
poses of this paper, although they may be impor- 
tant for an efficient implementation. 

5.1.2 Glazer's Approach. Glazer also uses a Gaus- 
sian low-pass pyramid representation of the input 
images and employs a hierarchical version of the 
Horn and Schunck appraoch. However, the exact 
algorithm for the construction of the pyramid is 
different; Glazer uses Burt's Gaussian-pyramid 
transformation described in [11[. After the con- 
struction of the low-pass pyramids, the process- 
ing begins at a coarse level at which the magni- 
tudes of the displacements are expected to be less 
than a pixel. A coarse-to-fine control strategy is 
used. The projection of the displacements be- 
tween adjacent levels is structured via the quad- 
tree connectivity, wherein each pixel at a coarse 
level is regarded as the "parent" of four pixels at 
the adjacent finer level. Each "child" uses the dis- 
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placement of the parent pixel as its initial 
displacement. 

As in Enkelmann's approach, a window 
around each pixel in the first image is shifted ac- 
cording to the initial displacement at that pixel. 
The refinement process also consists of minimiz- 
ing the sum of two functionals E~nt and Esm, which 
represent the intensity constraint and the 
smoothness assumption respectively. Glazer de- 
fines the two errors as 

Ein t = ffdx dy IV/IZ(u ± - o±) 2 (12) 

and 

Esm = f f dx  dy (Vu~)T(Vu ~) (13) 

AS before, u ± is the component of the displace- 
ment vector u parallel to the intensity-gradient 
vector VI, and v ± = -AI/IVlI. Once again, re- 
placing Alby/~ leads to a similar equation involv- 
ing the image velocity u. 

Glazer also uses the Euler-Lagrange equations 
to transform this problem into a set of differential 
equations, and obtains a system of linear equa- 
tions by using the finite-difference approach. The 
set of differential equations he obtains are, 

Vi[(V/)r u + it ] _ a2[trace {VVu}] 
[trace {VVv}J = 0 (14) 

where the operator VV is as defined above. 
Finally, Glazer uses a multiresolution relaxa- 

tion process to solve his system of equations, 
although his approach is more complex than En- 
kelmann's method and is based on recent theo- 
retical work concerning general mutlilevel relax- 
ation techniques. The hierarchical gradient- 
based approach and multilevel relaxation are 
both described in detail in [21]. 

5.2 Relating the Gradient-Based Techniques to 
Our Framework 

The five components described in section 2 are 
common to the various techniques that are un- 
ified within our framework. The techniques differ 
in the particular algorithmic choices made for the 
various components. 

It should be evident from the description given 
in section 3 that our matching algorithm is com- 
pletely consistent with the framework. In this sec- 
tion, we will show that both the hierarchical 
gradient-based techniques described above are 
also consistent with the framework; in the process 
of showing their consistency with the framework, 
we will also identify the algorithmic choices made 
in these two techniques for the various com- 
ponents. Finally, we will establish a mathemati- 
cal relationship between the gradient-based 
techniques and the matching algorithm. 

From the descriptions given above, it should be 
obvious that both Enkelmann and Glazer use 
spatial-frequency channels, and a coarse-to-fine 
control strategy. In particular, both use Gaussian 
low-pass filters--although the use of band-pass 
filters may be more appropriate, because they 
provide a greater separation of the spatial-fre- 
quencies. The control strategy is similar to ours, 
except for some differences in the projection 
scheme. The use of the smoothness constraint is 
also explicit and the various formulations of the 
smoothness error functional are similar, the 
primary difference being the use of the weight 
matrix W by Enkelmann. 

Although at first sight, the use of the term match 
criterion seems inappropriate for the gradient- 
based techniques, a careful examination of our 
definition of the term match criterion indicates 
that the use of the term is valid. According to our 
definition in section 2, a match criterion is the 
basis of computing local estimates of the dis- 
placements (and more generally, measurements 
of image motion). In both the gradient-based 
techniques under consideration, th e local es- 
timates are based on the intensity constancy 
assumption. However, in neither technique are 
the match criterion and the confidence measure 
explicitly identified. Instead, these are implicitly 
present in the formulation of the minimization 
problems. Our purpose here is to explicitly iden- 
tify these two components in each of the two 
gradient-based techniques, and demonstrate that 
an elegant mathematical relationship exists be- 
tween our matching technique and the two 
gradient-based techniques. 

5.2.2 Enkelmann's Technique. As noted earlier, 
Enkelmarln minimizes the sum of the two 
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functionals Emt and Esm, as defined in equations 7 
and 8. Recall also that by using Euler-Lagrange 
equations, Enkelmann derives the differential 
equation shown in equation 9. It is easy to show 
(see [6] for details) that solving this differential 
equation is also equivalent to minimizing E ' =  
Esm + Eirnt, where Esm is as defined by Enkel- 
mann, and 

= flax dy ( u  - d) A(u - , )  

In this definition, d is any vector such that 
Ad = -b ,  and A and b are as defined in equations 
(10) and (11). By doing some further algebraic 
manipulation, it is easy to show that 

+ )~2((u - d).  ~2) 2] (16) 

where ~-1 and ~ are the two eigenvalues of A, and 
~1 and ~2 are the associated unit eigenvectors. 

The transformation of Enkelmann's E~,t to the 
form shown in equation 16 allows us to explicitly 
identify the match constrgint and the confidence 
measures used in his technique. Specifically, the 
following interpretation is possible: the local es- 
timates of displacement are the solutions to the 
equation Au = -b ;  corresponding to the com- 
ponents of the solution vector along the direc- 
tions of the eigenvectors ~1 and ~2 of A, we can 
associate confidence measures L~ and Z.2 respec- 
tively. Note that while we can guarantee that there 
is at least one solution to this equation (see [6]), 
there is no guarantee that such a solution will be 
unique. In particular, it is easy to see that if both 
the eigenvalues of A are nonzero, there will be a 
unique solution vector (d); whereas if any of the 
eigenvalues are zero, the component of the solu- 
tion vector along the direction of  the correspond- 
ing vector can be arbitrarily chosen. In fact, the 
underlying image pixel can be regarded as a cor- 
ner, edge, or a homogeneous area according to 
whether the matrixA has 2, 1, or 0 nonzero eigen- 
values. 

5.2.3 Glazer's Technique. The definition of Ein t 
used by Glazer is the following: 

Ei,t = ((dx dy [VIl2(u ± - v±) 2 (17) 
d J  

where v ± = -AI / [  VII. If the parameter £2, which 
represents the window size in the definitions of A 
and b is set to zero, the equation An = - b  reduces 
to the equation 

(v/)~u = - I ,  

which is equivalent to the normal-flow equation 
(6). Moreover, it can be shown that in this case, 

~'1 = 0,  k 2 ~---[VII 2, a n d r l  = 6vi (18) 

Thus, we see that Glazer's choice for the local es- 
timates of motion and the confidence measures 
are similar to Enkelmann's, with the important 
difference that the size of the window represent- 
ing a point tends to zero, i.e., the window shrinks 
to a point. 

5.2.4 The Mathematical Relationship Between the 
Matching and the Gradient-Based Approaches. 
Thus far, we have shown that the two gradient- 
based techniques contain all the components of 
our framework, and are therefore completely con- 
sistent with it. In addition, we have also shown 
that Glazer's first-order gradient-based estimates 
of motion and the associated confidences are the 
values obtained by using Enkelmann's approach 
in the limiting case (when the window size tends 
to zero). Here, we also note that there is a close 
mathematical relationship between our matching 
approach and the gradient-based approaches. 
The following theorem summarizes this rela- 
tionship: 

TI-IEOREM. In the limit, when the inteoerame time in- 
terval tends to zero, the formulation of the approxima- 
tion error for image displacements used in the 
discrete-matching approach converges to the second- 
order formulation of Emtfor image velocities used in 
the gradient-based approach, provided the third- and 
higher-order spatial intensity derivatives are ignored. 
Further, when the window size represented by 22 tends 
to zero, Eapp converges exactly to the first-order 
gradient-based formulation of Ei,t. 

The proof of this theorem is too long for this 
paper, and can be found in [6]. The general ap- 
proach is based on a derivation of Nagel [33] that 
in the limiting case (when the interframe time in- 
terval tends to zero), the minimization of  the SSD 
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measure is equivalent to solving the equation 
Au = - b .  

5.3 Discussion 

Thus far, we have attempted to establish the con- 
sistency of the gradient-based techniques with 
our framework, and describe the mathematical 
relationship between the gradient-based techni- 
ques and our matching technique. We have 
shown that our framework provides a unifying 
perspective for the correlation-matching techni- 
ques and gradient-based techniques. In par- 
ticular, the use of multiresolution, multiple- 
frequency computations, the implicit or the ex- 
plicit use of a confidence measure, and a 
smoothness constraint which uses that confiden- 
ce measure seem essential for the success of all of 
these techniques. 

We have also shown that in the gradient-based 
techniques, the confidence measure can be 
isolated from the smoothness assumption. This 
allows us to retain the confidence measure (which 
we believe to be essential), but reexamine the for- 
mulation of the smoothness assumption, and 
even consider whether such an assumption is 
always useful. For example, alternate forms of the 
smoothness constraint may be easily combined 
with the local measurements and the associated 
confidence measures: these include the flow- 
analyticity constraint of Waxman [43], the sto- 
chastic relaxation approaches of [19,31], and 
other such methods. Alternatively, we can even 
postpone the construction of a dense displace- 
ment field, and use the local measurements and 
their confidences in a segmentation and grouping 
technique such as that of Adiv [21. 

6 Processing Discontinuities in Image Mot ion 

In this section, we consider one of the major un- 
solved problems in the analysis of visual motion 
and its relation to our computational framework. 
This situation involves processing discontinuities 
in image motion, which are present at the boun- 
daries of surfaces, or at the boundaries of objects. 
Around the locations of  such discontinuities, the 

smoothing involved in the spatial-frequency 
decomposition process creates intensity struc- 
tures that have no physical correlates. Therefore, 
the information contained in the lower-frequency 
channels in the two images will be inconsistent. 
The local translational assumption and the spec- 
tral continuity principles are also violated. Ob- 
viously, it would be inappropriate to apply the 
smoothness constraint across such boundaries. 

In order to process discontinuities in image 
motion, we must first detect such discontinuities. 
It should be clear from the brief discussion above 
that the detection of discontinuities cannot be 
postponed until after the computation of a dense 
flow field; rather, it should happen simultaneous- 
ly with that computation. This means that our 
framework (as well as the techniques consistent 
with it) should be modified to incorporate the no- 
tion of discontinuities in image motion. Here we 
outline some possible ways to approach this 
task. 

In the current version of our matching al- 
gorithm, the confidence measures are normalized 
according to the magnitude of the minimum SSD 
value computed during the search process. The 
minimum SSD value is likely be large if (i) the 
search area does not contain the true match 
(either due to occlusion or due to incorrect coarse- 
level estimate); (ii) the magnitudes of rotation and 
translation in depth are large; and (iii)'the SNR 
(signal-to-noise) ratio is low. All these are cases 
where even the best match (and even if the SSD 
surface has a sharp minimum) is unreliable. In 
addition to the magnitude of the minimum SSD 
value, a significant difference in the shapes of the 
auto- and cross-SSD surfaces may also indicate 
an unreliable match. 

A local measure of the likelihood of a false 
match is itself not sufficient to determine the pres- 
ence of discontinuities. Typically the discon- 
tinuities will form a contour on the image plane. 
The spatial derivative of the image flow field ac- 
ross such a bounding contour can be expected to 
be large. If these three types of information are 
combined, the robust detection of discontinuities 
may be possible. 

One way to combine various sources of infor- 
mation to detect discontinuities in image motion 
is to first obtain a local "no match" measure, and 
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explicitly include discontinuities in the smooth- 
ness process. This is somewhat similar to the ap- 
proach suggested by Geman and Geman [19] for 
edge detection, and more recently by Marroquin 
et al. [31] for surface reconstruction from sparse 
depth data. The advantage of this approach is 
that by using two coupled models, one for the flow 
field, and the other for the discontinuity boun- 
daries, the discontinuity detection process is 
dynamic and explicitly encoded. 

7 Summary 

We have described a hierarchical computational 
framework for the determination of dense dis- 
placement fields from a pair of images. We have 
also developed a matching algorithm consistent 
with our framework and demonstrated its per- 
formance on real images. 

Our framework is sufficiently general in order 
to unify the gradient-based and the matching 
techniques. In particular, we have shown that in 
addition to our own technique, two successful 
gradient-based techniques are consistent with 
our framework. We have also established a clear 
mathematical relationship between the gradient- 
based techniques and our matching technique. 

At present, the detection and processing of dis- 
continuities in image motion is difficult. Also, our 
current approach (and for that matter almost all 
the current approaches for the measurement of 
motion) is not capable of processing scenes con- 
taining transparent or fence-like surfaces. Final- 
ly, we have not addressed the issues involved in 
processing multiple frames. While these prob- 
lems form the obvious basis for further research 
in the measurement of visual motion, we wish to 
note that our algorithm is readily applicable to a 
large class of commonly encountered images and 
performs robustly (see [6]) with almost no adjust- 
ment of parameters. 
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