


Scalar Field Volume Rendering:

Intuitive problem formulation;

Applicative motivations;

Limitations of Iso-surface based rendering;
Direct Volume Rendering:

Volume Ray Casting;

Splatting;
Shear Warp;
V- Texture Mapping, etc.



Mimic Superman's SuperVision:

s Represent in an intelligible manner the interior of a

I
"‘;‘z‘ﬁ'ﬂ scalar volume.



Visualization of Measured 3D Data:
Computed Tomography;
Magnetic Resonance Field;
Ultrasound, etc.

P e @




oo

Visualization of Simulated 3D Data:

Fluid dynamics;

Pressure;
Porosity;
etc.
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Level set:
L(w) ={p e M, f(p) =w}
2D: isocurves
3D: isosurfaces

Seed sets + marching;

Specific blendings.




No view-dependency;
Boundary representations only:

May be suited for particular data-sets (CT scans);
But not always appropriate (ex: fire simulation).

Slice Isosurface Volume Rendering



Every voxel should
contribute to the
image,;

Greater flexibility;
Integrate blending.




Volumetric Mesh + Scalar Field Volumetric Mesh + Scalar Field

Isosurface
Extraction
E 2 Volume
Triangle Mesh + Scalar Field Fordoring
Surface
Rendering
Rendered Image Rendered Image



Volumetric Mesh + Scalar Field Volumetric Mesh + Scalar Field

Isosurface
Extraction
E 2 Volume
Triangle Mesh + Scalar Field Rendering
Surface
Rendering
Rendered Image Rendered Image



Any rendering process which:

Maps from a volume data-set;
To a rendered image;
Without intermediary geometry (no isosurface).

How does it work?

Define “rules” for color and opacity;
Accumulation process depending on the view point.
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Consider the 3D data as:
A semi-transparent medium;
Light-emitting medium.

Approaches based on physical models of light
(cf. Computer Graphics lllumination);

he 3D data is represented as a whole:

View “all” of the inside!



Transfer Function Design:

Allows the user to specify “rules” for color and
opacity.

Accumulation process:
Volume Ray Casting;

Splatting;
- Shear warp, Texture Mapping, etc...
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Given a Volumetric Mesh and a Scalar Field:

Provide an intuitive way to define:

The color of a region;
Its level of opacity.

Process dependent on the Scalar Field (feature space):

For a given isovalue:

Its color;
\Zkc Its opacity.



Key Idea:

Associate distinct materials (function ranges)

-~ \/i= to distinct properties
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Key Idea:

Associate distinct materials (function ranges)
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Key Idea:

Associate distinct materials (function ranges)
-- \/1=. 1o distinct properties
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Key Idea:

Associate distinct materials (function ranges)
.- \/1=. to distinct properties
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( : Material 4

Key Idea:

Associate distinct materials (function ranges)
.- \/1=. to distinct properties
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Finding the “right” transtfer function can be hard:

Experienced users;
A priori knowledge about the data-set (value isolation).
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Semi-Automatic technique:
IBPS97];

Semi-Automatic technique:
[WDCPHO07];
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Ray Casting;
Sampling;
Shading;

Compositing.



For each pixel of the
screen space:

Cast a ray;

Direction of
observation;

Intersection problem:

Octrees.



€ ' Along each ray:

X 4
. gi..p' Sample the data along the ray;
..' oo ® Intersection with edges;
% we® |
FAA i e Compute the function value on
o8 samples

Apply the appropriate interpolant;




For each sample:

Retrieve the corresponding color;
Compute the gradient of the field:

Normal of the corresponding
Isosurface;

Shade the sample accordingly,
given:

The normal (gradient);

The color;

The view direction and the lights.



Integrate all the contributions;

Along each ray:

Go from the back to the front:

At each sample:

Retrieve the opacity value;

Composite all along.



OpenGL facility to blend
color contributions:

The order matters!
C.=(0,0,0), x_=1;
C. = (0,1,0), &_ = 0.5;
C.=(1,1,1), « = 0.1;
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OpenGL facility to blend
color contributions:

The order matters!
C.=(0,0,0), x_=1;
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OpenGL facility to blend
color contributions:

The order matters!
C.=(0,0,0), x_=1;
C. = (0,1,0), &_ = 0.5;
C.=(1,1,1), @ = 0.1;

= o(1)*C(1) + (1 — (1)) ex(1-1)*C(i-1)
(1) = o(l) + (1 - (i) ex(1-1)



Color intensity along the ray:



Color intensity along the ray:

First




Color intensity along the ray:

First
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Color intensity along the ray:

Average
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Color intensity along the ray:

Average

First
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Color intensity along the ray:

Max

Average

First
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Color intensity along the ray:
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Color intensity along the ray:

Max

Accumulate »

Average

First
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Color intensity along the ray:

Max

Accumulate »

Average

First
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From Back to Front:

>
C(i-1), a(i-1)
C(i), (i)



Avantages:
Simple algorithm;
Inherently parallel;

Can extend lighting
model (diffraction);
High quality
renderings.

Drawbacks:
SLOW!!!!

Lots of rays;
Lots of samples;

Dense samples;
Not out-of-core...



Make the Ray Casting algorithm “Transfer
Function Aware™:

No need to cast ray or sample in regions with
no visual properties;

Segmentation of the feature space.

Other advanced techniques...
On Thursday with Attila!
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