
24

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors

STEF GRAILLAT and CHRISTOPH LAUTER, Sorbonne Universités, UPMC Univ Paris 06
PING TAK PETER TANG, Intel Corporation
NAOYA YAMANAKA, Teikyo Heisei University/CREST, JST
SHIN’ICHI OISHI, Waseda University

In this article, we present an efficient algorithm to compute the faithful rounding of the l2-norm of a floating-
point vector. This means that the result is accurate to within 1 bit of the underlying floating-point type. This
algorithm does not generate overflows or underflows spuriously, but does so when the final result calls for
such a numerical exception to be raised. Moreover, the algorithm is well suited for parallel implementation
and vectorization. The implementation runs up to 3 times faster than the netlib version on current processors.

CCS Concepts: � Mathematics of computing → Arbitrary-precision arithmetic; � Computing
methodologies → Linear algebra algorithms

Additional Key Words and Phrases: Floating-point arithmetic, error-free transformations, faithful rounding,
2-norm, underflow, overflow

ACM Reference Format:
Stef Graillat, Christoph Lauter, Ping Tak Peter Tang, Naoya Yamanaka, and Shin’ichi Oishi. 2015. Efficient
calculations of faithfully rounded l2-norms of n-vectors. ACM Trans. Math. Softw. 41, 4, Article 24 (October
2015), 20 pages.
DOI: http://dx.doi.org/10.1145/2699469

1. INTRODUCTION

Computing the l2-norm ‖x‖2 =
√∑n

j=1 x2
j of a vector x = [x1, x2, . . . , xn]T is prevalent in

scientific and engineering applications. This operation is part of the first (lowest) level of
the Basic Linear Algebra Subroutine (BLAS1). The simplicity of the formula

√∑n
j=1 x2

j

is misleading. Summing the squares can cause unwarranted (spurious) overflows or
underflows in many instances when, in fact, ‖x‖2 is well within the normal range of
the working-precision floating-point arithmetic. Common implementations, such as the

Part of this work was done while Professor Shin’ichi Oishi was holding a position of Visiting Professor at
UMPC and while Ping Tak Peter Tang was visiting UPMC. Stef Graillat was supported by a CNRS/JSPS
Exchange Scientist grant.
Authors’ addresses: S. Graillat, Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005,
Paris, France and CNRS, UMR 7606, LIP6, F-75005, Paris, France and with CNRS at Laboratoire LIP
(CNRS, ENS Lyon, Inria, UCBL), 6 allée d’Italie 69364 Lyon cedex 07, France; email: stef.graillat@lip6.fr;
C. Lauter is with Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
and CNRS, UMR 7606, LIP6, F-75005, Paris, France; email: christoph.lauter@lip6.fr; P. T. P. Tang is with
Intel Corporation, 2200 Mission College Blvd, Santa Clara, CA 95054, USA; email: peter.tang@intel.com;
N. Yamanaka is with Faculty of Modern Life, Teikyo Heisei University 4-21-2 Nakano, Nakano, Tokyo,
164-8530, Japan and CREST, Japan Science and Technology Agency 4-1-8 Honcho, Kawaguchi, Saitama,
332-0012, Japan; email: n.yamanaka@thu.ac.jp; S. Oishi is with Faculty of Science and Engineering, Waseda
University, 3-4-1 Okubo, Tokyo 169-8555 Japan and CREST, JST; email: oishi@waseda.jp.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0098-3500/2015/10-ART24 $15.00
DOI: http://dx.doi.org/10.1145/2699469

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

http://dx.doi.org/10.1145/2699469
http://dx.doi.org/10.1145/2699469

24:2 S. Graillat et al.

public version of LAPACK [Anderson et al. 1999] released by netlib1 essentially com-
pute the l2-norm as x̂ × ‖x/x̂‖2, where x̂ is max j |xj |. That implementation requires n
divisions in total, which is significantly more expensive than the naı̈ve formula would
suggest. Spurious exceptions aside, accuracy is also an issue with implementations
that rely on accumulation of squares in working-precision arithmetic. In the worst-
case scenario, the last log2(n) bits of the binary floating point result could be corrupted.
Equivalently, the last log10(n) digits of the result, when displayed in decimal, could be
corrupted. Improving the accuracy of l2-norm computation enhances the qualities of the
larger computational tasks relying on it. Moreover, a highly accurate l2-norm improves
the chances of obtaining reproducible numerical results should the l2-norm computa-
tion be done in parallel, with threads or vector-floating-point (SIMD) instructions2.

In this article, we present a new division-free l2-norm algorithm that is amenable to
straightforward parallel implementations. We prove that the algorithm always returns
a faithfully rounded result, to be defined rigorously later. For now (and informally), this
means that the result is accurate to within one bit of the underlying floating-point type.
The algorithm also reports overflow and underflow faithfully, a property to be defined
later. Loosely speaking, these exceptions are triggered only when the true value ‖x‖2
calls for the event. On current processors (with AVX extensions), our implementation
runs at least as fast as the netlib version, and up to three times faster when the
IEEE754 fused-multiply-add instruction is available.

There are two main features of our algorithm. First, it accumulates the squares,
x2

j , using a pair of floating-point numbers, providing essentially double the underly-
ing floating-point precision. Our technique is similar to the addition operator in the
double-double library [Li et al. 2002] but at almost twice the speed by exploiting the
nonnegative nature of sum of squares. We provide a rigorous analysis of the accuracy
properties of our accumulation process. Second, we eliminate all spurious exceptions
by scaling the input data, but without using division. The technique is a “binning”
method and is similar to the one proposed in Blue [1978]: the vector elements xj are
grouped—that is, binned—into small, medium, and large inputs, such that, after appro-
priate scaling up or down, their squares in each bin can be computed without spurious
overflow or underflow. However, we improve the binning technique in that [Blue 1978]
requires three bins and we use only two bins here, resulting in economy of registers
usage and performance improvement. The accumulation and binning are amenable
to straightforward parallel implementations. Our reference implementation uses data
parallelism through SIMD instructions, but adding thread parallelism is straightfor-
ward. Our technique does not incur any memory overhead; in particular, each vector
element xj is read only once, the same way it would be in other approaches.

We organize the rest of the article as follows. Section 2 defines the key technical
terms. We formulate our main problem and state our objectives. We present and es-
tablish the main theorem in Section 3. The essence is that, if ‖x‖2

2 is computed to
enough accuracy as a floating-point pair as “leading”-plus-“correction,” then a stan-
dard IEEE-conforming square root on the “leading” part yields a faithfully rounded
l2-norm. Section 4 presents a serial and parallel l2-norm algorithm without binning.
In the absence of exceptions, we prove the numerical properties of these two algo-
rithms, which will lay the foundation for the actual binned algorithms that provide the
spurious-exception-free property. Section 5 presents the binned versions and the proofs
of the faithful rounding and spurious-exception-free nature. Section 6 shows numerical
and performance test results to corroborate with the theoretical analysis presented.

1www.netlib.org.
2Clearly, an l2-norm routine that returns the correctly rounded floating-point result is always reproducible.

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

file:www.netlib.org.

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:3

2. BACKGROUND

Throughout this article, we consider a specific IEEE754 binary floating-point type. Let
F denote the entire set of finite values in this type, identified by three parameters ε,
emin, and emax:

F = {±2e+1mε | m ∈ N, emin ≤ e ≤ emax, 0 ≤ mε < 1}.
For example, (ε, emin, emax) is (2−24,−126, 127) for the binary32 format, and
(2−53,−1022, 1023) for the binary64 format. Denote the smallest and largest positive
normalized numbers by Fsmall = 2emin and Flarge = 2emax+1(1 − ε). We assume ε ≤ 2−24

throughout this article.
Closely related to F is the set F

� where no upper limit of the exponent is imposed:
F

� = {±2e+1mε | m ∈ N, emin ≤ e, 0 ≤ mε < 1}.
It is clear that F ∩ [0, 2emax+1) = F

� ∩ [0, 2emax+1). In particular, numbers x ∈ F
� where

0 < |x| < 2emin are also denormalized.
For any real number α ∈ R, ◦(α) is the IEEE round-to-nearest-even function that

maps any finite real number to F
�, ◦ : R → F

�. The rounding ◦(α) of a real number α is
the number in F

� that is closest to α, with a tie broken by choosing ◦(α) to have an even
mantissa (least-significant bit being zero). A crucial property of ◦(α) is best stated in
terms of the ulp (units of last place) function defined as follows. For all α ∈ R,

ulp(α) =
{

2e+1ε if |α| ∈ [2e, 2e+1), e ≥ emin,
2emin+1ε otherwise.

Note that this definition of ulp reflects the floating-point arithmetic properties in the
denormalized range. For any real number α and integer k such that both |α| and |2kα| ≥
Fsmall, then ulp(2kα) = 2kulp(α), and ulp(α) ≤ 2|α|ε where equality ulp(α) = 2|α|ε holds
if and only if log2(|α|) is an integer. It is easy to see that ◦(α) is at worst half a unit of
last place away from α: For a real number α, |α| ∈ [2e, 2e+1], then |◦(α) − α| ≤ ulp(α)/2.
Note that this holds even for e < emin.

The clipping function clip maps floating-point numbers in F
� to F ∪ {−∞,+∞}: For

all x ∈ F
�,

clip(x) =
{

x for |x| < 2emax+1,
x
|x| ∞ for |x| ≥ 2emax+1.

The four basic IEEE arithmetic operations ⊕,�,⊗,� can be defined in terms of the
rounding and clipping functions:

a � b = clip(◦(a ∗ b))

for any ∗ ∈ {+,−,×, /} and a, b ∈ F (with b �= 0 if the operation “∗” is division). Similarly,
the IEEE square root function sqrt is defined as sqrt(x) = ◦(

√
x) for all x ∈ F ∩ [0,∞).

The clipping function is not needed here, as
√

x ≤ √
Flarge.

For any α ∈ R, we define α’s faithful set of floating-point numbers ♦(α) as follows.
♦(α) is the singleton {α} if α ∈ F

�. Otherwise, ♦(α) is the set of two numbers in F
� that

are closest to α from below and above. In other words,

♦(α) =
{

max
y

{y ∈ F
� | y ≤ α}, min

y
{y ∈ F

� | y ≥ α}
}

.

Clipping the set ♦(α) is by definition the set consisting of the clipping of each of the
elements in ♦(α): clip(♦(α)) = {clip(a)|a ∈ ♦(α)}.

This article presents a parallelizable and division-free algorithm AccuNrm2 such
that for all vectors x of practical length, AccuNrm2(x) ∈ clip(♦(‖x‖2)) where x =
[x1, x2, . . . , xn]T , xj ∈ F. We call this numerical property a faithful rounding of ‖x‖2.

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

24:4 S. Graillat et al.

Note that our definition of faithful rounding is slightly stronger than that in Muller
et al. [2010], differing with it only in the case when ‖x‖2 ≥ 2emax+1. In this case, our
definition requires that +∞ be returned, while the definition in Muller et al. [2010]
allows either +∞ or Flarge to be a faithful rounding.

In addition to computing a faithfully rounded numerical value, AccuNrm2(x) also re-
ports overflow and underflow faithfully in the following sense. Given an implementation
G(x) of a function g(x), we say G(x) reports

(1) overflow faithfully if:
—G(x) never reports an overflow when |g(x)| ≤ Flarge.
—G(x) always reports an overflow when |g(x)| ≥ 2emax+1.

(2) underflow faithfully:
—When |g(x)| ≥ Fsmall, G(x) never reports underflow.
—When 0 < |g(x)| ≤ Fsmall − 2emin+1ε, then

—|G(x)| ≤ Fsmall − 2emin+1ε always,
—if underflow is unmasked, G(x) reports underflow.
—if underflow is masked and g(x) ∈ F, then G(x) = g(x) and does not report

underflow.

We emphasize that achieving faithful rounding is nontrivial. One can show that
◦(

√◦(σ)) ∈ ♦(‖x‖2), where σ = ∑
j x2

j = xT x is the exact sum of squares (or inner
product). This says that the correctly rounded square root of the correctly rounded
sum of squares is a faithfully rounded l2-norm. Nevertheless, computing the correctly
rounded sums of squares is very expensive [Ogita et al. 2005; Rump et al. 2008a, 2008b].
On the other hand, examples exist in which ◦(

√
S) /∈ ♦(‖x‖2) for some S ∈ ♦(σ). That

is, computing the σ to only slightly worse than the correctly rounded sum of squares
can cause unfaithful rounding. Our algorithm, in essence, computes a floating-point
number S ≈ σ very accurately and yet efficiently. Theorem 3.3 gives a condition on
the accuracy of S that guarantees ◦(

√
S) to be a faithful rounding of ‖x‖2. The fact

◦(
√◦(σ)) ∈ ♦(‖x‖2) alluded to earlier follows trivially from Theorem 3.3 as well.
The fundamental task is that of computing σ = ∑

j x2
j accurately. As we will see later,

it is possible to transform this computation into a sum without loss of information (no
rounding error). The problem is now transformed into the accurate computation of a
sum. There is abundant literature about floating-point summation (see Higham [2002,
chap. 4], Knuth [1998], Ogita et al. [2005], Rump et al. [2008a, 2008b], Rump [2009],
and Zhu and Hayes [2009, 2010] and references therein). For our purpose, we only
need an accurate summation algorithm whose precision is doubled because the entries
are nonnegative numbers. For such a precision, a straightforward adaptation of the
algorithm Sum2 [Ogita et al. 2005] is very efficient since it requires 8(n−1) floating-point
operations (flops), where n is the size of the vector. The resulting sum has a relative
error no more than on the order of n2ε2. Another choice is to use the double-double
arithmetic presented in Li et al. [2002]. The resulting sum is much more accurate,
having a relative error no more than 2nε2/(1 − 2nε2). The cost, however, is 20(n − 1)
flops. The difference between the two algorithms comes from the “renormalization
steps” that are present in the double-double library. As will be shown later, an error
bound in the order of nε2, as opposed to n2ε2, is crucial if faithful rounding is to be
guaranteed for a general vector length n. Therefore, we devise an algorithm that is
faster than, but of comparable accuracy to, the addition operator in the double-double
library. Instead of performing two renormalization steps in the addition of two double-
double numbers, we perform only one renormalization step in a careful manner. The
resulting error bound is 3nε2/(1 − 3nε3), at a cost of 11(n − 1) flops, which is almost
twice as fast as 20(n − 1) flops.

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:5

A naı̈ve computation of the l2-norm can cause spurious overflow and underflow.
The netlib library addresses the overflow issue, but not that of underflow. Spurious
underflow can cause significant performance degradation. Blue [1978] uses three bins
to eliminate spurious overflows and underflows. Accuracies of the netlib and Blue
algorithms are comparable, in which close to log10(n) digits can be corrupted in the
worst case. In summary, our algorithm is accurate to within 1 binary bit, free from
spurious over/underflows, and run fasters than the netlib version.

We state without proofs the following elementary facts about floating-point arith-
metic. These facts and notations will be used freely in the subsequent sections.

—Let a, b ∈ F
�. The absolute error bound

|◦(a op b) − (a op b)| ≤ ulp(a op b)/2

holds for all op ∈ {+,−,×, /} (excluding division by zero). The relative error bound

◦(a op b) = (a op b)(1 + δ), |δ| ≤ ε

holds for op ∈ {+,−}. For op ∈ {×, /}, this relative error bound holds if Fsmall ≤ |a op b|
(excluding division by zero).

—Rounding to nearest is monotonic: Given real numbers α, β ∈ R, α ≤ β implies
◦(α) ≤ ◦(β).

—For a, b ∈ F, if S = ◦(a + b) ∈ F, then a + b − S ∈ F. In particular, the value
s = a + b − S satisfies the relationship S + s = a+ b and ◦(S + s) = S. Furthermore,
S and s can be computed from a and b by a sequence of instructions involving ⊕ and
� (see e.g., Knuth [1998, Theorem B, page 236] and Dekker [1971]). We encapsulate
these facts by the two functions TwoSum(a, b) and FastTwoSum(a, b). They deliver S
and s, where S + s = a + b and ◦(S + s) = S. The former handles general a and
b and requires 6 floating-point operations; the latter requires only 3 floating-point
operations, but relies on the assumption that |a| ≥ |b|. Mapping a, b to S, s is usually
called an error-free transformation, as a + b = S + s exactly. Our algorithm and its
implementation use both functions.

—Similar to error-free transformations for sum, we have error-free transformations
for product. For a, b ∈ F, if |ab| ≥ Fsmall/ε, and P = ◦(a × b) ∈ F, then a × b − P ∈ F.
In particular, the value p = a × b − P satisfies the relationship P + p = a × b and
◦(P + p) = P. P and p can be computed from a and b with the IEEE754-2008 fused
multiply-add (FMA) instruction: P := a ⊗ b and p := ◦(a × b − P). Alternatively,
one can use a sequence of ⊕, �, and ⊗ instructions, as outlined in Dekker [1971].
We denote the exact product function that returns P and p by TwoProd(a, b). Our
implementation uses either the FMA-based sequence or the sequence given in Dekker
[1971], depending on whether the FMA instruction is supported on the available
hardware.

3. MAIN THEOREM

The goal is to compute ‖x‖2 = √
σ , σ = ∑n

j=1 x2
j faithfully. Our algorithm is built on

the core case, when σ is within the “normal” range of [Fsmall, Flarge]. We first compute
an accurate floating-point approximation, S, to σ . The IEEE square root (correctly
rounded) ◦(

√
S) is returned as the final result. This section shows that if S is accurate to

within a specific threshold, the final result is faithful: ◦(
√

S) ∈ ♦(‖x‖2) = clip(♦(‖x‖2)).

LEMMA 3.1. Let α, α′ be two real numbers in the interval [2e, 2e+1] for some integer e.
If |α′ − α| < ulp(2e)/2, then ◦(α′) ∈ ♦(α).

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

24:6 S. Graillat et al.

PROOF. Let a = ◦(α′). We first note that a and α are close to one another:

|a − α| ≤ |a − α′| + |α′ − α|
≤ ulp(2e)/2 + |α′ − α|, because a = ◦(α′)
< ulp(2e)/2 + ulp(2e)/2, by assumption,

|a − α| < ulp(2e). (1)

To prove a ∈ ♦(α), we analyze all of the three possibilities of a = α, a < α and a > α.
The case of a = α is trivial because a ∈ F

�; therefore, a ∈ {a} = ♦(a) = ♦(α).
Consider the case of a < α. This means that a < 2e+1. Hence, a ∈ [2e, 2e+1) if e ≥ emin,

and a ∈ [0, 2emin) if e < emin. Regardless, the next floating-point number in F
� that is

bigger than a is a + ulp(2e). We have

min
{
y ∈ F

�|y > a
} = a + ulp(2e)

> a + |a − α|, by (1)
= a + (α − a), because a < α

= α.

Therefore, while a < α, the next floating-point number above a is strictly bigger than
α. In other words, a = max{y ∈ F

#|y ≤ α}. This says that a ∈ ♦(α) by definition.
Consider now the final case: a > α. Since a > 2e, we either have a ∈ (2e, 2e+1] if

e ≥ emin, or a ∈ (0, 2emin] if e < emin. In either case, the next number in F
� that is smaller

than a is a − ulp(2e).

max{y ∈ F
�|y < a} = a − ulp(2e)

< a − |a − α|, by (1)
= a − (a − α), because a > α.

= α.

Therefore, while a > α, the next floating-point number below a is strictly less than α.
In other words, a = min{y ∈ F

�|y ≥ α}. This says once again that a ∈ ♦(α). The proof is
now complete.

LEMMA 3.2. Let σ ∈ [Fsmall, Flarge] be a real number in the interval [2e, 2e+1). In
particular, emin ≤ e ≤ emax. Let S, s ∈ F

� be such that ◦(S+s) = S. If |(S+s)−σ | < σε/2,
then S ∈ [2e, 2e+1] ∩ [0, Flarge] and |s| ≤ 2eε.

PROOF. We will first establish the fact that S ∈ [2e, 2e+1] ∩ [0, Flarge]. By assumption,

σ (1 − ε/2) < S + s < σ (1 + ε/2).

Since σ ∈ [2e, 2e+1), e ≥ emin, we have

2e − ulp(2e)/4 = 2e(1 − ε/2) < S + s < 2e+1(1 + ε/2) = 2e+1 + ulp(2e+1)/4.

Consequently, ◦(S + s) ∈ [2e, 2e+1]. Moreover, S + s < σ + σε/2 implies also that
S + s < Flarge + ulp(2emax)/2, which leads to ◦(S + s) ≤ Flarge. But S = ◦(S + s) by
assumption, thus we have established that S ∈ [2e, 2e+1] ∩ [0, Flarge].

Turning now to s, there are only two possibilities: S+s ∈ [2e, 2e+1] or S+s /∈ [2e, 2e+1].
If S + s ∈ [2e, 2e+1], then |s| = |◦(S + s) − (S + s)| ≤ ulp(2e)/2 = 2eε. Consider now
S + s /∈ [2e, 2e+1]. But since S = ◦(S + s) and we have established previously that
◦(S + s) ∈ [2e, 2e+1], we are left with only two cases:

(1) S = 2e and s < 0: In this case, the inequality 2e − ulp(2e)/4 < S + s implies that
s > −ulp(2e)/4 = −2eε/2. Thus |s| < 2eε/2.

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:7

(2) S = 2e+1 and s > 0: In this case, the inequality S + s < 2e+1 + ulp(2e+1)/4 implies
that s < ulp(2e+1)/4 = 2eε. Thus |s| < 2eε.

To review, |s| ≤ 2eε if S + s ∈ [2e, 2e+1] and |s| < 2eε if S + s /∈ [2e, 2e+1]. Thus |s| ≤ 2eε
always and the proof is complete.

THEOREM 3.3. Let σ ∈ [Fsmall, Flarge] be a real number and S, s ∈ F
� where ◦(S+s) = S.

If |(S + s) − σ | < εσ/8, then ◦(
√

S) ∈ ♦(
√

σ).

PROOF. We establish this theorem by showing that
√

σ and
√

S satisfy the conditions
for α and α′ in Lemma 3.1. The assumption |(S + s) − σ | < εσ/8 implies that S + s >
(1−ε/8)σ . ◦(S+s) = S and that S+s is obviously positive imply that S ≥ (S+s)(1−ε).
Thus

S > (1 − ε)(1 − ε/8)σ,

> (1 − 3ε/2)σ, because ε ≤ 2−24
√

S > (1 − 3ε/2)
√

σ , because
√

1 − 3ε/2 > 1 − 3ε/2,√
S + √

σ > 2(1 − 3ε/4)
√

σ . (2)

We derive an upper bound of |√S − √
σ | as follows.

|
√

S − √
σ | = |S − σ |√

S + √
σ

,

<
|S − σ |

2
√

σ (1 − 3ε/4)
, by (2)

<
|S − σ |

2
√

σ
(1 + ε), because (1 − 3ε/4)−1 < (1 + ε)

<
εσ/8 + |s|

2
√

σ
(1 + ε), by assumption,

|
√

S − √
σ | <

(
ε

16
√

σ + |s|
2
√

σ

)
(1 + ε). (3)

There is a unique interval of the form [22e, 22e+2) that contains σ . If σ is in the “left” half:
σ ∈ [22e, 22e+1), then 2e ≥ emin and Lemma 3.2 shows that S ∈ [22e, 22e+1] and |s| ≤ 22eε.
If σ is in the “right” half: σ ∈ [22e+1, 22e+2), then 2e+1 ≥ emin and Lemma 3.2 shows that
S ∈ [22e+1, 22e+2] and |s| ≤ 22e+1ε. Summarizing, both

√
σ and

√
S are in [2e, 2e+1] with

e ≥ emin. By virtue of Lemma 3.1, we can establish the fact that ◦(
√

S) ∈ ♦(
√

σ) provided
we can show |√S − √

s| < ulp(2e)/2. Since e ≥ emin, ulp(2e) = 2e+1ε, this is equivalent
to establishing that |√S − √

σ | < (2eε). We accomplish this by using Equation (3) and
the simple case analysis tabulated here:

Case of
ε
√

σ

2eε

|s|√
σ2e+1ε

|√S − √
σ |

2eε
<

(
ε
√

σ

2e+4ε
+ |s|√

σ2e+1ε

)
(1 + ε)

σ ∈ [22e, 22e+1) <
√

2 ≤ 22eε

22e+1ε
= 1

2
<

(√
2

16
+ 1

2

)
(1 + ε) < 1

σ ∈ [22e+1, 22e+2) < 2 ≤ 22e+1ε

22e+1
√

2ε
= 1√

2
<

(
1
8

+ 1√
2

)
(1 + ε) < 1

Clearly, |√S − √
σ | < 2eε always and ◦(

√
S) ∈ ♦(

√
σ), as claimed.

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

24:8 S. Graillat et al.

4. FAITHFUL 2-NORM: CORE CASE

Let x = [x1, x2, . . . , xn]T be the vector in question. The core algorithm considers the
case of normal range in the sense that σ = xT x is safely away from overflow and that
the least significant bit of each of the x2

j does not underflow. More formally, we consider
vectors x in safe range, defined as (1) σ ≤ Flarge/2, and (2) for all j, xj is either 0, or in
the range Fsmall/ε

2 ≤ x2
j ≤ Flarge.

We use a data type, double-FP, consisting of two floating-point numbers. We denote
them, for example, by A = [A, a]. A is the double-FP variable, and the actual pairs of
floating-point numbers are A and a. They have the characteristics ◦(A+ a) = A, which
means that a is a “tail” part to add extra precision to A. The mathematical sum of the
two components represents a value of at least twice the precision of the underlying
floating-point number. Here is the core algorithm for computing the sum of squares∑

j x2
j . We make the crucial distinction between an assignment operation “:=” in an

algorithm and the mathematical equality sign “=”.

function SumOfSquares(x) // Accurate accumulation
S := [0, 0]
for j = 1, 2, . . . , n do:

P := TwoProd(xj , xj)
// P = [P, p], P + p = x2

j exactly
S := SumNonNeg(S, P)

return S
end SumOfSquares

function SumNonNeg(A, B) // [A, a] + [B, b]
// error bound of this operation 3ε2 (Theorem 4.1)
// A = [A, a], B = [B, b] nonnegative: A+ a, B+ b ≥ 0

H := TwoSum(A, B)
// H = [H, h], H + h = A+ B exactly
c := a ⊕ b // c = a + b + δc
d := h ⊕ c // d = h + c + δd.
S := FastTwoSum(H, d)
// S = [S, s], S + s = H + d exactly
//see Section 2 for TwoSum and FastTwoSum.
return S

end SumNonNeg

Theorem 3.3 guarantees that if [S, s] returned by SumOfSquares satisfies |(S+s)−σ | <

εσ/8, then ◦(
√

S) is a faithful rounding of
√

σ = ‖x‖2. Since SumOfSquares is summing
n double-FP type, standard error analysis (see, e.g., Chapter 3 of Higham [2002]) shows
that the relative error is bounded by �n−1(δ), where ��(δ) = �δ/(1 − �δ) and δ is the
relative error bound on the underlying addition operation, which is the SumNonNeg
function. Theorem 4.1 shows that this δ is 3ε2. From that, we can deduce the length
limit of x within which |(S + s) − σ | < εσ/8.

THEOREM 4.1. Let S = [S, s] be the result from applying SumNonNeg on nonnegatives
A = [A, a] and B = [B, b]. Let α = A+a ≥ 0, β = B+b ≥ 0 denote the exact input values,
and σ = α+β denote the exact sum. If Fsmall/ε

2 ≤ σ ≤ Flarge/2, then |(S+s)−σ | ≤ 3ε2σ .

PROOF. The theorem clearly holds if α or β is zero. Moreover, it is clear that SumNonNeg
is insensitive to the order of its two input arguments. It suffices, therefore, to consider
α ≥ β > 0. There are only two rounding errors in the entire function: δc = c − (a + b) =
◦(a + b) − (a + b) and δd = d − (h+ c) = ◦(h+ c) − (h+ c). More precisely, S + s = H + d
and

H + d = H + h + a + b + δc + δd = σ + δc + δd.

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:9

Thus |(S + s) − σ | ≤ |δc| + |δd|. The rest of the proof establishes the fact that |δc| + |δd| ≤
3ε2σ .

We use this fact heavily: For any real number γ ∈ R, |◦(γ) − γ | ≤ ulp(γ)/2. Let

α = 2eα (1 + fα), β = 2eβ (1 + fβ), and σ = 2eσ (1 + fσ),

where 0 ≤ fα, fβ, fσ < 1.

σ ≥ α ≥ β ⇒ ulp(σ) ≥ ulp(α) ≥ ulp(β).

Because |a| ≤ ulp(α)/2, |a| ≤ ulp(σ)/2. Similarly, |b| ≤ ulp(σ)/2. Therefore, A + B =
σ − (a + b) ≤ σ + ulp(σ), which implies that ulp(A+ B) ≤ 2ulp(σ).

We note that |δc| = |◦(a + b) − (a + b)| ≤ ulp(a + b)/2 and |a + b| ≤ ulp(σ). But
|a + b| = ulp(σ) only when |a| = |b| = ulp(σ)/2, which implies a + b is representable
exactly in F and δc = 0. When |a + b| < ulp(σ), we have ulp(a + b) ≤ ulp(ulp(σ/2)).
Hence, using basic properties of the ulp function stated in Section 2,

|δc| ≤ 1
2

ulp(ulp(σ/2)).

Because σ ≥ Fsmall/ε
2, ulp(ulp(σ/2)) = ulp(σ)ε ≤ 2σε2. Hence,

|δc| ≤ σε2. (4)

We now show that |δd| ≤ 2σε2. Indeed
|δd| = | ◦ (h + c) − (h + c)|

≤ 1
2

ulp(h + c)

≤ 1
2

ulp(ulp(A+ B)/2 + |c|),

|δd| ≤ 1
2

ulp(ulp(σ) + |c|). (5)

To complete the estimate on |δd|, we analyze |c|. There are only two possibilities: either
eα ≥ eβ + 1 or eα = eβ . We show that each situation leads to |δd| ≤ 2σε2.

Consider the case of eα ≥ eβ +1. We have |a| ≤ ulp(σ)/2 and |b| ≤ ulp(σ)/4. Therefore,

|c| = | ◦ (a + b)| ≤ |a + b|(1 + ε) ≤ 3
4

(1 + ε)ulp(σ).

Equation (5) implies that

|δd| ≤ 1
2

ulp
(

ulp(σ) + 3
4

(1 + ε)ulp(σ)
)

= 1
2

ulp(ulp(σ)),

|δd| ≤ 2σε2. (6)

Consider the case of eα = eβ . In this situation, we must have eσ = eα + 1 and ulp(α) =
ulp(β) = ulp(σ)/2. As a result, |a| + |b| ≤ ulp(σ)/2 and |c| ≤ (1 + ε)ulp(σ)/2, thus

|δd| ≤ 1
2

ulp
(

ulp(σ) + 1
2

(1 + ε)ulp(σ)
)

= 1
2

ulp(ulp(σ)),

|δd| ≤ 2σε2. (7)

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

24:10 S. Graillat et al.

Equations (4), (6), and (7) together show that |δc| + |δd| ≤ 3σε2, and the theorem is
proved.

THEOREM 4.2. Let n be the length of a vector x in safe range and σ denote
∑

j x2
j . Let

SumOfSquares(x) return the result [S, s]. Then

|(S + s) − σ | ≤ �n−1(3ε2)σ,

where ��(δ) = �δ/(1 − �δ). In particular, if the length n satisfies n < ((24 + ε)ε)−1, then

|(S + s) − σ | < εσ/8.

PROOF. From Theorem 4.1 and standard error bound on adding n nonnegative
floating-point types [Higham 2002] with an addition operation of relative error bounded
by 3ε2,

|(S + s) − σ | ≤ �n−1(3ε2)σ.

Because ��(δ) is an increasing function in � in the range 0 ≤ � < 1/δ, for n < ((24 +
3ε)ε)−1,

�n−1(3ε2) < �n(3ε2) < �L(3ε2) = ε

8
,

where L = ((24 + 3ε)ε)−1.

That maximum vector length bound L = ((24 + 3ε)ε)−1 corresponds to L = 699050
for IEEE754 binary32 and L ≤ 3.76 · 1014 for IEEE754 binary64.

We parallelize SumOfSquares in an obvious manner: partition the input vector x to τ
subvectors of roughly equal length. Perform the sum of squares on each subvector in
parallel. This parallelism can be realized either at the thread level or data level, the
latter using SIMD vector instructions such as SSE or AVX. The partial sums of squares
are then accumulated in a serial manner.

function SumOfSquaresP(x) // Parallel SumOfSquares
Partition x into τ portions, x(t), t = 1, 2, . . . , τ

// length of each x(t) is no more than m = �n/τ�.
S(t) := SumOfSquares(x(t)), t = 1, 2, . . . , τ .
// In parallel, each S(t) = [S(t), s(t)] is a double-FP.
S := [0, 0]; S := SumNonNeg(S, S(t)), t = 1, 2, . . . , τ .
// In serial, summing the τ partial sums of squares
// S = [S, s] at this point; S + s ≈ ∑n

j x2
j .

return S
end SumOfSquaresP

THEOREM 4.3. Let n be the length of x and S = [S, s] be the result of SumOfSquaresP(x)
with τ portions and m = �n/τ�. Then

|(S + s) − σ | ≤ �m+τ (3ε2)σ.

In particular,

|(S + s) − σ | ≤ �n−1(3ε2)σ

whenever m+ τ ≤ n − 1.

PROOF. We document the two stages of errors with the following notations. Let
σ (t) = (x(t))T x(t), t = 1, 2, . . . , τ , and σ = ∑τ

t=1 σ (t) denote the exact partial and exact

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:11

complete inner products, respectively. Let

σ̃ (t) = S(t) + s(t), approximate partials 1 ≤ t ≤ τ ,
σ̃ = ∑τ

t=1 σ̃ (t), exact sum of approximate partials,˜̃σ = S + s, approximate sum of approximate partials.

For the computed partials, for which we are summing no more than m = �n/τ� double-
FP types, we have

|̃σ (t) − σ (t)| ≤ �m−1(3ε2) σ (t), t = 1, 2, . . . , τ,

and ∣∣∣∣∣
τ∑

t=1

(̃σ (t) − σ (t))

∣∣∣∣∣ ≤ �m−1(3ε2)
τ∑

j=1

σ (t).

This implies that

|̃σ − σ | ≤ �m−1(3ε2) σ, (8)

σ̃ ≤ (1 + �m−1(3ε2)) σ. (9)

Similarly,

|˜̃σ − σ̃ | ≤ �τ−1(3ε2) σ̃ . (10)

Combining Equations (8) through (10),

|˜̃σ − σ |
σ

≤ �τ−1(3ε2) (̃σ/σ) + �m(3ε2)

≤ �τ−1(3ε2) (1 + �m−1(3ε2)) + �m(3ε2)

≤ �τ (3ε2) + �m(3ε2) (11)

≤ �m+τ (3ε2). (12)

Equation (11) follows from its preceding line as long as 3ε2 ≤ (n+ m+ 2)−1, and Equa-
tion (12) follows from Equation (11) because ��(3ε2) + ��′(3ε2) ≤ ��+�′(3ε2). Finally,
whenever m+ τ ≤ n − 1, �m+τ (3ε2) ≤ �n−1(3ε2). The proof is now complete.

We remark that the number of threads τ is typically much smaller than the vector
length n. In a common scenario, τ equals the number of cores that is in the order of
10 or so. Moreover, threading is beneficial only when there is enough work per thread,
implying that m = n/τ is in the order of 100 or more. Thus, m+ τ ≈ n/τ , implying that
m+ τ ≤ n − 1. This says that a parallel sum of squares is, in general, more accurate
than the serial version. In particular, as long as n < ((24 + ε)ε)−1 and [S, s] is obtained
with SumOfSquares or SumOfSquaresP, an IEEE conforming square root evaluation
sqrt(S) produces a faithfully rounded ‖x‖2 for x whose elements fall in the core range
discussed here.

5. FAITHFUL 2-NORM: GENERAL CASE

That the simple accumulation of σ = ∑n
j=1 x2

j is susceptible to spurious exceptions
can be illustrated by the simple example of n = 8, xj = ◦(2

√
Flarge) for j ≤ 4 and

xj = ◦(
√

Fsmall/2), j > 4. While ‖x‖2 is approximately 4
√

Flarge, overflows in computing
x2

j for j ≤ 4 leads to a computed σ of +∞, rendering the final computed l2-norm com-
pletely wrong. This is why general-purpose software such as LAPACK’s public release

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

24:12 S. Graillat et al.

essentially computes x̂
√∑

j(xj/x̂)2, where x̂ = max j |xj |. While this strategy resolves
the spurious overflow problem satisfactorily, spurious underflows can still be triggered.
If underflow is masked, spurious underflow is harmless to the final numerical results.
Nevertheless, these spurious underflows may significantly degrade performance on
computing platforms that handle underflow via a trapping mechanism.

We present here an algorithm that returns a value in clip(♦(‖x‖2)) and reports
overflows and underflows faithfully, as defined in Section 2. Let σ = ∑

j x2
j denote the

sum of squares. Our algorithm first computes Z, a faithful rounding of a scaled l2-norm
‖x̂‖2 = γ −m/2‖x‖2, that is, Z ∈ ♦(‖x̂‖2). The factor γ −m/2 is chosen so that γ m is an even
power of 2, γ −m/2 ∈ F, and ‖x̂‖2 ∈ [Fsmall, Flarge]. We shall describe a way to choose γ

and to compute m later. The final result is returned, naturally, as γ m/2 ⊗ Z. Theorem 5.1
establishes rigorously that not only does the numerical value γ m/2 ⊗ Z ∈ clip(♦(‖x‖2)),
but the multiplication also reports overflow and underflow faithfully. The remainder of
this section focuses on the computation of Z ∈ ♦(‖x̂‖2).

THEOREM 5.1. Let ζ ∈ [Fsmall, Flarge] ∪ {0} be a real number and Z be a floating-point
number, where Z ∈ ♦(ζ). Let t be an integer where 2t ∈ F. Then the IEEE multiplication
2t ⊗ Z satisfies 2t ⊗ Z ∈ clip(♦(2tζ)) and 2t ⊗ Z reports overflow and underflow faithfully
as an implementation of 2tζ .

PROOF. 2t ⊗ Z ∈ clip(♦(2tζ)) follows easily if ◦(2t Z) ∈ ♦(2tζ), which is what we will
prove. The case of ζ = 0 is trivial, as ♦(ζ) = {0}, implying that Z = 0 as well. Obviously,
◦(2t Z) ∈ ♦(2tζ).

It, therefore, suffices to consider ζ ∈ [Fsmall, Flarge]. There is a unique integer e,
e ≥ emin, such that ζ ∈ [2e, 2e+1). Z ∈ ♦(ζ) implies that Z ∈ [2e, 2e+1] and |ζ−Z| < ulp(2e).
There are only two possibilities: t + e ≥ emin and t + e < emin. If t + e ≥ emin, we have

◦(2t Z) = 2t Z ∈ {2tα | α ∈ ♦(ζ)} = ♦(2tζ).

If t + e < emin, both 2tζ and 2t Z lie inside [2t+e, 2t+e+1] and

|2tζ − 2t Z| < 2tulp(2e) ≤ ulp(2t+e)/2.

By virtue of Lemma 3.1, ◦(2t Z) ∈ ♦(2tζ).
Now that W = ◦(2t Z) ∈ ♦(2tζ), it is clear that given any Y ∈ F

�, 2tζ ≤ Y implies that
W ≤ Y , and 2tζ ≥ Y implies that W ≥ Y . Therefore, if 2tζ ∈ [Fsmall, Flarge], 2t ⊗ Z will
not report overflow or underflow. If 2tζ ≥ 2emax+1, 2t⊗Z will definitely report an overflow.
Finally, observe that if 2tζ ∈ F for some t < 0, then ζ ∈ F

� and thus Z ∈ ♦(ζ) = {ζ },
implying that Z = ζ and 2t Z = 2tζ . Consequently, whenever 2tζ ≤ Fsmall − 2emin+1ε,
2t ⊗ Z will report underflow faithfully, as defined in Section 2. This completes the
proof.

We turn now to the computation of a scaled l2-norm. A known strategy [Blue 1978]
partitions the input data into three bins: one for small inputs, one for large, and one for
“medium” inputs. The data in each bin are scaled by a common, statically chosen scale
factor so that sums of squares of elements in each bin incur no spurious underflow
or overflow exceptions. The final result is constructed by appropriate combination of
the partial sums of squares from the bins. We follow the same approach, but with
two enhancements. First, while we will explain our approach using three bins, we will
point out later that our implementation keeps only two bins of data at any given time.
This is important as the bins are in practice kept in the scarce SIMD vector registers3.

3It is not possible to go down to one bin only as long as the bin boundaries and scaling factors are chosen
statically to avoid division operations.

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:13

Second, our combination of the binned partial sums of squares are done in a way that
guarantees a faithfully rounded scaled l2-norm.

The basic idea is to divide the entire input range of |xj | into three “equal” subranges,
where sums of squares of data in the middle (interior) subrange does not generate
exceptions. Data in the two exterior ranges are scaled into the interior subrange. Now,
the specifics. Define the even integer E by

E = min{e | 3e ≥ emax − emin − log2(ε), e is even}.
From E, we define a scale factor γ = 2−E and use the following notations.

Ehi = emax + 1 − E, βhi = 2Ehi ,

Elo = emax + 1 − 2E, βlo = 2Elo .

In particular, γβhi = βlo. We tabulate the specific values for binary32 and binary64
here.

E Ehi Elo βhiβlo

binary32 94 34 −60 2−26 = ε/4
binary64 700 324 −376 2−52 = 2ε

Given the input vector x = [x1, x2, . . . , xn]T , the three bins are

A = { γ xj | |xj | ≥ βhi },
B = { xj | βlo ≤ |xj | < βhi },
C = { xj/γ | |xj | < βlo }.

By design, βlo ≤ |̂xj | < βhi for x̂ j ∈ A∪B∪C. Denote the partial, scaled, sums of squares
as

σ̂A =
∑
x̂ j∈A

x̂2
j , σ̂B =

∑
x̂ j∈B

x̂2
j , and σ̂C =

∑
x̂ j∈C

x̂2
j .

Clearly, the “bin sums” are in the range

σ̂A, σ̂B, σ̂C ∈ {0} ∪ [
β2

lo, nβ2
hi

) ⊆ {0} ∪ [
β2

lo, β
2
hi/ε

)
, (13)

by assuming n ≤ 1/ε. Furthermore,

σ =
∑

j

x2
j = γ −2 σ̂A + σ̂B + γ 2 σ̂C . (14)

A straightforward implementation can collect all three bins, and invoke the
SumOfSquares function (or the parallel version) on each of the bins, followed by some
appropriate combination method to arrive at the final result. Our implementation,
in fact, keeps and processes only two bins. The observation is that A and C are never
needed simultaneously. If A is nonempty, then Equation (13) and the fact that γβhi = βlo
show that γ 2σ̂C/(γ −2σ̂A) ≤ γ 2/ε � ε2. Neglecting γ 2σ̂C altogether incurs a relative error
(much) less than ε2. A similar estimate shows that keeping σ̂B is nevertheless necessary
in order not to lose too much accuracy.

Briefly speaking, our implementation starts the binning process by keeping the inte-
rior (middle) bin and one exterior bin. When the first element belonging to A appears,
the existing exterior bin is replaced with that element, and elements from C are never
collected from that point onwards. Let us mention that the logic required to decide
whether the first element belonging to A has already appeared or not can be imple-
mented using nothing but masks, not requiring branches. Denote the two actually

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

24:14 S. Graillat et al.

maintained bins by U and V, then

σ2 = γ k (̂σU + γ 2σ̂V),

where k = −2 if U corresponds to A, and k = 0 if U corresponds to B. In either case, the
“two-bin” sum of squares σ2 satisfies

|σ2 − σ | ≤ ε2σ, and σ2 ≤ (1 + ε2)σ. (15)

To compute σ2, the SumOfSquares function is applied to each of the two resulting bins,
yielding two double-FP variables U = [U, u] and V = [V, v]. Both U + u and V + v
approximate their targets with high relative accuracies:

|(U + u) − σ̂U |
σ̂U

,
|(V + v) − σ̂V |

σ̂V
≤ �n−1(3ε2),

where ��(δ) = �δ/(1 − �δ). Using n instead of n − 1 for simplicity, we have∣∣γ k[(U + u) + γ 2(V + v)] − σ2
∣∣ ≤ �n(3ε2)σ2, (16)

and
γ k[(U + u) + γ 2(V + v)] ≤ (

1 + �n(3ε2)
)
σ2. (17)

We handle γ k[(U +u)+γ 2(V +v)] as follows. For nonzero U and V , β2
lo ≤ U +u, V +v <

β2
hi/ε (as we assume that n ≤ 1/ε). If U ≥ β2

lo/ε
3,

γ 2(V + v) < γ 2β2
hi/ε = β2

lo/ε ≤ ε2U ≤ ε2(1 + ε)(U + u).

Similarly, if V ≤ β2
loε

2/γ 2 = β2
hiε

2,

γ 2(V + v) ≤ γ 2(1 + ε)V < β2
loε

2(1 + ε) ≤ ε2(1 + ε)(U + u).

Thus, if U ≥ β2
lo/ε

3 or V ≤ β2
hiε

2, the error by dropping the V term is in the order of ε2:

γ 2(V + v)
(U + u) + γ 2(V + v)

≤ ε2(1 + ε). (18)

If U < β2
lo/ε

3 and V > β2
hiε

2, then neither (U + u)/γ nor γ (V + v) raises exceptions.
This is because U < β2

lo/ε
3 ⇒ U/γ < βhiβlo/ε

2 ≈ 1/ε. Similarly, V > β2
hiε

2 ⇒ γ V >

βhiβloε
2 ≈ ε3. These discussions are expressed in the function SumOfSquaresBins.

function SumOfSquaresBins(x) // general inputs
Obtain bins U , V, and integer k as discussed
// γ k(̂σU + γ 2σ̂V) approximates

∑
j x2

j accurately
// k = −2 if U is A, k = 0 if U is B
// Note that k = −2 if and only if bin A is nonempty
[U, u] := SumOfSquaresP(x(U));
[V, v] := SumOfSquaresP(x(V));
if U = 0 // A and B are both empty

m := 2, [S, s] := [V, v],
return m and S = [S, s].

if U ≥ β2
lo/ε

3 or V ≤ β2
hiε

2

m := k, [S, s] := [U, u]
return m and S = [S, s]

if |v| ≤ β2
hiε

2, v := 0.
[U, u] := [γ −1U , γ −1u]; [V, v] := [γ V , γ v]; m := k + 1;
[S, s] := SumNonNeg([U, u], [V, v])
return m and S = [S, s]

end SumOfSquaresBins

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:15

THEOREM 5.2. Let SumOfSquaresBins(x) return mand S = [S, s]. Denote by σ̂ the scaled
sums of squares σ̂ = γ −mσ = γ −m ∑

j x2
j . If the length n of x satisfies n+3 < ((24+ε)ε)−1,

then ◦(
√

S) ∈ ♦(
√

σ̂).

PROOF. We group the total errors incurred in computing σ as γ mσ̂ into three stages.
In Stage 1, the value σ , which is exactly represented in terms of γ and the three bin
sums (Equation (14)), is approximated by σ2 = γ k(̂σU + γ 2σ̂V). In Stage 2, the two bin
sums σ̂U and σ̂V are approximated by the double-FP [U, u] and [V, v]. Finally, in Stage 3,
γ k((U + u) + γ 2(V + v)) is approximated as γ m(S + s) by possibly dropping v or both V
and v and the use of SumNonNeg.

Consider the Stage 3 error. There are three possible points of exit in the procedure
SumOfSquaresBins. The first point of exit corresponds to a zero Stage 3 error, as there
is actually only at one nonempty bin. The second point of exit corresponds to Stage 3
error bounded by ε2(1 + ε), as given by Equation (18). If the last point of exit is taken,
Stage 3 error consists of one part that is due to a single application of SumNonNeg, which
is bounded by 3ε2 (Theorem 4.1), and one due to possibly dropping the v term, which is
bounded by ε2(1+ε) (Equation (18)). Thus we bound the error in Stage 3 conservatively
by 5ε2: ∣∣γ m(S + s) − γ k[(U + u) + γ 2(V + v)]

∣∣
γ k[(U + u) + γ 2(V + v)]

≤ 5ε2, (19)

and
γ m(S + s) ≤ (1 + 5ε2) γ k[(U + u) + γ 2(V + v)]. (20)

Stage 1 and Stage 2 errors have already been discussed in Equations (15) through (17).
Putting these together,

|γ m(S + s) − σ |/σ
≤ ∣∣ γ m(S + s) − γ k[(U + u) + γ 2(V + v)]

∣∣/σ
+ ∣∣ γ k[(U + u) + γ 2(V + v)] − σ2

∣∣/σ + |σ2 − σ |/σ,

≤ 5ε2(1 + �n(3ε2))(1 + ε2) + �n(3ε2)(1 + ε2) + ε2,

≤ �n(3ε2) + 7ε2.

Consequently,

|(S + s) − σ̂ | ≤ (�n(3ε2) + 7ε2) σ̂ ,

≤ (�n(3ε2) + 9ε2) σ̂ ,

≤ �n+3(3ε2)̂σ . (21)

From Theorems 4.2 and 4.3, n + 3 < ((24 + 3ε)ε)−1 implies that
|(S + s) − σ̂ | < εσ̂ /8,

a condition that guarantees, by Theorem 3.3, that ◦(
√

S) ∈ ♦(
√

σ̂).

AccuNrm2 is the straightforward synthesis of the previous discussions. Theorem 5.3
that follows is a formal statement that summarizes the technical results of this article.
function AccuNrm2(x) // general faithful l2-norm

(m, S) := SumOfSquaresBins(x)
// m is an integer in the range [−2, 2] and γ m(S + s) ≈ ∑

j x2
j

// By design, γ m is an even power of 2.
Z := sqrt(S)
return γ m/2 ⊗ Z
// Value in clip(♦(‖x‖2)) and reports overflow/underflow faithfully (Theorem 5.3)

end AccuNrm2

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

24:16 S. Graillat et al.

THEOREM 5.3. Let x be a vector of length n. If n < L′ with L′ = ((24 + 3ε)ε)−1 − 3, then
AccuNrm2(x) ∈ clip(♦(‖x‖2)) and reports overflow and underflow faithfully.

PROOF. This is a direct consequence of Theorems 5.1 and 5.2.

The bound L′ on the vector length n induced by 5.3 translates as follows for IEEE754
binary32 and binary64:

Vector length bound n < L′

binary32 L′ = 699047
binary64 L′ = 3.75299968947538 · 1014

6. IMPLEMENTATION AND TESTING

The complete set of codes, together with testing and performance measurement auxil-
iary sources, is available at

http://www.christoph-lauter.org/faithfulnorm.tgz

under an open source license.
We implemented and tested our faithfully rounded, division-free l2-norm with faithful

reporting of underflow and overflow. The implementation referred to as FaithfulNorm
closely follows the algorithmic description given in the previous sections.

We used IEEE754 binary64 as working precision and restricted ourselves to an SIMD
environment, targeting in particular Intel SSE/AVX units, with or without support for
the IEEE754 FMA instruction. Recent versions of SSE and all versions of AVX support
IEEE754 binary64 precision. The rationale for the choice of an SIMD environment is
twofold: to use an environment most similar to the existing codes to which we compare
our algorithm, and to maximize our performance in a typical processor without the use
of threads.

To achieve high performance on modern pipelined floating-point units, it is important
to avoid branching (when possible) as well as avoid the use of expensive operations such
as floating-point division. By design, our l2-norm algorithm is division free. We are also
able to make our inner-loop branching free based on three observations. First, the
SSE/AVX units offer comparison instructions that return their results as masks of all
ones or all zeros. Second, logical bit and a floating-point variable with all ones leave
the variable unchanged while bit and with all zeros turn it into a floating-point value
of zero. As a matter of course, multiplying floating-point zeros and accumulating them
is innocuous. Third, discarding the C bin when the first A is found and maintaining in
these registers the U bin from that point onward (see Section 5) just means maintaining
a binary flag, which can also be implemented as a bit mask.

We shall repeat that our implementation has no memory overhead or memory access
overhead: each input vector element xj is read only once and the intermediate values
(accumulators and so on) are kept in registers.

We compared the implementation of our faithfully rounded l2-norm with implemen-
tations for other approaches with respect to both accuracy and performance. To do so,
we implemented a naı̈ve l2-norm, called NaiveNorm, that plainly uses working preci-
sion for squaring the xi and accumulating these squares, without any underflow and
overflow avoidance. We further implemented the algorithm found in netlib [Anderson
et al. 1999]; we call this implementation NetlibNorm. Finally, we implemented another
faithfully rounded l2-norm using the arbitrary precision library MPFR [MPFR 2015].
This implementation is simply based on an exact accumulation of the squares x2

i in an

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

http://www.christoph-lauter.org/faithfulnorm.tgz

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:17

Table I. Maximum Error in ulps Observed for Various Domains and Vector Lengths n, Plain SSE Implementation

Vectors with Vectors for which Vectors with Vectors with chosen
normal results results underflow entries around 1.0 “half-ulp” entries

n = 103 n = 107 n = 103 n = 107 n = 103 n = 107 n = 103 n = 107

NaiveNorm ∞ ∞ 8.84 · 1012 5.46 · 1010 7.73 861 250 2.50 · 106

NetlibNorm 2.01 524 0.496 0.698 7.58 609 250 2.50 · 106

MPFRNorm 0.494 0.481 0.490 0.498 0.468 0.497 0.0749 0.484
FaithfulNorm 0.620 0.628 0.497 0.499 0.605 0.701 0.0749 0.484

accumulator that provides enough precision: using an MPFR variable with precision
p = 2 (emax − emin − log2 ε) + �log2 n� is just enough. We refer to it as MPFRNorm.

We performed testing on a 4-core Intel Core i7 at 2.67GHz with 4GB of RAM and on
an 8-core Intel Xeon E3-1275 v3 at 3.50GHz with 32GB of RAM. All implementations
were written in C—using built-ins for access to SIMD instructions—and compiled
using gcc version 4.8 and options -std=c99 -O3 -march=native. Timings are given
cycles per vector element, obtained using the Read-Time-Step-Counter instruction with
serialization, subtracting off the measured overhead for a call to an empty function and
dividing by the number of elements.

We used pseudo-random floating-point input vectors in our tests. These pseudo-
random values were constructed as follows: we separately generated a uniformly dis-
tributed exponent value in range and a uniformly distributed significand for that chosen
exponent value. We then constructed a floating-point value out of this exponent and
significand value. When generating values for a subdomain [a; b] ⊆ F, we performed
that random-generation process for an exponent range completely covering the possi-
ble exponents of floating-point values in [a; b], discarding all generated floating-point
values that were outside of [a; b].

We did accuracy testing with test vectors of various lengths n and input types. The
testing results are summarized in Table I.

First, we considered input vectors chosen such that the final l2-norm result is a
normal floating-point number. Second, we tested the algorithms on input vectors for
which the final result gradually underflows. Third, we performed testing on vectors
with inputs around 1.0, that is, where underflow or overflow avoidance is not necessary.
Finally, we constructed input vectors with x1 = 1 and subsequent xjs are chosen to be
much smaller than 1, but with the contrived property that ◦(1+ x2

j) produces a positive
absolute error very close to the “half-ulp” bound of ε. This test case is admittedly
artificial, but nonetheless demonstrates a near worst-case error scenario for NaiveNorm
and NetlibNorm.

Testing shows that both the NaiveNorm and NetlibNorm implementations fail to pro-
vide faithfully rounded results. It demonstrates also that both our FaithfulNorm as
well as the MPFRNorm algorithm do yield faithfully rounded results.

In cases when the final l2-norm does not overflow, our algorithm FaithfulNorm re-
turns a result with an error well below 1ulp. As expected, the maximum error does not
vary with vector length, whereas it does for the netlib l2-norm.

Accuracy testing also shows that, with random inputs, netlib l2-norm can result in
hundreds of ulps of error when the vector lengths n get to be 10 million or more. In
deliberately constructed inputs, errors as large as about 0.25 nulp can be observed.

Turning now to performance testing, Tables II, III, IV, and V summarize our ob-
servations. We used vectors of floating-point numbers in various domains of interest.
We tested for vectors for which the final l2-norm results gradually underflow, overflow,
or stay in the range of normal floating-point numbers. Measurements were done for
varying vector lengths. Starting with some minimal vector length (a couple of dozen

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

24:18 S. Graillat et al.

Table II. Computation Time in Cycles Per Vector Element, Plain SSE Version on Intel Core i7

Vectors
Vectors with Vectors for Vectors with Vectors for provoking spurious

normal which results entries around which results underflow
results underflow 1.0 overflow in NetlibNorm

NaiveNorm 47 137 3.48 46.8 128
NetlibNorm 156 472 19.1 156 274
MPFRNorm 1080 2670 818 1090 1660
FaithfulNorm 34.2 289 25.3 34.2 62.2

Table III. Computation Time in Cycles Per Vector Element, Plain SSE Version on Intel Xeon E3-1275

Vectors
Vectors with Vectors for Vectors with Vectors for provoking spurious

normal which results entries around which results underflow
results underflow 1.0 overflow in NetlibNorm

NaiveNorm 4.95 4.75 4.72 4.70 4.52
NetlibNorm 21.9 158 12.8 21.1 21.8
MPFRNorm 810 1160 536 803 717
FaithfulNorm 21.5 87.3 21.8 21.7 20.3

Table IV. Computation Time in Cycles Per Vector Element, AVX Version w/o FMA on Intel Xeon E3-1275

Vectors
Vectors with Vectors for Vectors with Vectors for provoking spurious

normal which results entries around which results underflow
results underflow 1.0 overflow in NetlibNorm

NaiveNorm 4.85 4.61 4.68 4.86 4.52
NetlibNorm 21.1 157 13.3 21.6 21.8
MPFRNorm 795 1250 552 765 720
FaithfulNorm 12 50.7 12.5 12.6 14.8

elements), vector length had no influence on computation time per element; therefore,
we report only the numbers obtained for vectors of length 106.

These performance results speak in favor of our FaithfulNorm implementation. For
cases when the final result is a normal floating-point number, our implementation is
up to 3 times faster than the netlib implementation. As already explained, this is due
to several factors: avoidance of spurious underflow, no use of expensive divisions, and
an algorithm that is branch-free in the inner loop. In particular, the relative cost of the
divisions and branches in the netlib implementation can be seen in the performance
data: on Intel Core i7, which does not yet implement the recent AVX extensions, our
algorithm is up to 4.5 times faster than netlib, whereas on Intel Xeon E3-1275, the
same SSE codes run equally fast. However, on Intel Xeon E3-1275, AVX and FMA
are available, allowing our l2-norm to be up to 3 times faster than netlib. It also is
worth mentioning that spurious underflow in netlib hurts netlib performance on
some processors—such as the Intel Core i7—does not on others, such as the Intel Xeon
E3-1285.

We shall mention, however, that our algorithm does have lower performance than the
netlib in two cases: first, for inputs when the vector length is (very) short, typically less
than a dozen elements. In this case, our algorithm has a much higher static overhead
due to the elaborate computations needed in the reduction of the bins and square root.
In future work we shall address this problem with a call-out to a specialized l2-norm
for very small vectors. Second, the netlib norm can be faster on some processors that

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

Efficient Calculations of Faithfully Rounded l2-Norms of n-Vectors 24:19

Table V. Computation Time in Cycles Per Vector Element, AVX Version Using FMA on Intel Xeon E3-1275

Vectors
Vectors with Vectors for Vectors with Vectors for provoking spurious

normal which results entries around which results underflow
results underflow 1.0 overflow in NetlibNorm

NaiveNorm 4.52 4.52 4.52 4.52 4.52
NetlibNorm 20.5 151 12.6 20.5 22
MPFRNorm 722 1110 481 723 770
FaithfulNorm 6.94 42.3 6.94 6.94 10.4

have a faster floating-point division instruction (with respect to multiplication) and
that do not suffer a performance impact due to branching or on subnormal handling.
This effect can already be measured on recent Intel Xeons. But we point out that these
processors come equipped with the FMA instructions, which FaithfulNorm can exploit.
Table V shows that FaithfulNorm regains the speed advantage when it uses the FMA
instructions on these processors appropriately.

7. CONCLUSIONS

In this article, we presented an efficient algorithm to compute the faithful rounding of
the l2-norm of a floating-point vector. While our algorithm is very accurate, it is also
faster than previous algorithms, such as the one of netlib that gives no information
about the accuracy of the result. Moreover, our algorithm avoids spurious overflow and
underflow. It is also suitable for parallel implementations. We have hitherto focused
our implementation on vector parallelism using SIMD instructions. Implementation
and testing of our algorithm in a threaded environment as well as formulating the
algorithm in terms of auto-vectorizable, auto-parallelizable code, is left to future work.

Disclaimers

Software and workloads used in performance tests may have been optimized for per-
formance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, op-
erations, and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more information, go to http://www.intel.com/
performance.

Intel’s compilers may or may not optimize to the same degree for non-Intel micropro-
cessors for optimizations that are not unique to Intel microprocessors. These optimiza-
tions include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does
not guarantee the availability, functionality, or effectiveness of any optimization on mi-
croprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer
to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice. Notice revision #20110804.

REFERENCES

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, A.
Greenbaum, A. McKenney, and D. Sorensen. 1999. LAPACK Users’ Guide (3rd ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA.

J. L. Blue. 1978. A portable Fortran program to find the Euclidean norm of a vector. ACM Transactions on
Mathematical Software 4, 1, 15–23.

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

http://www.intel.com/performance
http://www.intel.com/performance

24:20 S. Graillat et al.

T. J. Dekker. 1971. A floating-point technique for extending the available precision. Numererische Mathematik
18, 224–242.

N. J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and
Applied Mathematics, Philadelphia, PA.

D. E. Knuth. 1998. The Art of Computer Programming, Volume 2, Seminumerical Algorithms (3rd ed.).
Addison-Wesley, Reading, MA.

X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur, M. C.
Martin, B. J. Thompson, T. Tung, and D. J. Yoo. 2002. Design, implementation and testing of extended
and mixed precision BLAS. ACM Transactions on Mathematical Software 28, 2, 152–205.

MPFR. MPFR (Multiple Precision Floating-Point Reliable Library). Retrieved August 25, 2015 from
http://www.mpfr.org.

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé,
and S. Torres. 2010. Handbook of Floating-Point Arithmetic. Birkhäuser Boston Inc., Boston, MA.

T. Ogita, S. M. Rump, and S. Oishi. 2005. Accurate sum and dot product. SIAM Journal on Scientific
Computing 26, 6, 1955–1988.

S. M. Rump. 2009. Ultimately fast accurate summation. SIAM Journal on Scientific Computing 31, 5, 3466–
3502.

S. M. Rump, T. Ogita, and S.i Oishi. 2008a. Accurate floating-point summation. I. Faithful rounding. SIAM
Journal on Scientific Computing 31, 1, 189–224.

S. M. Rump, T. Ogita, and S. Oishi. 2008b. Accurate floating-point summation. II. Sign, K-fold faithful and
rounding to nearest. SIAM Journal on Scientific Computing 31, 2, 1269–1302.

Y.-K. Zhu and W. B. Hayes. 2009. Correct rounding and a hybrid approach to exact floating-point summation.
SIAM Journal on Scientific Computing 31, 4, 2981–3001.

Y.-K. Zhu and W. B. Hayes. 2010. Algorithm 908: Online exact summation of floating-point streams. ACM
Transactions on Mathematical Software 37, 3.

Received December 2013; revised July 2014; accepted November 2014

ACM Transactions on Mathematical Software, Vol. 41, No. 4, Article 24, Publication date: October 2015.

http://www.mpfr.org

