
A parallel algorithm for dot product over word-size
finite field using floating-point arithmetic
Jérémy JEAN Stef GRAILLAT

UPMC Univ Paris 06 and CNRS, UMR 7606, LIP6, PEQUAN Team
4, place Jussieu

F-75252 Paris cedex 05 (France)
Email: Stef.Graillat@lip6.fr

Abstract—Recently, parallel computation has become neces-
sary to take full advantage of the gains allowed by Moore’s
law. Many scientific and engineering applications exhibit data
parallelism but might not make full use of it. Some ubiquitous
operations such that the dot product can easily be parallelized
and then make good use of available hardware, like multi-core or
GPU. In this paper, we provide two slightly different algorithms
to perform dot product calculations in a finite field using floating-
point arithmetic and implement them on the GPU architecture.
To do so, we pack input integers into floating-point numbers and
exploit the computational capabilities of GPU to their full extent
to get the result efficiently. Using error-free transformations, we
show that it is possible to reach speedups between 10 or 40 with
the parallel versions, with an algorithm using nearly no modular
reduction.

Keywords-Finite field, floating-point arithmetic, error-free
transformations, FMA, GPU, CUDA, GPGPU.

I. INTRODUCTION

Let p ≥ 3 be a prime number, and (ai), (bi) two vectors of
N scalars in Z/pZ. We want to compute the dot product of a
and b in Z/pZ,

a · b =
N∑
i=1

ai bi (mod p).

The underlying issue of this calculation is the way we rep-
resent and manipulate numbers. In this paper, we choose the
floating-point representation for numbers, and look for a way
to perform operations exactly and in parallel.

A way of computing efficiently dot products in word-size
fields has been presented in [1]. We extended this work in
[2] to deal with greater prime number p. We now suggest
a parallel version of it. N. Yamanaka et al. suggested in
[3] a parallel version of an accurate dot product algorithm.
Algorithms presented in this paper solve this problem in a
finite field.

Our algorithms are less efficient that the ones of [1] for mod-
erate size of prime p. The only advantage of our algorithms
is that they can use greater prime number p. Moreover, we
cannot compete with integer computations (RNS algorithms)
if integer arithmetic units are available. Our algorithms are

This work was done while Jérémy Jean was a member of the Pequan team
at UPMC Univ Paris 06 and CNRS, UMR 7606, LIP6, 4 place Jussieu, F-
75252, Paris cedex 05, France. Email: jean.jeremy@gmail.com

useful if only floating-point units are available or if there are
more floating-points units than integer units. This can be the
case in embedded processors.

Outline. The paper is organized as follows. In Section II,
we describe the GPU rising technology and its programming
model known as CUDA. In Section III, we provide the basics
of the floating-point arithmetic needed to understand the paper.
More complete introduction on this subject can be found, for
instance, in [4], [2], [5]. Section IV is dedicated to our new
algorithms, where we explain how they work and how they can
be parallelized. Final Section V exposes experimental results
for all implementations we have made.

II. OVERVIEW OF CUDA

The presentation of CUDA relies on [6].

A. Generalities

Today, parallel GPUs have begun making computational
inroads against the CPU, and a subfield of research, dubbed
GPGPU for General Purpose Computing on GPU1, has found
its way into many fields. There is increased pressure on GPU
manufacturers like NVIDIA from GPGPU users to improve
hardware design, usually focusing on adding more flexibility to
the programming model. In this objective, NVIDIA introduced
CUDA, a general purpose parallel computing architecture
– with a new parallel programming model and instruction
set architecture – that leverages the parallel compute engine
in NVIDIA GPUs to solve many complex computational
problems in a more efficient way than on a CPU. That is this
technology that we will be using in the following. Getting new
algorithms that fit GPU arichecture and make it possible to get
high performance is a challenging problem. For exemple, re-
search in that direction are projects such as the Magma project
developped by Jack Dongarra (http://icl.cs.utk.edu/magma/).
In this project, they design new approaches for linear algebra
algorithms and frameworks.

B. Architecture

GPU extend computational parts – in particular ALU (Arith-
metic Logic Unit) – of CPUs. CUDA’s programming model
allows us to take advantage of this heavy parallel architecture.

1see http://gpgpu.org/

12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-0-7695-4324-6/10 $26.00 © 2010 IEEE

DOI 10.1109/SYNASC.2010.10

80

C. Programming model

Kernels. C for CUDA extends C by allowing the program-
mer to define C functions, called kernels, that, when called,
are executed n times in parallel by n different CUDA threads,
as opposed to only once like regular C functions. Each of the
threads that execute a kernel is given a unique thread ID that
is accessible within the kernel and is used to access specific
data needed in the parallelized sub-calculations.

Threads. The programming model imposes threads to be
gathered in blocks, whose maximal size depends on the card.
At the present time, size of blocks can not go further than 512
threads. Blocks of threads are as well grouped together in a
grid, whose size depends on size of blocks and capabilities of
the card.

Thread blocks are required to execute independently: it must
be possible to execute them in any order, in parallel or in
series. This independence requirement allows thread blocks to
be scheduled in any order across any number of cores. The
number of thread blocks in a grid is typically dictated by the
size of the data being processed rather than by the number
of processors in the system, which it can greatly exceed. This
needed independence of blocks goes along with a particular
3-level memory hierarchy.

Memory. CUDA threads may access data from multiple
memory spaces during their execution. Each thread has a
private local memory. Each thread block has a shared memory
visible to all threads of the block and with the same lifetime as
the block. Finally, all threads have access to the same global
memory.

The second level of this particular hierarchy consists in
the shared memory, shared by all threads of one block. This
memory is expected to be much faster than global memory, so
that global memory accesses should be avoided anytime they
could be replaced by shared memory accesses.

Bank conflict. To achieve high memory bandwidth, shared
memory is divided into equally-sized memory modules, called
banks, which can be accessed simultaneously. So, any memory
read or write request made of n addresses that fall in n distinct
memory banks can be serviced simultaneously, yielding an
effective bandwidth. However, if two addresses of a memory
request fall in the same memory bank, there is a bank conflict
and the access has to be serialized.

D. Performances

Since GPU does not execute code on the CPU, there is an
extra cost in transferring data: the complexity of operations
should justify the cost of moving data to the device. Code
that transfers data for brief use by a small number of threads
will see little or no performance lift. The ideal scenario is one
in which many threads perform a substantial amount of work.

Performance benefits can be more readily achieved when the
ratio of operations to elements transferred is important enough.
For example, a matrix multiplication of n×n matrices requires
n3 operations (multiply-add), so the ratio of operations to
element transferred is in O(n), in which case the larger
the matrix, the greater the performance benefit. Generally

speaking, it is important to include transfers to and from the
device in determining where operations should be performed.

In our particular case, we only compute a dot product on
the GPU, that is a Level 1 BLAS. In that case, the ratio would
advise us not to use GPU for that kind of computation, but
rather do the calculation on the CPU to avoid time of transfers.
However, Level 3 BLAS, which deals with matrix-matrix
operations, relies heavily on dot product and with our parallel
algorithms, we provide a means to perform Level 3 BLAS
more efficiently. Consequently, the measured performances for
our algorithms will not take transfer times into consideration
since they are aimed to be used in higher level BLAS.

In the following of the article, we use floating-point rep-
resentation for numbers. In the next section, we only present
some basic results. See [2] for a more complete introduction.

III. FLOATING-POINT ARITHMETIC

Let p ≥ 3 be a prime number and consider the finite
field Z/pZ. We use floating-point numbers in double precision
to represent Z/pZ integers. Denoting M the size of the
double precision mantissa (53 bits according to the IEEE 754
standard), we limit p by

p− 1 < 2M−1. (1)

Any integer of the finite field could then be represented exactly
by a floating-point number. The term M−1 is necessary rather
than just M to be able to sum exactly at least two integers in
the field without introducing a rounding error. In the sequel,
we will assume the rounding mode to be directed toward
zero. This is needed to ensure the error to be nonnegative
in applications of error-free transformations (see III-A).

Notations. Throughout the paper, we assume to work with
a floating point arithmetic adhering to IEEE 754 floating point
standard in rounding toward zero [4]. We assume that no
overflow nor underflow occur (this is always true since we only
deal with integers that are less than 2M). The set of floating
point numbers is denoted by F, We denote by fl(·) the result
of a floating point computation, where all operations inside
parentheses are done in floating point working precision.

For x ∈ F, ufp(x) will be the unit in the first place of x
and ulp(x) the unit in the last place of x [7]. For x 6= 0, we
have

ufp(x) = 2blog2(x)c,

and ulp(x) = 2−M+1ufp(x). We will refer to machine
precision as u = 2−M+1, because we chose rounding toward
zero.

A. Error-free transformations
For ◦ ∈ {+, −, ·, /} an arithmetic operation, one can notice

that a ◦ b ∈ R and fl(a ◦ b) ∈ F but we usually do not have
a◦ b ∈ F. It is known that for the basic operations +,−, ·, the
rounding error of a floating point operation, when performed
in rounding to the nearest, is still a floating point number (see
for example [8]):

x = fl(a± b) ⇒ a± b = x+ y with y ∈ F,
x = fl(a · b) ⇒ a · b = x+ y with y ∈ F. (2)

81

These are error-free transformations of the pair (a, b) into the
pair (x, y). Fortunately, the quantities x and y in (2) can be
computed exactly in floating point arithmetic.

But this is no longer true in general when working in
rounding toward zero (which is the case in our algorithms).
For the multiplication, the rounding error is still a floating-
point numbers (when no underflow) in rounding toward zero.
Nevertheless, for addition, it is not true but when working only
with non-negative numbers, it is true.

For computing the rounding error of a multiplication, we
will use a Fused-Multiply-and-Add (FMA) operator [9]. Some
computers have a Fused-Multiply-and-Add (FMA) operation
that enables a floating point multiplication followed by an
addition to be performed as a single floating point operation.
The Intel IA-64 architecture, implemented in the Intel Itanium
processor, has an FMA instruction as well as the IBM RS/6000
and the PowerPC before it and as the new Cell processor [10].
The Intel Haswell architecture, scheduled for release in 2012,
will come with a FMA unit as well. Some recent GPU also
have a FMA unit. On the Itanium processor, the FMA instruc-
tion enables a multiplication and an addition to be performed
in the same number of cycles than one multiplication or one
addition. As a result, it seems to be advantageous for speed
as well as for accuracy.

The following algorithm applies when computing a product
of two positive floating-point numbers. We make use of the
FMA to evaluate exactly the round-off term of the floating-
point product. This operation had been included in the IEEE
754 standard in 2008 and performs

FMA(a, b, c) = a× b+ c

with only one rounding.

Algorithm 1 — TwoProduct
Require: a, b ∈ F such that a, b ≥ 0
Ensure: x ∈ F and y ∈ F such that ab = x+ y
x← fl(ab)
y ← FMA(a, b,−x)
return (x, y)

Theorem 1. ([2]) Let x and y be the result of TwoProduct
applied to a and b.

We have: ab = x + y, x = fl(ab), 0 ≤ x ≤ ab, 0 ≤ y <
u.ufp(x) and 0 ≤ y < ux.

We now present an other error-free transformation related
to Euclidean division by a power of two. Suggested in [11],
quoted in [5] by S. Rump and already discussed in [2],
this algorithm splits a floating-point number into two non-
overlapping others.

Theorem 2. ([2]) Let x and y be the result of ExtractScalar
applied to a ∈ N ∩ F and σ ∈ F, σ = 2k, k ≥M . We have:

a = x+ y, 0 ≤ y < uσ, 0 ≤ x ≤ a, x ∈ uσN.

The idea behind this splitting method is to use the rounding
mechanism of the floating-point unit. Set to be toward zero,

Algorithm 2 — ExtractScalar
Require: a ∈ N ∩ F, and σ = 2k, k ∈ N, σ ≥ a
Ensure: x ∈ N ∩ F, y ∈ N ∩ F such that a = x+ y
q ← fl(σ + a)
x← fl(q − σ)
y ← fl(a− x)
return (x, y)

the rounding behaves the same way as a truncation. In terms
of bits, the M -bit string a is divided in two strings s1 and
s2 which do not overlap such that the concatenation s1 + s2
equals a. As subparts of a, both bit-strings s1 and s2 are in
F.

IV. DOT PRODUCT ALGORITHMS

In the following, we will assume the size of input vectors
to be a power of two: N = 2k. Since reduction algorithm is
based on a binary tree concept, it is easier to describe in that
case. For generalization to any N , we would just pad with
zeros to reach the next power of two.

A. Naive algorithm

To present the basic concept of the dot product parallelized
algorithm in CUDA, we start by describing the naive imple-
mentation of the algorithm.

The parallelization is achieved in two steps. First, the
construction of a third vector c, which equals the vector-vector
product of a and b. Second, the sum of all elements of this
new vector. This sum modulo p is then the desired result.

∀i ∈ [1, N], ci = ai bi, a · b =
N∑
i=1

ci (mod p).

In CUDA, this mechanism will be done with two kernels:
one for the vector-vector product, an other kernel for the sum.
The N products are distributed over the blocks of threads,
constructing vector c. Sizes for the grid and blocks depends
on the value of N . As mentioned before, thread blocks can
be no greater 512, which means that one block can not have
more than 512 threads working in parallel. Consequently, the
total number of threads is t = min(n, 512) and these threads
are split over b = n/t blocks. With such a repartition, there
will be

n

b× t
products done in each thread.

Once the vector-vector product c is known, we want to
sum all its elements ci to get the dot product a · b. This is a
common routine in parallel computing called a reduction (see
[12], [13]). The first natural idea for this reduction consists in
calculating partial sums of adjacent elements, striding across
partial sums incrementally to finally get the final one (see
Figure 1).

The problem of the summation in this order of calculation is
bank conflicts. As detailed before, accesses to adjacent values
by different threads of the same block will cause lots of bank
conflicts. To prevent this to happen, we sum elements in a

82

Fig. 1. Naive reduction leading to bank conflicts (indexes: 1→ 2→ 4→ 8).

different order, with strided indexing going down (see Figure
2).

Fig. 2. Conflict-free reduction (indexes: 8→ 4→ 2→ 1).

Figures 1 and 2 are borrowed from [12].

B. λ-algorithm

We assume now that there exists λ ∈ N such that λ(p−1) <
2M−1. As detailed in [2], we get the following result:

Theorem 3. ([2]) Strengthening the hypothesis (1) on p and
assuming there exists λ ∈ N, λ ≥ 1 such that:

λ(p− 1) < 2M−1, (3)

there exists an algorithm computing the dot product of two
vectors of Z/pZ of size N using only N/λ reductions in Z/pZ.
We will refer to this algorithm as λ-algorithm.

As detailed in [2] for the serial algorithm, we need to split
the product ai bi, so that the dot product a ·b can be expressed
as follows:

a · b =
N∑
i=1

ai bi = 2l+1
∑
nα

(αi2
−(l+1) − 2l)+

2l+1
∑
N−nα

αi2
−(l+1) +

∑
nβ

(βi − 2l)+∑
N−nβ

βi +
∑
N

ri +
(
2l+1nα + nβ

)
2l︸ ︷︷ ︸

correction

.

For the definition of αi, βi, l, nα, nβ , we refer to [2]. In the
parallel algorithm then, the previous result c of the vector-
vector product a×b (multiplications are performed componen-
twise) is then replaced by a four-vector result: (α, β, r, corr).
Components of vectors α and β are either αi2−(l+1), βi,
αi2
−(l+1) − 2l or βi − 2l, so that finally, each vector only

have field elements of Z/pZ (details in the proof in [2]).
This first step done, we now need to sum elements together

to get the dot product. Under the assumption λ(p−1) < 2M−1,
we sum each of four vectors α, β, r and corr in parallel, by
reducing modulo p anytime the partial sums accumulated may
goes over λ values. By choosing N a power of two, this means
that any time the number s of accumulated values in the partial
sum is such that 2s > λ, we need a reduction. If we do not,
the next step of reduction would cause a rounding error and
we would loose information.

We measured performances for this algorithm and present
results below in Section V.

C. (α, β, γ, δ)-algorithm

1) General concept: This section presents a new algorithm,
which almost leads to a reduction-free dot product algorithm.
In the previous section, we added a hypothesis on p with the
λ parameter. However, dot product over finite field takes two
different parameters: the prime p and the size N of input
vectors. We previously set the hypothesis on p. We now only
assume (1) : p− 1 < 2M−1, but we limit N to

N ≤ 2s1 where s1 =

⌊
M

2

⌋
and s2 =

⌈
M

2

⌉
. (4)

This is done with a few more error-free transformations based
on ExtractScalar and the basic idea of this method is splitting
the product ai bi into four pieces of at most M/2 bits each:

ai bi = αi + βi + γi + δi.

With the results of ExtractScalar, one can rewrite the same
value:

ai bi = α′i 2
3s+β′i 2

2s+γ′i 2
s+δ′i with 0 ≤ α′i, β′i, γ′i, δ′i < 2s.

With the condition (4) on the size N of the vectors, this means
one can sum the whole vectors α, β, γ, δ without rounding
errors:

∀v′ ∈ {α′, β′, γ′, δ′},
N∑
i=1

v′i ≤
N∑
i=1

2s ≤ N 2s ≤ 2s2s ≤ 2M .

Implemented algorithm (3) is detailed in Appendix.
2) Proof of the sequential algorithm: Let s3, s4, s5 be:

s3 = 2s1 + s2 =M + s1,

s4 = 2(s1 + s2) = 2M,

s5 = 2(s1 + s2) + s1 = 2M + s1.

Let i ∈ N, such that 1 ≤ i ≤ N . TwoProduct on ai and bi
leads to ai bi = hi + ri, with:

hi = fl(ai bi), 0 ≤ hi ≤ ai bi, 0 ≤ ri < u.ufp(hi) ≤ uhi.

83

The error-free transformation ExtractScalar on hi with pa-
rameter σ = 2s5−1 gives αi and β′i as results, with:

hi = αi + β′i, 0 ≤ β′i < 2M+s1 ,

0 ≤ αi ≤ hi, αi ∈ 2M+s1N.
(5)

Case 1: α > 0 (see Figure 3)

0M/2M3M/22M

ai bi

ri
hi

β′α

εβ

δ
γ′

Fig. 3. Splitting of ai bi in the general case (α > 0)

In this case, we have ufp(hi) > 2s3 so that ulp(hi) > 2s1 .
Once we split hi into two pieces αi+β′i, one can split β′i into
two others. This is done by calling ExtractScalar on β′i with
parameter σ = 2s4−1. This results in:

β′i = βi + εi, 0 ≤ εi < 2M ,

0 ≤ βi ≤ β′i, βi ∈ 2MN.
(6)

Again, ExtractScalar on error term during the multiplication
ri with parameter σ = 2s3−1 gives the decomposition:

ri = γ′i + δi, 0 ≤ δi < 2s1 ,

0 ≤ γ′i ≤ ri, γ′i ∈ 2s1N
(7)

All in all, one has:

ai bi = hi + ri

= αi + β′i + ri

= αi + βi + εi + ri

= αi + βi + εi + γ′i + δi

With (5), (6) and (7), we have ulp(hi) = ulp(αi+ βi+ εi) =
ulp(εi) because αi > βi > εi. Thus, ulp(εi) > 2s1 . Moreover,
εi < 2s2 so bits of εi are localized between 2s1 and 2s2 .

As for γ′i, it is the same. Either γ′i > 0 in which case bits of
γ′i are localized in the same interval as εi, either γ′i = 0 and
there will have no problem in summation. Thus, one can say
γ′i and εi are in the same quarter, so one sums them together:
γi = γ′i + εi. Finally:

ai bi = αi + βi + γi + δi,

and (5), (6), (7) give:

αi = Ai 2
M+s1 , βi = Bi 2

M , γi = Ci 2
s1 ,

for some Ai, Bi, Ci ∈ [0, 2s1], so that:

∀i ∈ [1, N], ai bi = Ai 2
M+s1 +Bi 2

M + Ci 2
s1 + δi.

This means that the dot product a · b in Z/pZ equals:

2M+s1

N∑
i=1

Ai + 2M
N∑
i=1

Bi + 2s1
N∑
i=1

Ci +
N∑
i=1

δi (mod p)

(8)
can be calculated by summing the four vectors and then
reduced modulo p to get the final result. Each of the four sums
can be done in floating-point arithmetic without any reductions
modulo p by the consideration (4) on the size N .

Case 2.1: β > 0 (see Figure 4)

0M/2M3M/22M

ai bi

ri
hi

β

εγ

γ′

Fig. 4. Splitting of ai bi when α = 0 and β > 0.

In this case, 2s2 < ufp(hi) < ss3 , so we need to cut
hi with a new parameter σ, smaller than 2s5−1. Discarding
the previous result of the splitting, one gets a new one with
ExtractScalar on hi with σ = 2s4−1 leading to:

hi = βi + γ′i, 0 ≤ γ′i < 2M

0 ≤ βi ≤ hi, βi ∈ 2MN.
(9)

To get the full decomposition in four quarters, one needs to
apply ExtractScalar on γ′i with σ = 2s3−1, so we have:

γ′i = γi + εi, 0 ≤ εi < 2s1 ,

0 ≤ γi ≤ hi, γi ∈ 2s1N.
(10)

This last equation ends the process of splitting and finally,
with two applications of ExtractScalar, we have:

ai bi = hi + ri

= βi + γ′i + ri

= βi + γi + εi + ri.

Because in this case, we had 2s2 < ufp(hi) < ss3 , the
remainder ri is such that ri ≤ uhi < uss3 = 2s1 . So that
both εi and ri are in [0, 2s1]. We define δi = εi+ri ∈ [0, 2s1],
and then:

ai bi = βi + γi + δi. (11)

This last statement (11) is similar as (8) in the general case,
except that Ai = 0.

Case 2.2: β = 0 (see Figure 5).
Here, we even have ufp(hi) < 2s2 . This means that all

significative bits of hi are between 0 and M . The result of the
multiplication ai bi did not go over the mantissa, so that ri = 0

84

0M/2M3M/22M

ai bi

hi

δ
γ

Fig. 5. Splitting of ai bi when α = 0 and β = 0.

and one just has to split hi in two parts with ExtractScalar
and σ = 2s3−1:

hi = γi + δi, 0 ≤ δi < 2s1

0 ≤ γi ≤ hi, γi ∈ 2s1N.
(12)

Finally in this case:

ai bi = hi = γi + δi

We have the same relation as (8) with both Ai and Bi equal
to zero.

All in all, we get four column-vectors of N scalars with
at most M/2 bits each. With the hypothesis (4) of the size
of input vectors, one can sum those four vectors exactly (see
Figure 6). Hence, each four sums is stored exactly in one

0M/2M3M/22M

δ

N < 2M/2

α β γ

∑
α ∑

γ ∑
δ

∑
β

Fig. 6. One sums up the four vectors

floating-point number, which can then be reduced modulo p
to get the final result.

3) Parallel version: In the sequential algorithm, we proceed
incrementally on each couple of elements (ai, bi). Rather than
considering the problem line by line, the parallel version
performs operations on vectors – i.e. columns – in two steps:
firstly, the decomposition of the vector-vector product a × b
into the vector sum α+β+γ+δ and secondly, the summation
of the four vectors.a1

...
aN

×
 b1

...
bN

 =

α1

...
αN


︸ ︷︷ ︸∑

αi

+

β1
...
βN


︸ ︷︷ ︸∑

βi

+

γ1
...
γN


︸ ︷︷ ︸∑

γi

+

 δ1
...
δN




︸ ︷︷ ︸∑
δi

The main interest in this algorithm lies in the absence of
reductions in the summation of the four vectors. From that,
the reduction algorithm to get the sums happens to be really
efficient and provide the exact result.

At the end of the parallel calculation, the four floating-point
sums will lead to the final result in Z/pZ after 7 reductions
and 3 sums, under the assumption p− 1 < 2M−1.

V. EXPERIMENTAL RESULTS

The environment used to evaluate these algorithms is an
Intel Core 2 Quad Processor Q8200 2.33GHz, which accesses
a NVIDIA Tesla C1060 computing processor.

(a) p = 32771(≈ 215).

(b) p = 2147483647(≈ 231).

Fig. 7. Timing comparisons of λ- and (α, β, γ, δ)-algorithms for two
different primes p.

On Figure 7, we represent independently transfer and purely
computational timings. We plotted timings (in ms) for sizes
N = 2k, k ∈ [2, 24] on a log-log scale. The serial multi-
precision algorithm (blue) runs on CPU in linear time of N .

As for the λ-algorithm implementation on GPU (red), extra
cost of the CUDA layer – thread synchronizations and block
repartition for instance – makes the benefit of this implemen-
tation positive only for vectors greater than 4096 elements.
Timing results for this implementation can be divided into
two main parts, regarding the value of N : either N is smaller

85

than 214 and the time is almost constant, either N is greater
than this threshold value, and the computation is done in linear
time of N .

In the first half, constant time is due to CUDA threads:
for our GPU architecture, there is enough device material to
take care of all input elements at the same time so that there
is no extra cost for different sizes up to 214. In the second
half, a lack of resource introduces latency in computations
and we reach the expected linear behavior of the dot product
complexity. Asymptotically, all implementations behave the
same way, with a speed-up bigger than 10 for the GPU one.

Finally, implementation for the (α, β, γ, δ)-algorithm pro-
vides timings of the same kind: almost constant for N = 2k up
to 214, linear in N otherwise. However, there is a fundamental
difference: timings for the (α, β, γ, δ)-algorithm do not depend
on p. In the first case of the λ-algorithm, via the value of λ,
we had to do more and more operations – namely, reductions
– as p increased. With the splitting algorithm, by imposing
a maximal size Nmax = 2M/2 for the input vectors, those
reductions are useless (see Section IV-C).

Asymptotically, for N > 10000, we reach good speedups
for both algorithms: 10 for λ-algorithm and more than 40 for
(α, β, γ, δ)-algorithm.

VI. CONCLUSION AND FUTURE WORK

In this paper, we suggested two parallel version of al-
gorithms to compute the dot product in a finite field using
floating-point arithmetic. Both algorithms have been designed
to reduce the cost of modular reductions, which happen to be
the slow operation of the process.

In the first algorithm, we generalize the idea introduced
in [1] where it sums integers – packed into floating-point
numbers – by packets. In our work, we use results on error-free
transformations to extend the range of representable integers to
make them fit into a double precision floating-point mantissa.
The second method revealed in this paper describes a prior
treatment of input vectors which enables summations to be
done without any modular reductions. Based as well on error-
free transformations, this particular way of summation results
in good experimental performances.

Parallelized implementations of these algorithms behave
almost the same way, depending mainly on the size of input
vectors. Concerning the λ-algorithm, time of computation
increases with p: for large finite fields, the value of λ is quite
small, which leads to many reductions. This has a significant
impact of timings. As for the (α, β, γ, δ)-algorithm, there is
no dependence on p.

Consequently, for big input vectors, one can reach really
good speedups: more than 40 for the splitting (α, β, γ, δ)-
algorithm but still and all 10 for the λ one.

In a future work, it would interesting to investigage on RNS
algorithms for GPU. A comparison between an integer RNS
implementation and a floating-point RNS version could be
very useful. Moreover, NVIDIA has launched a new graphic
card called Fermi. Even if current GPU are said to be very
efficient for floating-point computations, double precision is

relatively slow compared to single precision. But Fermi GPU
are believed to be 400% faster than previous NVIDIA GPU
in double-precision floating-point operations. Integrating our
algorithms in level 3 BLAS routines would make it possible
to really compare the efficiency of our algorithms with other
implementations.

We also plan to implement our algorithms in OpenCL and to
compare them on different type of GPU (Nvidia, AMD-ATI).

REFERENCES

[1] J.-G. Dumas, “Efficient dot product over word-size finite fields,” in
Proceedings of the 7th International Workshop on Computer Algebra
in Scientific Computing, CASC’2004 (St. Petersburg, Russia, July 12-19,
2004), V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov, Eds. Garching:
Institut für Informatik, Technische Universität München, 2004, pp. 139–
153.

[2] J. Jean and S. Graillat, “Fast dot product over finite field,” Research
Report hal-00450888, 2010, available at http://hal.archives-ouvertes.fr/
hal-00450888/en/.

[3] N. Yamanaka, T. Ogita, S. Rump, and S. Oishi, “A parallel
algorithm for accurate dot product,” Parallel Computing, vol. 34,
no. 6-8, pp. 392 – 410, 2008, parallel Matrix Algorithms and
Applications. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V12-4S33N13-1/2/7ce8ecd69522e2aab30d42cfc221d061

[4] “IEEE standard for floating-point arithmetic,” Tech. Rep., 2008.
[Online]. Available: http://dx.doi.org/10.1109/IEEESTD.2008.4610935

[5] S. M. Rump, T. Ogita, and S. Oishi, “Accurate floating-point summation
part I: Faithful rounding,” SIAM J. Sci. Comput., vol. 31, no. 1, pp. 189–
224, 2008.

[6] NVIDIA, NVIDIA CUDA Programming Guide 2.0, 2008.
[7] J.-M. Muller, “On the definition of ulp(x),” École normale supérieure de

Lyon - Laboratoire de l’Informatique du Parallélisme, Tech. Rep., 2005.
[8] T. J. Dekker, “A floating-point technique for extending the available

precision,” Numer. Math., vol. 18, pp. 224–242, 1971.
[9] Y. Nievergelt, “Scalar fused multiply-add instructions produce floating-

point matrix arithmetic provably accurate to the penultimate digit,” ACM
Trans. Math. Software, vol. 29, no. 1, pp. 27–48, 2003.

[10] C. Jacobi, H.-J. Oh, K. D. Tran, S. R. Cottier, B. W. Michael,
H. Nishikawa, Y. Totsuka, T. Namatame, and N. Yano, “The vector
floating-point unit in a synergistic processor element of a Cell processor,”
in ARITH ’05: Proceedings of the 17th IEEE Symposium on Computer
Arithmetic. Washington, DC, USA: IEEE Computer Society, 2005, pp.
59–67.

[11] C. Hecker, “Let’s get to the (floating) point,” Game Developer Magazine,
1996.

[12] M. Harris, “Optimizing parallel reduction in CUDA,” Nvidia, Tech. Rep.,
2007, available at http://developer.download.nvidia.com/compute/cuda/
1 1/Website/projects/reduction/doc/reduction.pdf.

[13] ——, “Parallel prefix sum (scan) with CUDA,” Nvidia, Tech. Rep.,
2008, available at http://developer.download.nvidia.com/compute/cuda/
1 1/Website/projects/scan/doc/scan.pdf.

86

APPENDIX

Algorithm 3 — Dot product computation without any reduc-
tion in the main loop
Require: p ≥ a prime, a and b two Z/pZ vectors of size
N < 2s1

Ensure: The dot product a · b of vectors a and b in Z/pZ.

A← 0
B ← 0
C ← 0
D ← 0
for i = 1 to N do

[h, r]← TwoProduct(ai, bi)
[α, β]← ExtractScalar(2s5−1, h)
if α = 0 then

if β = 0 then
[γ, δ]← ExtractScalar(2s3−1, h)

else
[β, γ]← ExtractScalar(2s4−1, h)
[γ, ε]← ExtractScalar(2s3−1, γ)
δ ← r + ε

end if
else
[β, ε]← ExtractScalar(2s4−1, β)
[γ, δ]← ExtractScalar(2s3−1, r)
γ ← γ + ε

end if
A← A+ α
B ← B + β
C ← C + γ
D ← D + δ

end for
A← A (mod p)
B ← B (mod p)
C ← C (mod p)
D ← D (mod p)
A← A+B
C ← C +D
A← A (mod p)
C ← C (mod p)
A← A+ C
res← A (mod p)

87

