Validated Pseudozero Set of Polynomials

Stef Graillat
Université Pierre et Marie Curie - Paris 6, LIP6
stef.graillat@lip6.fr
http://www-anp.lip6.fr/~graillat
12th GAMM - IMACS International Symposium SCAN 2006
Duisburg, Germany, September 26-29, 2006

UNIVERSITE
pierbe a Marie CURIE

Outline of the talk

I - Pseudozero set of polynomials

- Definition
- Computation

II - Validation of pseudozero set

- Validated computation
- Drawing of pseudozero set

Pseudozeros: definition, computation and motivation

Pseudozero set : definition

Perturbation :

Neighborhood of polynomial p

$$
N_{\varepsilon}(p)=\left\{\widehat{p} \in \mathbb{C}_{n}[z]:\|p-\widehat{p}\| \leqslant \varepsilon\right\} .
$$

Definition of the ε-pseudozero set :

$$
Z_{\varepsilon}(p)=\left\{z \in \mathbb{C}: \widehat{p}(z)=0 \text { for } \widehat{p} \in N_{\varepsilon}(p)\right\} .
$$

$\|\cdot\|$ a norm on the vector of the coefficients of p
This set is formed by the zeros of polynomials "near p ".

Pseudozeros are easily computable

Theorem :

The ε-pseudozeros set satisfies

$$
Z_{\varepsilon}(p)=\left\{z \in \mathbb{C}:|g(z)|:=\frac{|p(z)|}{\|\underline{z}\|_{*}} \leqslant \varepsilon\right\},
$$

where $\underline{z}=\left(1, z, \ldots, z^{n}\right)$ and $\|\cdot\|_{*}$ is the dual norm of $\|\cdot\|$,

$$
\|y\|_{*}=\sup _{x \neq 0} \frac{\left|y^{*} x\right|}{\|x\|}
$$

Algorithm of computation

Algorithm to draw the ε-pseudozero set :

1. We mesh a square containing all the roots of p (Matlab command : meshgrid).
2. We compute $g(z):=\frac{|p(z)|}{\|\underline{z}\|_{*}}$ for all the nodes z in the grid.
3. We draw the contour level $|g(z)|=\varepsilon$ (MatLab command : contour).

Problems:

- Find a square containing all the roots of p and all the pseudozeros.
- we may evaluate p near some roots!!!

A famous example

Pseudozero set of the Wilkinson polynomial

$$
\begin{aligned}
W_{20} & =(z-1)(z-2) \cdots(z-20), \\
& =z^{20}-210 z^{19}+\cdots+20!
\end{aligned}
$$

We perturb only the coefficient of z^{19} with $\varepsilon=2^{-23}$.
One use the weighted-norm $\|\cdot\|_{\infty}$:

$$
\|p\|_{\infty}=\max _{i} \frac{\left|p_{i}\right|}{m_{i}} \text { with } m_{i} \text { non negative }
$$

with $m_{19}=1, m_{i}=0$ otherwise and the convention $m / 0=\infty$ if $m>0$ and $0 / 0=0$.

A graphical tool

A tool to draw zeros of interval polynomials

Pseudozeros: brief survey of existing references

- Mosier (1986) : Definition and study form the ∞-norm.
- Hinrichsen and Kelb : spectral value sets
- Trefethen and Toh (1994) : Study for the 2-norm. pseudozeros \approx pseudospectra of the companion matrix.
- Chatelin and Frayssé (1996) : propose a Synthesis in Lectures on Finite Precision Computations (SIAM)
- Stetter $(1999,2004)$: Numerical polynomial algebra. Generalization of the previous works.
- Karow (2003) : thesis on Spectral value sets
\Longrightarrow What about computing pseudozero set in finite precision ?

Validation of pseudozero set

Set Inversion via Interval Analysis

Set inversion problem

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad \text { and } \quad Y \subset \mathbb{R}
$$

One wants to compute an inner and outer approximation of $X=f^{-1}(Y)$

For pseudozero sets, $Z_{\varepsilon}(p)=f^{-1}(Y)$ with

$$
f(x, y)=\frac{|p(x+i y)|}{\|\underline{x+i y}\|_{*}}
$$

and $Y=[0, \varepsilon]$

SIVIA algorithm (Jaulin,Walter,1993)

Inputs: inclusion function F of f, Y, feasible box $x(0)$, accuracy of the paving ε_{r}
Initialization : $k=0$, stack $=\varnothing, K_{\text {in }}=\varnothing, K_{\mathrm{i}}=\varnothing$
Iteration \mathbf{k}
Step 1: if $F(x(k)) \subset Y$, then $K_{\text {in }}=K_{\text {in }} \cup x(k)$. Go to step 4
Step 2 : if $F(x(k)) \cap Y=\varnothing$ then go to Step 4
Step 3 : if $w(x(k)) \leqslant \varepsilon_{r}$ then $K_{\mathrm{i}}=K_{\mathrm{i}} \cup x(k)$ else bisect $x(k)$ and stack
Step 4 : if stack is not empty, then unstack $x(k+1)$, increment k and goto Step 1

End

We have

$$
K_{\text {in }} \subset X \subset K_{\text {out }}:=K_{\text {in }} \cup K_{\mathrm{i}}
$$

Finite precision computation

Floating point operations in IEEE 754, $a, b \in \mathbb{F}$

$$
\mathrm{fl}(a \circ b)=(a \circ b)(1+\varepsilon) \text { for } \circ=\{+,-, \cdot, /\} \text { and }|\varepsilon| \leqslant \mathrm{eps} .
$$

So that

$$
\begin{gathered}
|a \circ b-\mathrm{fl}(a \circ b)| \leqslant \mathrm{eps}|a \circ b| \text { and } \\
|a \circ b-\mathrm{ff}(a \circ b)| \leqslant \mathrm{eps}|\mathrm{fl}(a \circ b)| \text { for } \circ=\{+,-, \cdot, /\} .
\end{gathered}
$$

For double precision, eps $=2^{-53}$
We assume neither overflow nor underflow

Finite precision with polynomials

Evaluation of a real polynomial $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$, with $a_{i}, x \in \mathbb{F}$,

$$
|p(x)-\mathrm{fl}(p(x))| \leqslant \gamma_{2 n} \sum_{i=0}^{n}\left|a_{i}\right||x|^{i}=\gamma_{2 n} \tilde{p}(|x|)
$$

If $a_{i} \geqslant 0$ and $x \geqslant 0$ then

$$
0 \leqslant p(x) \leqslant(1+\mathrm{eps})^{2 n} \mathrm{fl}(p(x))
$$

Moreover, for $x \in \mathbb{F}$, [Ogita,Rump,Oishi,05]

$$
(1+\mathrm{eps})^{n}|x| \leqslant \frac{|x|}{(1-\mathrm{eps})^{n}} \leqslant \frac{|x|}{1-n \mathrm{eps}}|x| \leqslant \mathrm{fl}\left(\frac{|x|}{1-(n+1) \mathrm{eps}}\right)
$$

What is validation in finite precision?

General form for the pseudozero set

$$
Z_{\varepsilon}(p)=\left\{z \in \mathbb{C}:|g(z)|:=\frac{|p(z)|}{q(z)} \leqslant \varepsilon\right\}
$$

with $q(z)>0$ for all $z \in \mathbb{C}$
Aim : find $\alpha(z) \in \mathbb{F}$ and $\beta(z) \in \mathbb{F}$ such that

$$
\alpha(z) \leqslant \frac{|p(z)|}{q(z)} \leqslant \beta(z)
$$

So that

$$
\begin{aligned}
& \beta(z) \leqslant \varepsilon \Rightarrow z \in Z_{\varepsilon}(p) \\
& \varepsilon \leqslant \alpha(z) \Rightarrow z \notin Z_{\varepsilon}(p)
\end{aligned}
$$

Example with real polynomial with real zeros (1/3)

For real polynomial p with real zeros and real perturbations with ∞-norm,

$$
Z_{\varepsilon}(p)=\left\{x \in \mathbb{R}:|g(x)|:=\frac{|p(x)|}{\sum_{i=0}^{n}|x|^{j}} \leqslant \varepsilon\right\},
$$

2 ways :

- interval arithmetic

Need directed rounding modes

- rigorous error bound in floating point arithmetic

Use only rounded to nearest mode

Example with real polynomial with real zeros (2/3)

We have

$$
\alpha(x) \leqslant \frac{|p(x)|}{q(x)} \leqslant \beta(x)
$$

with

$$
\alpha(x)=\mathrm{fl}\left(\xi_{2 n+3} \cdot\left[|p(x)|-\gamma_{2 n} \tilde{p}(|x|) / \xi_{2 n+3}\right] / q(x)\right)
$$

and

$$
\beta(x)=\mathrm{fl}\left(\frac{\left[|p(x)|+\gamma_{2 n} \tilde{p}(|x|) / \xi_{2 n+3}\right] / q(x)}{\xi_{2 n+3}}\right)
$$

where $\xi_{n}=1-n$ eps $\in \mathbb{F}$.

Example with real polynomial with real zeros (3/3)

if the error is too big \rightarrow Compensated Horner Scheme ${ }^{11}$

Results are as accurate as if computed in twice the working precision

[^0]
Conclusion and future work

We have presented

- an algorithm to draw an inner and outer approximation of a pseudozero set
- a formula to test wether a point is inside or outside the pseudozero set for real polynomials

Future work

- a similar analysis for complex polynomials
- a Compensated Horner Scheme for complex polynomials

[^0]: ${ }^{1}$ S.Graillat, N.Louvet, Ph.Langlois. Compensated Horner Scheme. Submitted

