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General motivations

Polynomials appear in almost all areas in scientific computing and
engineering
The relationships between industrial applications and polynomial
systems solving studied by the European Community Project FRISCO
Applications in Computer Aided Design and Modeling, Mechanical
Systems Design, Signal Processing and Filter Design, Civil
Engineering, Robotics, Simulation
The wide range of use of polynomial systems needs to have fast and
reliable methods to solve them

symbolic approach based either on the theory of Gröbner basis or on
the theory of resultants
numeric approach based on iterative methods like Newton’s method or
homotopy continuation methods
recently, hybrid methods, combining both symbolic and numeric
methods

S. Graillat (Univ. Perpignan) Pseudozeros of Multivariate Polynomials RWCA 2006 2 / 22



Dealing with uncertainties

In practice, from situations arising in science or engineering, the data
are known only to a limited accuracy
Analytical sensitivity analysis introduces a condition number that
bounds the magnitudes of the (first order) changes of the roots with
respect to the coefficient perturbations
Continuous sensitivity analysis, introduced by Ostrowski, considers the
uncertainty of the coefficients as a continuity problem. The most
powerful tool of this last type of methods seems to be the pseudozero
set of a polynomial
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An example for the univariate case

Computing the zeros of the Wilkinson polynomial of degree 20

W (x) = (x − 1)(x − 2) · · · (x − 20)
= x20 − 210x19 + · · ·+ 20!

Uncertainty of 2−23 on the coefficient of x19
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Brief survey of existing references

I Mosier (1986): Definition and study form the ∞-norm.
I Trefethen and Toh (1994): Study for the 2-norm.

pseudozeros ≈ pseudospectra of the companion matrix.
I Chatelin and Frayssé (1996): propose a Synthesis in Lectures on Finite

Precision Computations (SIAM)
I Stetter (1999,2004): Numerical polynomial algebra. Generalization of

the previous works.
I Zhang (2001): Study of the influence of the basis for the 2-norm

(condition number of the evaluation).
I Hoffman, Madden, Zhang (2003): the multivariate case
I Corless, Kai, Watt (2003): algorithms for the multivariate case
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Definitions (1/3)

A monomial in the n variables z1, . . . , zn is the power product

z j := z j1
1 · · · z jn

n , with j = (j1, . . . , jn) ∈ Nn;

j is the exponent and |j | :=
∑n

σ=1 jσ the degree of the monomial z j .

Definition 1
A complex (real) polynomial in n variables is a finite linear combination of
monomials in n variables with coefficients from C (from R),

p(z) = p(z1, . . . , zn) =
n∑

(j1,...,jn)∈J

aj1···jnz
j1
1 · · · z jn

n =
∑
j∈J

ajz j .

Pn(C) (Pn(R)) represents the set of all complex (real) polynomials in n
variables.
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Definitions (2/3)

Given p =
∑

j∈J ajz j ∈ Pn(K) with K = R or C
−→ |J| the number of elements of J

If |J| = M and let ‖ · ‖ be a norm on KM

−→ ‖p‖ is the norm of the vector a = (. . . , aj , . . . , j ∈ J)

Given a norm ‖ · ‖ on KN with K = R or C, the dual norm is defined by
‖x‖∗ := sup‖y‖=1 |yT x |.

Given a vector x ∈ KN , there exists a dual vector y ∈ KN with ‖y‖ = 1
satisfying xT y = ‖x‖∗.

Norms Dual norms
‖x‖1 :=

∑
j |xj | ‖x‖∗1 = maxj |xj | = ‖x‖∞

‖x‖2 := (
∑

j |xj |2)1/2 ‖x‖∗2 = (
∑

j |xj |2)1/2 = ‖x‖2

‖x‖∞ := maxj |xj | ‖x‖∗∞ =
∑

j |xj | = ‖x‖1
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Definitions (3/3)

Given ε > 0, the ε-neighborhood Nε(p) of the polynomial p ∈ Pn(K) is the
set of all polynomials of Pn(K) with p̃ =

∑
j∈eJ ãjz j ∈ Pn(K) with support

J̃ ⊂ J and ‖p̃ − p‖ ≤ ε.

Definition 2
A value z ∈ Kn is an ε-pseudozero of a polynomial p ∈ Pn if it is a zero of
some polynomial p̃ in Nε(p).

Definition 3
The ε-pseudozero set of a polynomial p ∈ Pn (denoted by Zε(p)) is the set
of all the ε-pseudozeros,

Zε(p) := {z ∈ Kn : ∃p̃ ∈ Nε(p), p̃(z) = 0}.
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Pseudozeros of complex multivariate polynomials (1/2)

Theorem 1 (Stetter)

The complex ε-pseudozero set of p =
∑

j∈J ajz j ∈ Pn(C) verifies

Zε(p) =

{
z ∈ Cn : g(z) :=

|p(z)|
‖z‖∗

≤ ε

}
where z := (. . . , |z |j , . . . , j ∈ J)T .
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Pseudozeros of complex multivariate polynomials (2/2)

Corollary 1 (Stetter)
The complex ε-pseudozero set of P = {p1, . . . , pk}, k ∈ N verifies

Zε(P) =

{
z ∈ Cn :

|pl (z)|
‖zl‖∗

≤ ε for l = 1, . . . , k
}

,

where zl := (. . . , |z |j , . . . , j ∈ Jl )
T .

We restrict our attention to situations where P as well as all the systems in Nε(P)

are 0-dimensional, that is, if the solution of the system is non-empty and finite.

Theorem 2 (Stetter)

Each system P̃ ∈ Nε(P) has the same number of zeros (counting
multiplicities) in a fixed pseudozero set connected component of Zε(P).
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Pseudozeros of real multivariate polynomials: definition

A real ε-neighborhood of p is the set of all polynomials of Pn(R), close
enough to p, that is to say,

NR
ε (p) = {p̃ ∈ Pn(R) : ‖p − p̃‖ ≤ ε} .

The real ε-pseudozero set of p is defined to include all the zeros of the real
ε-neighborhood of p :

ZR
ε (p) =

{
z ∈ Cn : p̃(z) = 0 for p̃ ∈ NR

ε (p)
}

.

For ε = 0, the pseudozero set ZR
0 (p) is the set of the roots of p we denote

Z (p).
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Pseudozeros of real multivariate polynomials: computation

Distance of a point x ∈ RN from the linear subspace Ry = {αy , α ∈ R}

d(x , Ry) = inf
α∈R

‖x − αy‖∗,

Theorem 3
The real ε-pseudozero set of p =

∑
j∈J ajz j ∈ Pn(R) verifies

ZR
ε (p) = Z (p) ∪

{
z ∈ Cn\Z (p) : h(z) := d(GR(z), RGI (z)) ≥ 1

ε

}
,

where GR(z) and GI (z) are the real and imaginary parts of

G (z) =
1

p(z)
(. . . , z j , . . . , j ∈ J)T , z ∈ Cn\Z (p).

S. Graillat (Univ. Perpignan) Pseudozeros of Multivariate Polynomials RWCA 2006 12 / 22



Computing the distance

computing real ε-pseudozero set ZR
ε (p) needs to evaluate the distance

d(GR(z), RGI (z)).
the 2-norm ‖ · ‖2 and 〈·, ·〉 the corresponding inner product

d(x , Ry) =


√
‖x‖2

2 −
〈x ,y〉2
‖y‖2

2
if y 6= 0,

‖x‖2 if y = 0.

the ∞-norm,

d(x , Ry) =

mini=0:n
yi 6=0

‖x − (xi/yi )y‖1 if y 6= 0,

‖x‖1 if y = 0.

other p-norm with p 6= 2,∞, no easy computable formula to calculate
d(x , Ry).
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Real pseudozeros of polynomial systems

Corollary 2
The real ε-pseudozero set of P = {p1, . . . , pk}, k ∈ N verifies

ZR
ε (P) =

k⋂
l=1

(
Z (pl ) ∪

{
z ∈ Cn\Z (pl ) : d(G l

R(z), RG l
I (z)) ≥ 1

ε

})

where G l
R(z) and G l

I (z) are the real and imaginary parts of

G l (z) =
1

pl (z)
(. . . , z j , . . . , j ∈ Jl )

T , z ∈ Cn\Z (pl ).
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Visualization of pseudozero sets (1/5)

The descriptions of Zε(P) and ZR
ε (P) given previously make it

possible to compute, plot and visualize pseudozero set of multivariate
polynomials.
The pseudozero set is a subset of Cn which can only be seen by its
projections on low dimensional spaces that is often C.

We have written a MATLAB program to compute and visualize these
projections. This program requires the Symbolic Math Toolbox.
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Visualization of pseudozero sets (2/5)

For a given v ∈ Cn, let Zε(P, j , v) be the projection of Zε(P) onto the
zj -space around v . Then, it follows that for P = {p1, . . . , pk},

Zε(P, j , v) =

{
z ∈ Cn : zi = vi , i 6= j , max

l=1,...,k

|pl (z)|
‖zl‖∗

≤ ε

}
,

where zl := (. . . , |z |j , . . . , j ∈ Jl )
T .

One way for visualizing Zε(P, j , v) is to plot the values of the projection of

ps(z) := log10

(
max

l=1,...,k

|pl (z)|
‖zl‖∗

)
over a set of grid points around v in zj -space.
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Visualization of pseudozero sets (3/5)

In the same way, we define for a given v ∈ Cn, ZR
ε (P, j , v) by the projection

of ZR
ε (P) onto the zj -space around v . It follows that for P = {p1, . . . , pk},

ZR
ε (P, j , v) =

{
z ∈ Cn : zi = vi , i 6= j , max

l=1,...,k
d(G l

R(z), RG l
I (z))−1 ≤ ε

}
where G l

R(z) and G l
I (z) are the real and imaginary parts of

G l (z) =
1

pl (z)
(. . . , z j , . . . , j ∈ Jl )

T , z ∈ Cn\Z (pl ).

One way for visualizing ZR
ε (P, j , v) is still to plot the values of the

projection of

psR(z) := log10

(
max

l=1,...,k
d(G l

R(z), RG l
I (z))−1

)
over a set of grid points around v in zj -space.
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Visualization of pseudozero sets (4/5)

We examine the following system
using the 2-norm: two unit balls
intersection at (2, 2),

P1 =

{
p1 = (z1 − 1)2 + (z2 − 2)2 − 1,
p2 = (z1 − 3)2 + (z2 − 2)2 − 1. 1
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Projections of the complex
pseudozero set (on the left) and the
real pseudozero set (on the right) of

P1
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Visualization of pseudozero sets (5/5)

We can be only interested in the real zeros of a polynomial systems. In this
case, we can only draw Rn ∩ ZR

ε (P).

P2 =

{
p1 = z2

1 + z2
2 − 1,

p2 = 25z1z2 − 12.

We have computed the function

g(x , y) = max
l=1,2

pl (x , y)

‖zl‖∗
,

with zl := (. . . , |x + iy |j , . . . , j ∈ Jl )
T .
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Conclusion and future work

Approximate polynomials are unavoidable in numerous application
fields and in finite precision environment.
Plotting pseudozero set can give qualitative and sometimes
quantitative interesting informations about the behavior of these
approximate polynomials.

We hope that pseudozero set will be used as much as pseudospectra.

S. Graillat (Univ. Perpignan) Pseudozeros of Multivariate Polynomials RWCA 2006 20 / 22



Thank you for your attention
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