
Extended precision on the CELL processor

Diep Nguyen Hong Stef Graillat Jean-Luc Lamotte

LIP6/PEQUAN
P. and M. Curie University

REC’08, Third International Worskhop on Reliable Engineering
Computing

Savannah, Georgia, USA, February 20-22, 2008

Overview

1 The Cell processor

2 Reliable computing and extended precision on Cell processor

3 Results

4 Conclusions

The CELL processor

SP > 200 GFlops, DP=15 Gflops, 25GB/s memory BW, 300 GB/s EIB

Power Processor Element (PPE)

The PPE is based on the 2-way Power Architecture with :

32 KB of L1 cache for instructions

32 KB of L1 cache for data

512 KB of L2 cache

The PPE is fully pipelined for double precision computation and
fully IEEE compliant.

Synergistic Processing Element SPE (1/2)

The SPE is a small processor with a vectorial unit.

small memory (256 KB) for instructions and data, named
“local store” (LS)

128 registers of 128 bits

1 SPU ”Synergistic Processing Unit”

4 units for single precision computation
1 unit for double precision computation

MFC ”Memory Flow Controller” which manages memory
access through DMA

Synergistic Processing Element SPE (2/2)

128-bit registers :

16 integers of 8-bits,

8 integers of 16-bits,

4 integers of 32-bits,

4 single precision floating point numbers,

2 double precision floating point numbers.

The SIMD processor is based on FMA and is fully pipelined in SP :

Peak performance SP : 4× 2× 3.2 = 25.6GFLOPs
Not fully pipelined in double precision :

Peak performance in DP : 2× 2× 3.2/7 = 1.8GFLOPs

Copyright

IBM

Parallelism on CELL

3 levels of parallelism :

1 processes on CELL processors, exchange with a MPI library,

2 threads on 8 SPE,

3 inside a thread, SIMD programming.

Parallelism on CELL

3 levels of parallelism :

1 processes on CELL processors, exchange with a MPI library,

2 threads on 8 SPE,

3 inside a thread, SIMD programming.

Parallelism on CELL

3 levels of parallelism :

1 processes on CELL processors, exchange with a MPI library,

2 threads on 8 SPE,

3 inside a thread, SIMD programming.

The parallel programming

Data distribution and communication between PPE and SPE :

ALF
mailing box
exchange through DMA
data need to be aligned on quadword
double buffering technique

on an SPE

only 256 KB
Altivec programming
code and data dependencies : not to break the SIMD pipeline

The performance price on SPE

No division
1/x and 1/

√
x : only the 12 first bits are exact.

SPU float arithmetic is not IEEE compliant :

only rounding mode to zero (truncation).

The highest exponent (128) is used not for Infinity or NaN,
but is used to extend the range of the floating point.

Inf and NaN are not recognized by arithmetic operations.

Overflow results saturate to the largest representable positive
or negative values, rather than producing +/-IEEE Infinity.

No denormalized results : +0 instead.

The performance price

SPU double arithmetic is IEEE compliant except :

FP trapping is not supported.

Denormalized operands are treated as 0.

NaN results are always the default QNaN (Quiet NaN)

Reliable computing on Cell processor

difficult to implement interval arithmetic.

possible to “emulate” a rounding mode toward +∞
if r ∈ R non-negative, fl0(r) ≤ r ≤ succ(fl0(r))
and

succ(f) = max{fl0(f + 2uf), fl0(f + u)}.

where u is the relative rounding error and u the underflow unit

Error-free transformations

Let a, b ∈ F, and ◦ an operation in ◦ ∈ {+,−, ·, /}

(a ◦ b) ∈ R
6∈ F

→ fl(a ◦ b) 6= (a ◦ b)

(a ◦ b)− fl(a ◦ b) = err is the roundoff error
“Error-free transformation” (EFT) : allows us to find the couple
(x , y) such as :

x ≈ fl(a ◦ b)

a ◦ b = x + y

EFT for the sum with rounding mode to nearest

x = fl(a± b) ⇒ a± b = x + y with y ∈ F,

Algorithm 1 (EFT for the sum of 2 floating point numbers
(Knuth 1969))

function [x , y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a− (x − z)) + (b − z))

Cost : 6 FLOPs

Algorithm 2 (EFT for the sum of 2 floating point numbers
(Dekker 1971), |a| ≥ |b|)
function [x , y] = FastTwoSum(a, b)

x = fl(a + b)
y = fl((a− x) + b)

Cost : 3 FLOPs

EFT for the sum with rounding mode toward zero

Algorithm 3 (EFT for the sum of 2 floating point numbers
with a rounding mode toward zero (Priest))

function [x , y] = TwoSum− toward− zero(a, b)
if (|b| > |a|)

swap(a, b)
x = fl(a + b)
d = fl(x − a)
y = fl(b − d)
if(y + d 6= b)

x = a, y = b

Cost : 6.5 FLOPs

EFT for the sum with rounding mode toward zero
Algorithm 4 (EFT for the sum of 2 floating point numbers
with a rounding mode toward zero)

function [x , y] = TwoSum− toward− zero(a, b)
if (|b| > |a|)

swap(a, b)
x = fl(a + b)
d = fl(x − a)
y = fl(b − d)
if (|2 ∗ b| < |d |)

x = a, y = b

Cost : 6.5 FLOPs

Theorem 1

The algorithm TwoSum− toward− zero transforms 2 floating
point numbers a and b into a couple of floating point numbers
(x , y) satisfying

x + y = a + b and |y | < ulp(x)

EFT for the product with rounding mode to nearest

x = fl(a · b) ⇒ a · b = x + y with y ∈ F,

Algorithm TwoProduct of Veltkamp and Dekker (1971)

a = x + y and x and y non-overlapping with |y | ≤ |x |.

Algorithm 5 (Error-free split of a floating point number into
two parts)

function [x , y] = Split(a)
factor = fl(2s + 1) % u = 2−p , s = dp/2e
c = fl(factor · a)
x = fl(c − (c − a))
y = fl(a− x)

Cost : 4 FLOPs

EFT for the product with rounding mode to nearest

Algorithm 6 (EFT of the product of two floating point
numbers)

function [x , y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x − a1 · b1)− a2 · b1)− a1 · b2))

Cost : 17 FLOPs

EFT for the product with rounding mode to nearest

What is a Fused Multiply and Add (FMA) in floating point
arithmetic ?
→ Given a, b and c , three floating point numbers, FMA(a, b, c)
computes a · b + c rounded according to the current rounding mode
⇒ only one rounding error for two operations !
FMA is available Cell processors.

Algorithm 7 (EFT of the product of two floating point
numbers)

function [x , y] = TwoProductFMA(a, b)
x = fl(a · b)
y = FMA(a, b,−x)

⇒ Still valid with rounding toward zero !
Cost : 2 FLOPs

Extended precision

Definition 1 (extended precision)

An extended precision number of n is a non-evalued sum of n
floating point number. x = x1 + x2 + . . . + xn

Normalisation :

1 to the nearest : |xk+1| ≤ 1
2ulp(xk).

2 toward zero : |xk+1| < ulp(xk) have the same sign.

Precision used on Cell processor : simple precision

n=2 : double-simple

Sum of 2 double-simples

bhah blal

Renormalisation

rh rl

Theorem 2

Let a = ah + al and b = bh + bl , two double-simples to add,
r = rh + rl the result and δ the algorithm error. The algorithm
error satisfies

r = a + b + δ
|δ| < max(2−23 ∗ |al +bl |, 2−43 ∗ |ah + al +bh +bl |)+2−45 ∗ |a+b|.

The exact transformation code

a, b : vector of 4 floating point numbers.

1 TwoSum-toward-zero (a,b)
2 comp = spu cmpabsgt(b,a)
3 hi = spu sel(a, b, comp)
4 lo = spu sel(b, a, comp)
5 s = spu add(a , b)
6 d = spu sub(s , hi)
7 e = spu sub(lo , d)
8 tmp = spu mul(2 , lo)
9 comp = spu cmpabsgt(d, tmp)
10 s = spu sel(s, hi, comp)
11 e = spu sel(e, lo, comp)
12 return (s,e)

cycles
12
-34
45

012345
-678901

----234567
789012

34
-56

--89

Cost : 20 cycles

Renormalisation

1 Renormalise2-toward-zero (a,b)
2 s = spu add(a , b)
3 comp = spu cmpabsgt(b,a)
4 hi = spu sel(a, b, comp)
5 lo = spu sel(b, a, comp)
6 d = spu sub(s , hi)
7 e = spu sub(lo , d)
8 return (s,e)

Cost : 18 cycles

Theorem 3

Let a and b be two single floating point numbers. The result
returns by Renormalise2-toward-zero is a double simple
number (s, e) which satisfies

s and e have the same sign

|e| < ulp(s)

a + b = s + e + δ with δ ≤ 2−45|a + b|.

Addition of two double-simple : the natural version

b0a0 b1a1

Renormalisation

r0 r1

1 add ds ds vect(a , b)
2 (s,e) = TwoSum-toward-zero(a , b)
3 t = spu shuffle(s,s,switch-vect)
4 t1 = spu add(t , e)
5 (hi,lo) = Renormalise2-toward-zero(s,t1)

6 res = spu shuffle(hi,lo,merge-vect)
7 return res

Cost : 50 cycles / 2 operations

a a1
hi a1

lo a2
hi a2

lo

b b1
hi b1

lo b2
hi ab2

lo

s s1
hi s1

lo s2
hi s2

lo

e e1
hi – e2

hi –

t s1
lo – s2

lo –

hi hi1 – hi2 –

lo lo1 – lo2 –

res hi1 lo1 hi2 lo2

addition of two double-simple : version 2

1 add ds ds 2vect (vect a1, vect a2, vect b1, vect b2)
2 a hi = spu shuffle(vect a1, vect a2, merge1 vect)
3 a lo = spu shuffle(vect a1, vect a2, merge2 vect)
4 b hi = spu shuffle(vect b1, vect b2, merge1 vect)
5 b lo = spu shuffle(vect b1, vect b2, merge2 vect)
6 (s, e) = TwoSum-toward-zero (a hi, b hi)
7 t1 = spu add(a lo , b lo)
8 tmp = spu add(t1 , e)
9 (hi, lo) = Renormalise2-toward-zero (s , tmp)
10 vect c1 = spu shuffle(hi, lo, merge1 vect)
11 vect c2 = spu shuffle(hi, lo, merge2 vect)
12 return (vect c1, vect c2)

Cost : 64 cycles / 4 opérations

Sum of double-simple : optimised version

The version 2 increases the performance of the sum.

cycles are still lost.

⇒ to perform version 2 twice in a same function.

Cost : 72 cycles / 8 operations

Theoretical results

frequency : 3.2GHz.
The peak performance in double precision :
2× 2× 3.2/7 = 1.8GFLOPs.

function Cycles number Performance
Add ds ds vect 50 cycles / 2 128 MFLOPs

Add ds ds 2vect 64 cycles / 4 200 MFLOPs

Add ds ds 4vect 72 cycles / 8 355 MFLOPs

Mul ds ds vect 49 cycles / 2 130 MFLOPs

Mul ds ds 2vect 60 cycles / 4 213 MFLOPs

Mul ds ds 4vect 63 cycles / 8 406 MFLOPs

Comparison with double precision

Addition of two vectors with DMA to load data on SPE

SPE number

MFLOPs

double-simple

IEEE double

1 2 4 81 2 4 8

336

559

932

1089

Functions Theoretical Measured Measured
(1SPE) (1 SPE) (8 SPEs)

Add ds ds 4vect 355 266 2133

Mul ds ds 4vect 406 320 2560

double precision addition 914 914 7314

double precision product 914 914 7314

Tab.: Performance without data exchange (MFLOPS)

Quad simple

function Cycles number Performance
Add qs qs 4vect 449 cycles / 4 28.5 MFLOPs

Mul qs qs 4vect 583 cycles / 4 21.9 MFLOPs

Conclusions

The true goal :

to prepare the work for the next CELL :

fully pipelined double precision floating point number
probably 512 KB on SPE

a double double library,

a quad double library.

Rumours on the next generation

IEEE compliant

from 8 to 32 SPE

over 1TFLOPS

Références I

Yozo Hida, Xiaoye S.Li, and David H.Baily.
Quad-double arithmetic : Algorithms, implementations, and
application.
2000.

Donald Knuth.
The art of computer programming : Seminumerical algorithms
vol.2, Reading, Massachusetts : Addison-Wesley,2000.

Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi.
Accurate sum and dot product.
SIAM J. Sci. Comput., 26(6) :1955–1988, 2005.

Christoph Quirin Lauter.
Basic building blocks for a triple-double intermediate format
Tech. report, INRIA, 2005

Références II

Douglas M. Priest.
On Properties of Floating Point Arithmetics : Numerical
Stability and the Cost of Accurate Computations.
PhD thesis, Mathematics Department, University of California,
Berkeley, CA, USA, November 1992.

T.J Dekker.
A floating-point technique for extending the available
precision.
Numer . Math., 18 : 224–242, 1971.

	The Cell processor
	Reliable computing and extended precision on Cell processor
	Results
	Conclusions
	Références

