Accurate Floating Point Product

Stef Graillat

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6)

REC'08, Third International Worskhop on Reliable Engineering Computing Savannah, Georgia, USA, February 20-22, 2008

Motivations

- Determinant of a triangle matrix

$$
\begin{gathered}
T=\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
& t_{22} & & t_{2 n} \\
& & \ddots & \vdots \\
& & & t_{n n}
\end{array}\right] . \\
\operatorname{det}(T)=\prod_{i=1}^{n} t_{i i} .
\end{gathered}
$$

- Evaluation of a polynomial when represented by the root product form $p(x)=a_{n} \prod_{i=1}^{n}\left(x-x_{i}\right)$

What are Error-Free Transformations (EFT)?

Assume floating point arithmetic adhering IEEE 754 with rounding to nearest with rounding unit \mathbf{u} (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the generated elementary rounding errors,

$$
a, b \text { entries } \in \mathbb{F}, \quad a \circ b=f(a \circ b)+e, \text { with } e \in \mathbb{F}
$$

Key tools for accurate computation

- fixed length expansions libraries : double-double (Briggs, Bailey, Hida, $\mathrm{Li})$, quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi, Graillat-Langlois-Louvet)

EFT for the summation

$$
x=\mathrm{fl}(a \pm b) \Rightarrow a \pm b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithms of Dekker (1971) and Knuth (1974)
Algorithm 1 (EFT of the sum of 2 floating point numbers with $|a| \geq|b|)$
function $[x, y]=$ FastTwoSum (a, b)

$$
\begin{aligned}
& x=f \mathrm{l}(a+b) \\
& y=\mathrm{fl}((a-x)+b)
\end{aligned}
$$

Algorithm 2 (EFT of the sum of 2 floating point numbers)

function $[x, y]=\operatorname{TwoSum}(a, b)$

$$
\begin{aligned}
& x=\mathrm{fl}(a+b) \\
& z=\mathrm{fl}(x-a) \\
& y=\mathrm{fl}((a-(x-z))+(b-z))
\end{aligned}
$$

EFT for the product $(1 / 3)$

$$
x=\mathrm{fl}(a \cdot b) \Rightarrow a \cdot b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithm TwoProduct by Veltkamp and Dekker (1971)

$$
a=x+y \quad \text { and } \quad x \text { and } y \text { non overlapping with }|y| \leq|x| .
$$

Algorithm 3 (Error-free split of a floating point number into two parts)
function $[x, y]=\operatorname{Split}(a, b)$
factor $=\mathrm{fl}\left(2^{s}+1\right) \quad \% \mathbf{u}=2^{-p}, s=\lceil p / 2\rceil$
$c=\mathrm{fl}($ factor $\cdot \mathrm{a})$
$x=f(c-(c-a))$
$y=f 1(a-x)$

EFT for the product $(2 / 3)$

```
Algorithm 4 (EFT of the product of 2 floating point numbers)
function \([x, y]=\operatorname{TwoProduct}(a, b)\)
    \(x=\mathrm{fl}(a \cdot b)\)
    \(\left[a_{1}, a_{2}\right]=\operatorname{Split}(a)\)
    \(\left[b_{1}, b_{2}\right]=\operatorname{Split}(b)\)
    \(y=\mathrm{fl}\left(a_{2} \cdot b_{2}-\left(\left(\left(x-a_{1} \cdot b_{1}\right)-a_{2} \cdot b_{1}\right)-a_{1} \cdot b_{2}\right)\right)\)
```


EFT for the product $(3 / 3)$

Given $a, b, c \in \mathbb{F}$,

- $\operatorname{FMA}(a, b, c)$ is the nearest floating point number $a \cdot b+c \in \mathbb{F}$

Algorithm 5 (EFT of the product of 2 floating point numbers)

function $[x, y]=$ TwoProductFMA (a, b)

$$
\begin{aligned}
& x=\mathrm{fl}(a \cdot b) \\
& y=\operatorname{FMA}(a, b,-x)
\end{aligned}
$$

The FMA is available for example on PowerPC, Itanium, Cell processors.

Summary

Theorem 1

Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that $[x, y]=\operatorname{TwoSum}(a, b)$. Then,

$$
a+b=x+y, \quad x=f|(a+b), \quad| y|\leq \mathbf{u}| x|, \quad| y|\leq \mathbf{u}| a+b \mid
$$

The algorithm TwoSum requires 6 flops.
Let $a, b \in \mathbb{F}$ and let $x, y \in \mathbb{F}$ such that $[x, y]=\operatorname{TwoProduct}(a, b)$. Then,

$$
a \cdot b=x+y, \quad x=f|(a \cdot b), \quad| y|\leq \mathbf{u}| x|, \quad| y|\leq \mathbf{u}| a \cdot b \mid,
$$

The algorithm TwoProduct requires 17 flops.

Classic method for computing product

The classic method for evaluating a product of n numbers $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

$$
p=\prod_{i=1}^{n} a_{i}
$$

is the following algorithm.

```
Algorithm 6 (Product evaluation)
function res \(=\operatorname{Prod}(a)\)
    \(p_{1}=a_{1}\)
    for \(i=2: n\)
    \(p_{i}=\mathrm{fl}\left(p_{i-1} \cdot a_{i}\right) \quad\) \% rounding error \(\pi_{i}\)
    end
    res \(=p_{n}\)
```

This algorithm requires $n-1$ flops

Error analysis

$$
\gamma_{n}:=\frac{n \mathbf{u}}{1-n \mathbf{u}} \quad \text { for } n \in \mathbb{N} .
$$

A forward error bound is

$$
\mid a_{1} a_{2} \cdots a_{n}-\text { res }\left|\leq \gamma_{n-1}\right| a_{1} a_{2} \cdots a_{n} \mid
$$

A validated error bound is

$$
\mid a_{1} a_{2} \cdots a_{n}-\text { res } \left\lvert\, \leq f l\left(\frac{\gamma_{n-1} \mid \text { res } \mid}{1-2 \mathbf{u}}\right)\right.
$$

Compensated method for computing product

```
Algorithm 7 (Product evaluation with a compensated scheme)
function res \(=\operatorname{CompProd}(a)\)
    \(p_{1}=a_{1}\)
    \(e_{1}=0\)
    for \(i=2: n\)
    [ \(p_{i}, \pi_{i}\) ] \(=\operatorname{TwoProduct~}\left(p_{i-1}, a_{i}\right)\)
    \(e_{i}=\mathrm{fl}\left(e_{i-1} a_{i}+\pi_{i}\right)\)
    end
    res \(=f l\left(p_{n}+e_{n}\right)\)
```

This algorithm requires $19 n-18$ flops

Compensated method for computing product

Algorithm 8 (Product evaluation with a compensated scheme with TwoProductFMA and FMA)

```
function res = CompProdFMA(a)
    p1}=\mp@subsup{a}{1}{
    e}=
    for i=2:n
        [pi,\mp@subsup{\pi}{i}{}]=\operatorname{TwoProductFMA( }\mp@subsup{p}{i-1}{},\mp@subsup{a}{i}{})
        e}=\operatorname{FMA}(\mp@subsup{e}{i-1}{},\mp@subsup{a}{i}{},\mp@subsup{\pi}{i}{}
    end
    res =fl(p
```

This algorithm requires $3 n-2$ flops

Error analysis

Theorem 2

Suppose Algorithm CompProd is applied to floating point number $a_{i} \in \mathbb{F}$, $1 \leq i \leq n$, and set $p=\prod_{i=1}^{n} a_{i}$. Then,

$$
\mid \text { res }-p|\leq \mathbf{u}| p\left|+\gamma_{n} \gamma_{2 n}\right| p \mid
$$

Condition number of the product evaluation :
$\operatorname{cond}(a)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{\left|\left(a_{1}+\Delta a_{1}\right) \cdots\left(a_{n}+\Delta a_{n}\right)-a_{1} \cdots a_{n}\right|}{\varepsilon\left|a_{1} a_{2} \cdots a_{n}\right|}:\left|\Delta a_{i}\right| \leq \varepsilon\left|a_{i}\right|\right\}$
A standard computation yields

$$
\operatorname{cond}(a)=n
$$

Numerical experiments

Laptop with a Pentium M processor at 1.73 GHz with gcc version 4.0.2.

Tab.: Measured computing times with Prod normalised to 1.0

n	Prod	CompProd
100	1.0	3.5
500	1.0	4.4
1000	1.0	5.0
10000	1.0	4.9
100000	1.0	5.5

The theoretical ratio for CompProd is 19 .
Compensated algorithms are generally faster than the theoretical performances
\rightarrow due to a better instruction-level parallelism.

Validated error bound

Lemma 1

Suppose Algorithm CompProd is applied to floating point numbers $a_{i} \in \mathbb{F}$, $1 \leq i \leq n$ and set $p=\prod_{i=1}^{n} a_{i}$. Then, the absolute forward error affecting the product is bounded according to

$$
\mid \text { res }-p \left\lvert\, \leq \mathrm{fl}\left(\left(\mathbf{u} \mid \text { res } \left\lvert\,+\frac{\gamma_{n} \gamma_{2 n}\left|a_{1} a_{2} \cdots a_{n}\right|}{1-(n+3) \mathbf{u}}\right.\right) /(1-2 \mathbf{u})\right)\right.
$$

Faithful rounding (1/3)

Floating point predecessor and successor of a real number r satisfying $\min \{f: f \in \mathbb{R}\}<r<\max \{f: f \in \mathbb{F}\}:$

$$
\operatorname{pred}(r):=\max \{f \in \mathbb{F}: f<r\} \quad \text { and } \quad \operatorname{succ}(r):=\min \{f \in \mathbb{F}: r<f\} .
$$

Definition 1

A floating point number $f \in \mathbb{F}$ is called a faithful rounding of a real number $r \in \mathbb{R}$ if

$$
\operatorname{pred}(f)<r<\operatorname{succ}(f)
$$

We denote this by $f \in \square(r)$. For $r \in \mathbb{F}$, this implies that $f=r$.
Faithful rounding means that the computed result is equal to the exact result if the latter is a floating point number and otherwise is one of the two adjacent floating point numbers of the exact result.

Faithful rounding (2/3)

Lemma 2 (Rump, Ogita and Oishi, 2005)
Let $r, \delta \in \mathbb{R}$ and $\widetilde{r}:=\mathrm{fl}(r)$. Suppose that $2|\delta|<\mathbf{u}|\widetilde{r}|$. Then $\tilde{r} \in \square(r+\delta)$, that means \tilde{r} is a faithful rounding of $r+\delta$.

Faithful rounding (3/3)

Let res $=\operatorname{CompProd}(p)$

Lemma 3

If $n<\frac{\sqrt{1-\mathbf{u}}}{\sqrt{2} \sqrt{2+\mathbf{u}}+2 \sqrt{(1-\mathbf{u}) \mathbf{u}}} \mathbf{u}^{-1 / 2}$ then res is a faithful rounding of p.

If $n<\alpha \mathbf{u}^{-1 / 2}$ where $\alpha \approx 1 / 2$ then the result is faithfully rounded In double precision where $\mathbf{u}=2^{-53}$, if $n<2^{25} \approx 5 \cdot 10^{7}$, we get a faithfully rounded result

Validated error bound and faithful rounding

If

$$
\mathfrak{f l}\left(2 \frac{\gamma_{n} \gamma_{2 n}\left|a_{1} a_{2} \cdots a_{n}\right|}{1-(n+3) \mathbf{u}}\right)<\mathfrak{f l}(\mathbf{u} \mid \text { res } \mid)
$$

then we got a faitfully rounded result. This makes it possible to check a posteriori if the result is faithfully rounded.

Exponentiation - a linear algorithm

```
Algorithm 9 (Power evaluation with a compensated scheme)
function res \(=\operatorname{CompLinPower}(x, n)\)
    \(p_{1}=x\)
    \(e_{1}=0\)
    for \(i=2: n\)
    \(\left[p_{i}, \pi_{i}\right]=\operatorname{TwoProduct}\left(p_{i-1}, x\right)\)
    \(e_{i}=\mathrm{fl}\left(e_{i-1} x+\pi_{i}\right)\)
    end
    res \(=\mathrm{fl}\left(p_{n}+e_{n}\right)\)
```

Complexity : $\mathcal{O}(n)$
In double precision where $\mathbf{u}=2^{-53}$, if $n<2^{25} \approx 5 \cdot 10^{7}$, we get a faithfully rounded result

A double-double library

Algorithm 10 (Multiplication of two double-double numbers)

```
function [r}\mp@subsup{r}{h}{},\mp@subsup{r}{l}{}]=\mathrm{ prod_dd_dd( }\mp@subsup{a}{h}{},\mp@subsup{a}{l}{},\mp@subsup{b}{h}{},\mp@subsup{b}{l}{l}
    [t, t2] = TwoProduct (ah, b
    t3 = fl(((ah}\cdot\mp@subsup{b}{l}{})+(\mp@subsup{a}{l}{}\cdot\mp@subsup{b}{h}{\prime}))+\mp@subsup{t}{2}{}
    [rh, rl] = TwoProduct (t t, th)
```

Algorithm 11 (Multiplication of double-double number by a double number)

$$
\begin{aligned}
& \text { function }\left[r_{h}, r_{l}\right]=\operatorname{prod}-\mathrm{dd}-\mathrm{d}\left(a, b_{h}, b_{l}\right) \\
& \left.\qquad t_{1}, t_{2}\right]=\operatorname{TwoProduct}\left(a, b_{h}\right) \\
& t_{3}=\mathrm{fl}\left(\left(a \cdot b_{l}\right)+t_{2}\right) \\
& {\left[r_{h}, r_{l}\right]=\operatorname{TwoProduct}\left(t_{1}, t_{3}\right)}
\end{aligned}
$$

A double-double library

Theorem 3 (Lauter 2005)

Let be $a_{h}+a_{l}$ and $b_{h}+b_{l}$ the double-double arguments of Algorithm prod_dd_dd. Then the returned values r_{h} and $r_{\text {I }}$ satisfy

$$
r_{h}+r_{l}=\left(\left(a_{h}+a_{l}\right) \cdot\left(b_{h}+b_{l}\right)\right)(1+\varepsilon)
$$

where ε is bounded as follows: $|\varepsilon| \leq 16 \mathbf{u}^{2}$. Furthermore, we have $\left|r_{l}\right| \leq \mathbf{u}\left|r_{h}\right|$.

A logarithmic algorithm

```
Algorithm 12 (Power evaluation with a compensated scheme)
function res \(=\operatorname{CompLogPower}(x, n)\)
\(\% n=\left(n_{t} n_{t-1} \cdots n_{1} n_{0}\right)_{2}\)
\([h, l]=[1,0]\)
for \(i=t:-1: 0\)
    \([h, l]=\) prod_dd_dd \((h, l, h, l)\)
    if \(n_{i}=1\)
        \([h, l]=\) prod_dd_d \((x, h, l)\)
        end
    end
    res \(=\mathrm{fl}(h+l)\)
```

Complexity : $\mathcal{O}(\log n)$

A logarithmic algorithm

Theorem 4

The two values h and I returned by Algorithm CompLogPower satisfy

$$
h+I=x^{n}(1+\varepsilon)
$$

with

$$
\left(1-16 \mathbf{u}^{2}\right)^{n-1} \leq 1+\varepsilon \leq\left(1+16 \mathbf{u}^{2}\right)^{n-1}
$$

For example, in double precision where $\mathbf{u}=2^{-53}$, if $n<2^{49} \approx 5 \cdot 10^{14}$, then we get a faithfully rounded result.

Thank you for your attention

