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Which problems to solve with numerical algorithms?

Main problems in numerical polynomial and linear algebra

Polynomial evaluation
Newton’s method, interpolation, ...

Computation of zeros of polynomial, polynomial systems
computer aided design, robotics, ...

Solving linear systems
finite element method for PDE, ...

Computation of eigenvalues, eigenvectors of matrices
stability in control theory, PageRank (Google), ...
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Real problems and implemented algorithms are uncertain

Solving the previous problems suffers from two difficulties:

Uncertainties in the data
influence on the zeros: pseudozeros
influence real/complex perturbations
influence of the structure in some matrix problems

Uncertainties in the computation: finite precision
for the polynomial evaluation

How to deal with such uncertainties?
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Loss of accuracy in the polynomial evaluation

Evaluation of the polynomial p(x) = (x − 2)3 = x3− 6x2 + 12x − 8
for about 200 points near x = 2 in single and double precision
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Problems in finite precision computation

Aims : Solving the previous problems being accurate and reliable
Understanding the influence of the finite precision on the
numerical quality of numerical software

inaccurate results;
numerical instabilities.

controlling and limiting harmful effect

How to be more accurate without large overheads?
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Data known with uncertainties

Computing the zeros of the Wilkinson polynomial of degree 20

W (x) = (x − 1)(x − 2) · · · (x − 20)
= x20 − 210x19 + · · ·+ 20!

Uncertainty of 2−23 on the coefficient of x19
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How to deal with uncertainties on the data?
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computation of polynomial zeros −→ pseudozeros
computation of eigenvalues −→ pseudospectra

Does the notion of pseudosolutions enable us to solve some
problems?
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Influence of the structure of perturbations
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Different types and sizes of perturbations

Influence of the size and the structure of perturbations

Structured perturbations:
polynomials: real coefficients
matrices: symmetric, Toeplitz, Hankel, circulant, ...

Does the taking into account of the structure enable us to
improve the accuracy and stability of algorithms?
Size of perturbations:

infinitely small −→ condition number
finite −→ backward error, pseudosolutions

Notion of structured condition number, real pseudozeros and
structured pseudospectra
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Problems in computing with uncertainties

Understanding the difficulties to deal with uncertainties:
Controlling the effects of uncertainties:

How to measure the difficulty of solving the problem?
How to appreciate the reliability of the algorithm?
How to estimate the accuracy of the computed solution?

Limiting the effect of finite precision
How to improve the accuracy of the solution?

Which notions to answer these questions?
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Error analysis

x̂ = Ĝ (y)

x = G (y)

Input space D

y
G

Output space R

Ĝ Forward error

Forward error analysis
Backward error analysis
Identify x̂ as the solution of a perturbed problem:
x̂ = G (y + ∆y).

Stef Graillat Reliability of numerical algorithms



Motivations
Pseudozeros and application in control theory

Accurate polynomial evaluation
Other results

Summary and future work

Error analysis

x̂ = Ĝ (y)
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Advantages of backward error analysis

How to estimate the accuracy of the computed solution?
At the first order, we have the rule of thumb:

forward error . condition number × backward error.

How to measure the difficulty of solving the problem ?
Condition number measures the sensitivity of the solution to
perturbation in the data

Condition number : K (P, y) := lim
ε→0

sup
∆y∈P(ε)

{
‖∆x‖R
‖∆y‖D

}
How to appreciate the reliability of the algorithm?
Backward error measures the distance between the problem we
solved and the initial problem.

Backward error : η(x̂) = min
∆y∈D

{‖∆y‖D : x̂ = G (y + ∆y)}
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Pseudozeros: definition (1/2)

Pn : polynomials of C[z ] of degree at most n
Mn : monic polynomials of Pn of degree n

p(z) =
n∑

i=0

piz i , ‖p‖ = (
n∑

i=0

|pi |2)1/2

Definition 1 (Perturbation)

Neighborhood of polynomial p ∈Mn

Nε(p) = {p̂ ∈Mn : ‖p − p̂‖ ≤ ε}
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Pseudozeros: definition (2/2)

Definition 2 (ε-pseudozero set)

Zε(p) = {z ∈ C : p̂(z) = 0 for p̂ ∈ Nε(p)}

p(z) = 1 + z + z2 + · · ·+ z20

with ε = 0.3
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Pseudozeros are computable

Theorem 1 (Trefethen and Toh, 1994)

The ε-pseudozero set satisfies

Zε(p) =


z ∈ C : g(z) :=

|p(z)|
‖z‖ ≤ ε

ff
,

where z = (1, z , . . . , zn−1).

Algorithm 1 (Drawing of ε-pseudozero set)

1 We mesh a square containing all the pseudozeros of p
(Matlab command: meshgrid).

2 We compute g(z) := |p(z)|
‖z‖ for all the nodes z of the grid.

3 We plot the contour level |g(z)| = ε (Matlab command: contour).
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History of pseudozero set

Mosier (1986) : definition and study for the ∞-norm.
Trefethen and Toh (1994) : study for the 2-norm.
pseudozeros ≈ pseudospectra of the companion matrix.

Zhang (2001) : use pseudozero as a tool to study condition
number for the polynomial evaluation.
Stetter (2004) : Numerical Polynomial Algebra (SIAM).
General framework for working with polynomials only known
with uncertainties

Can we use pseudozero sets to solve some problems?
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Stability of polynomials

Definition 3
A polynomial is stable if all its zeros have negative real part.

The function abscissa a : P → R is defined by

a(p) = max{Re(z) : p(z) = 0}.

A polynomial p is stable ⇐⇒ a(p) < 0
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Motivations

In control theory, transfer function are often written as
H(p) = N(p)

D(p) where N and D are polynomials.

The system is stable if D is a stable polynomial

Question : If D is stable, is it still stable when perturbed?

(we assume that D is monic)
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Pseudozero abscissa mapping

Definition 4
ε-pseudozero abscissa mapping aε : Pn → R :

aε(p) = max{Re(z) : z ∈ Zε(p)}.

A polynomial p is ε-robustly stable ⇐⇒ aε(p) < 0

Statement of the problem:

Given a polynomial p ∈Mn and ε > 0, let us compute
aε(p).
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A plotting algorithm

Draw the ε-pseudozero set
Draw the vertical line that intersects the right-most point
within the ε-pseudozero set
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Our solution

The results
an algorithm computing aε(p) with a tolerance τ

a drawing of the ε-pseudozero set
−→ qualitative analysis of the result
−→ visualization of the result

Tools
an explicit formula that defines the pseudozero set
the continuous dependency of the zeros w.r.t the polynomial
coefficients
the Sturm sequences to count the number of real zeros
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Another characterization of the pseudozero set

Let us denote hp,ε : R2 → R the function

hp,ε(x , y) = |p(x + iy)|2 − ε2
n−1∑
j=0

(x2 + y2)j .

Then

Zε(p) = {(x , y) ∈ R2 : hp,ε(x , y) ≤ 0}

=⇒ hp,ε(·, y) and hp,ε(x , ·) are polynomials of degree 2n.

Theorem 2
For any real x ≥ a(p), x ≤ aε(p) if and only if the equation
hp,ε(x , y) = 0 has a real solution y.
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A symbolic-numerical bisection algorithm

Algorithm 2
Require: a stable polynomial p, the parameter ε, the tolerance τ on

the accuracy of aε(p)
Ensure: a number α such that |α− aε(p)| ≤ τ
1: γ := a(p), δ := ‖p‖+ ε
2: while |γ − δ| > τ do
3: x := γ+δ

2
4: if the equation hp,ε(x , y) = 0 has a solution y real then
5: δ := x
6: else
7: γ := x
8: end if
9: end while

10: return α = γ+δ
2
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Numerical simulation

For p(z) = z5 + z4 + 10z3 + 10z2 + 5z + 1, ε = 0.001 and
τ = 0.00001 the algorithm gives aε(p) ≈ −0.719669
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Floating point number

Floating point system F ⊂ R:

x = ± x0.x1 . . . xp−1︸ ︷︷ ︸
mantissa

×be , 0 ≤ xi ≤ b − 1, x0 6= 0

b : basis, p : precision, e : exponent range s.t. emin ≤ e ≤ emax

Machine epsilon ε = b1−p, |1+ − 1| = ε

Approximation of R by F, rounding fl : R → F
Let x ∈ R then

fl(x) = x(1 + δ), |δ| ≤ u.

Unit roundoff u = ε/2 for round-to-nearest
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Standard model of floating point arithmetic

Let x , y ∈ F,

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ u, ◦ ∈ {+,−, ·, /}

IEEE 754 standard (1985)

Type Size Mantissa Exponent Unit roundoff Range
Double 64 bits 52+1 bits 11 bits u = 2−53 ≈ 1, 11× 10−16 ≈ 10±308
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For a more precise evaluation scheme

Accurate evaluation of p(x): the compensated Horner scheme
and the compensated rule of thumb 1

An improved and validated error bound
Theoretical and experimental results exhibit the

actual accuracy: twice the current working precision behavior,
actual speed: twice faster than the corresponding
double-double implementation

1SG, N. Louvet, PhL. Compensated Horner Scheme. Submitted to SISC
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More accuracy, how ?

More internal precision:
hardware

extended precision in x86 architecture
software

fixed length expansions libraries: double-double (Briggs, Bailey,
Hida, Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries: Priest, Shewchuk
arbitrary multiprecision libraries: MP, MPFUN/ARPREC,
MPFR

Correcting rounding errors:
compensated summation (Kahan,1965) and doubly
compensated summation (Priest,1991), etc.
accurate sum and dot product: Ogita, Rump and Oishi (2005)
→ twice the current working precision behavior and fast
compared to double-double library
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At current working precision ...

Rule of thumb for backward stable algorithms :

solution accuracy ≈ condition number × computing precision

1 IEEE-754 precision: double (u = 2−53 ≈ 10−16)
2 Condition number for the evaluation of p(x) =

∑n
i=0 aix i :

cond(p, x) =

∑n
i=0 |ai ||x |i

|
∑n

i=0 aix i |
=

p̃(|x |)
|p(x)|

, always ≥ 1.

3 Accuracy of the solution p̂(x):

|p(x)− p̂(x)|
|p(x)|

≤ α(n)× cond(p, x)× u

with α(n) ≈ 2n
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What means “twice the working precision behavior”?

Compensated rule of thumb:

solution accuracy . precision + condition number× precision2

Three regimes in precision for the evaluation of p̂(x):
1) condition number ≤ 1/u: the accuracy of p̂(x) is optimal

|p̂(x)−p(x)|
|p(x)| ≈ u
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What means “twice the working precision behavior”?

Compensated rule of thumb:

solution accuracy . precision + condition number× precision2

Three regimes in precision for the evaluation of p̂(x):
2) 1/u ≤ condition number≤ 1/u2 : the result p̂(x) verifies

|p̂(x)−p(x)|
|p(x)| ≈ cond× u2
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What means “twice the working precision behavior”?

Compensated rule of thumb:

solution accuracy . precision + condition number× precision2

Three regimes in precision for the evaluation of p̂(x):
3) no more accuracy when condition number > 1/u2.
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The Horner scheme

Algorithm 3 (Horner scheme)

function res = Horner(p, x)
sn = an
for i = n − 1 : −1 : 0

pi = fl(si+1 · x) % rounding error πi
si = fl(pi + ai ) % rounding error σi

end
res = s0

γn = nu/(1− nu) ≈ nu

|p(x)− Horner(p, x)|
|p(x)|

≤ γ2n︸︷︷︸
≈2nu

cond(p, x)
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Error-free transformations for sum and product

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F,
x = fl(a · b) ⇒ a · b = x + y with y ∈ F,

For the sum, algorithms by Dekker (1971) and Knuth (1974)

Algorithm 4 (Error-free transformation of the sum of 2 floating
point numbers)

function [x , y ] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))

Product : algorithm TwoProduct by Veltkamp and Dekker (1971)

Stef Graillat Reliability of numerical algorithms



Motivations
Pseudozeros and application in control theory

Accurate polynomial evaluation
Other results

Summary and future work

Error-free transformation for the Horner scheme

p(x) = Horner(p, x) + (pπ + pσ)(x)

Algorithm 5 (Error-free transformation for the Horner scheme)

function [Horner(p, x), pπ, pσ] = EFTHorner(p, x)
sn = an
for i = n − 1 : −1 : 0

[pi , πi ] = TwoProduct(si+1, x)
[si , σi ] = TwoSum(pi , ai )
Let πi be the coefficient of degree i of pπ

Let σi be the coefficient of degree i of pσ

end
Horner(p, x) = s0

Stef Graillat Reliability of numerical algorithms



Motivations
Pseudozeros and application in control theory

Accurate polynomial evaluation
Other results

Summary and future work

Compensated Horner scheme

Algorithm 6 (Compensated Horner scheme)

function res = CompHorner(p, x)
[h, pπ, pσ] = EFTHorner(p, x)
c = Horner(pπ + pσ, x)
res = fl(h + c)
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Accuracy of the compensated Horner scheme

Theorem 3
Let p be a polynomial of degree n with floating point coefficients,
and x be a floating point value. Then if no underflow occurs,

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u + γ2
2n︸︷︷︸

≈4n2u2

cond(p, x).

Key point in the proof:

(p̃π + p̃σ)(|x |) ≤ γ2np̃(|x |)

a similar bound is proved in presence of underflow
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Numerical experiments: testing the accuracy

Evaluation of pn(x) = (x − 1)n for x = fl(1.333) and n = 3, . . . , 42
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Numerical experiments: testing the speed efficiency

We compare
Horner: IEEE 754 double precision Horner scheme
CompHorner: our Compensated Horner scheme
DDHorner: Horner scheme with internal double-double
computation

All computations are performed in C language and IEEE 754 double
precision

Pentium 4: 3.0GHz, 1024kB cache L2 - GCC 3.4.1
ratio minimum mean maximum theoretical

CompHorner/Horner 1.5 2.9 3.2 13
DDHorner/Horner 2.3 8.4 9.4 17

→ compensated Horner scheme = Horner scheme with
double-double without renormalization
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A dynamic error bound

Theorem 4
Given a polynomial p of degree n with floating point coefficients,
and a floating point value x, we consider res = CompHorner(p, x).
The absolute forward error affecting the evaluation is bounded
according to

|CompHorner(p, x)− p(x)| ≤
fl((u|res|+ (γ4n+2Horner(p̃π + p̃σ, |x |) + 2u2|res|))).
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Accuracy of the bound for p5(x) = (x − 1)5
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Real perturbations
Influence of the structure
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Real perturbations
Influence of the structure

Real perturbations (1/2)

Motivations :
rounding errors are always real
uncertain data in engineering are often real

Results :
Real condition number and backward error for polynomial
evaluation and zeros
→ explicit formulas for those condition numbers and backward
errors
→ the ratio between the real condition number and the
classical condition number lies in the interval [1,

√
2]

→ The real backward error can be larger that the classical
backward error
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Real perturbations (2/2)

Zeros of interval polynomials2

→ Matlab tool for drawing zeros of interval polynomials

Real pseudozero set for multivariate polynomials3

→ an explicit formula for computing this set

2
SG & PhL. Pseudozero set of interval polynomials. ACM SAC 20063
SG. Pseudozero set of multivariate polynomials. Poster CASC 2005
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Real perturbations
Influence of the structure

Pseudospectra and structured condition numbers (1/2)

Motivations :
structured error analysis
classical structures Toeplitz, Hankel, circulant, symmetric, ...
structures deriving from Lie and Jordan algebras

Results :
Structured condition numbers for matrix problems4

→ structured error analysis with Lie and Jordan algebras
→ little or no differences between structured and unstructured
condition numbers for these structures, similar results for the
backward error

4
F. Tissseur & SG. Structured Condition Numbers and Backward Errors in Scalar Product

Spaces, Research Report
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Pseudospectra and structured condition numbers (2/2)

Pseudospectra and structures5

→ for Toeplitz, Hankel, circulant structures, the pseudospectra
equals the structured pseudospectra

−1 0 1 2 3
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5
SG. A note on structured pseudospectra. J. Comput. Appl. Math., 2006.
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Summary and future work on improving the accuracy

Summary
A compensated Horner scheme: accurate polynomial
evaluation
Fast and accurate computation of geometric predicates

Future work
double-double and XBLAS without renormalization
Increasing the accuracy of algorithms with Newton’s methods
and iterative refinement
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Summary and future work on the use of pseudozero set

Summary
Applications of pseudozero set to test the approximate
coprimeness of polynomials6

Applications of pseudozero set to compute stability radius and
pseudozero abscissa7

Future work
Certify the drawing of pseudozero set using interval arithmetic
(for example the Sivia algorithm by Jaulin and Walter)

6
SG & PhL. Testing polynomial primality with pseudozeros. RNC’5

7
SG. Computation of pseudozero abscissa. SYNASC 2004
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Summary and future work on real perturbations

Summary
Real condition number and real backward error for polynomial
evaluation and zeros
MATLAB tool for drawing pseudozeros of interval polynomials
Generalization of real pseudozero set to multivariate
polynomials

Future work
Generalization to real pseudospectra
Real condition number for generalized eigenvalue problems
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Summary and future work on structured linear algebra

Summary
Structured pseudospectra for Toeplitz, Hankel, circulant,
symmetric, skew-symmetric structures
Structured error analysis for structures deriving from Lie and
Jordan algebra for linear systems, distance to singularity and
inversion

Future work
Structured error analysis for least square problems and
Penrose-Moore inversion
Same thing with Drazin inversion (singular linear systems)

Stef Graillat Reliability of numerical algorithms



Motivations
Pseudozeros and application in control theory

Accurate polynomial evaluation
Other results

Summary and future work

Thank you for your attention
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