Extended precision on the CELL processor

Diep Nguyen Hong Stef Graillat Jean-Luc Lamotte

LIP6/PEQUAN
P. and M. Curie University

REC'08, Third International Worskhop on Reliable Engineering
Computing
Savannah, Georgia, USA, February 20-22, 2008

Overview

(1) The Cell processor
(2) Reliable computing and extended precision on Cell processor
(3) Results
(4) Conclusions

The CELL processor

SP >200 GFlops, DP $=15$ Gflops, $25 \mathrm{~GB} / \mathrm{s}$ memory BW, $300 \mathrm{~GB} / \mathrm{s}$ EIB

Cell Broadband Engine Processor

Power Processor Element (PPE)

The PPE is based on the 2-way Power Architecture with:

- 32 KB of L1 cache for instructions
- 32 KB of L1 cache for data
- 512 KB of L 2 cache

The PPE is fully pipelined for double precision computation and fully IEEE compliant.

Synergistic Processing Element SPE (1/2)

The SPE is a small processor with a vectorial unit.

- small memory (256 KB) for instructions and data, named "local store" (LS)
- 128 registers of 128 bits
- 1 SPU "Synergistic Processing Unit"
- 4 units for single precision computation
- 1 unit for double precision computation
- MFC "Memory Flow Controller" which manages memory access through DMA

Synergistic Processing Element SPE (2/2)

128-bit registers :

- 16 integers of 8 -bits,
- 8 integers of 16 -bits,
- 4 integers of 32 -bits,
- 4 single precision floating point numbers,
- 2 double precision floating point numbers.

The SIMD processor is based on FMA and is fully pipelined in SP :
Peak performance SP : $4 \times 2 \times 3.2=25.6$ GFLOPs
Not fully pipelined in double precision :
Peak performance in DP : $2 \times 2 \times 3.2 / 7=1.8 G F L O P s$

$\operatorname{LP}_{\mathrm{La}}$

Ring0 \longrightarrow| Ring1 |
| :--- |
| Ring2 \longrightarrow |
| Ring3 |${ }^{\longrightarrow} \longrightarrow$

controls
500
Copyright IVERSITAS

Parallelism on CELL

3 levels of parallelism :
(1) processes on CELL processors, exchange with a MPI library, (2) threads on 8 SPE,
(3) inside a thread, SIMD programming.

Parallelism on CELL

3 levels of parallelism :
(1) processes on CELL processors, exchange with a MPI library,
(2) threads on 8 SPE,
(3) inside a thread, SIMD programming.

Parallelism on CELL

3 levels of parallelism ：
（1）processes on CELL processors，exchange with a MPI library，
（2）threads on 8 SPE，
（3）inside a thread，SIMD programming．

The parallel programming

- Data distribution and communication between PPE and SPE :
- ALF
- mailing box
- exchange through DMA
- data need to be aligned on quadword
- double buffering technique
- on an SPE
- only 256 KB
- Altivec programming
- code and data dependencies : not to break the SIMD pipeline

The performance price on SPE

No division
$1 / x$ and $1 / \sqrt{x}$: only the 12 first bits are exact.
SPU float arithmetic is not IEEE compliant :

- only rounding mode to zero (truncation).
- The highest exponent (128) is used not for Infinity or NaN, but is used to extend the range of the floating point.
- Inf and NaN are not recognized by arithmetic operations.
- Overflow results saturate to the largest representable positive or negative values, rather than producing $+/$ IEEE Infinity.
- No denormalized results : +0 instead.

The performance price

SPU double arithmetic is IEEE compliant except :

- FP trapping is not supported.
- Denormalized operands are treated as 0 .
- NaN results are always the default QNaN (Quiet NaN)

Reliable computing on Cell processor

- difficult to implement interval arithmetic.
- possible to "emulate" a rounding mode toward $+\infty$ if $r \in \mathbb{R}$ non-negative, $\mathrm{fl}_{0}(r) \leq r \leq \operatorname{succ}\left(\mathrm{fl}_{0}(r)\right)$ and

$$
\operatorname{succ}(f)=\max \left\{\mathrm{fl}_{0}(f+2 \mathbf{u} f), \mathrm{fl}_{0}(f+\underline{\mathrm{u}})\right\} .
$$

where \mathbf{u} is the relative rounding error and $\underline{\mathbf{u}}$ the underflow unit

Error-free transformations

Let $a, b \in \mathbb{F}$, and \circ an operation in $\circ \in\{+,-, \cdot, /\}$

$$
\begin{aligned}
(a \circ b) & \in \mathbb{R} \\
& \notin \mathbb{F} \\
\rightarrow f \prime(a \circ b) & \neq(a \circ b)
\end{aligned}
$$

$(a \circ b)-f l(a \circ b)=e r r$ is the roundoff error
"Error-free transformation" (EFT) : allows us to find the couple (x, y) such as:

- $x \approx f l(a \circ b)$
- $a \circ b=x+y$

EFT for the sum with rounding mode to nearest

$$
x=\mathrm{fl}(a \pm b) \Rightarrow a \pm b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithm 1 (EFT for the sum of 2 floating point numbers (Knuth 1969))
function $[x, y]=\operatorname{TwoSum}(a, b)$

$$
\begin{aligned}
& x=\mathrm{fl}(a+b) \\
& z=\mathrm{fl}(x-a) \\
& y=\mathrm{fl}((a-(x-z))+(b-z))
\end{aligned}
$$

Cost: 6 FLOPs
Algorithm 2 (EFT for the sum of 2 floating point numbers (Dekker 1971), $|a| \geq|b|$) function $[x, y]=\operatorname{FastTwoSum}(a, b)$

$$
\begin{aligned}
& x=\mathrm{fl}(a+b) \\
& y=\mathrm{fl}((a-x)+b)
\end{aligned}
$$

EFT for the sum with rounding mode toward zero

Algorithm 3 (EFT for the sum of 2 floating point numbers with a rounding mode toward zero (Priest))
function $[x, y]=$ TwoSum $-\operatorname{toward}-\operatorname{zero}(a, b)$
if $(|b|>|a|)$
swap (a, b)
$x=f(a+b)$
$d=f(x-a)$
$y=f(b-d)$
if $(y+d \neq b)$
$x=a, y=b$
Cost : 6.5 FLOPs

EFT for the sum with rounding mode toward zero

 Algorithm 4 (EFT for the sum of 2 floating point numbers with a rounding mode toward zero)$$
\begin{aligned}
& \text { function }[x, y]=\text { TwoSum }-\operatorname{toward}-\operatorname{zero}(a, b) \\
& \text { if }(|b|>|a|) \\
& \quad \operatorname{swap}(a, b) \\
& x=f \mid(a+b) \\
& d=f \mid(x-a) \\
& y=f \mid(b-d) \\
& \text { if }(|2 * b|<|d|) \\
& x=a, y=b
\end{aligned}
$$

Cost: 6.5 FLOPs
Theorem 1
The algorithm TwoSum - toward - zero transforms 2 floating point numbers a and b into a couple of floating point numbers (x, y) satisfying

$$
x+y=a+b \text { and }|y|<u l p(x)
$$

EFT for the product with rounding mode to nearest

$$
x=\mathrm{fl}(a \cdot b) \Rightarrow a \cdot b=x+y \quad \text { with } y \in \mathbb{F}
$$

Algorithm TwoProduct of Veltkamp and Dekker (1971)

$$
a=x+y \quad \text { and } \quad x \text { and } y \text { non-overlapping with }|y| \leq|x| .
$$

Algorithm 5 (Error-free split of a floating point number into two parts)
function $[x, y]=\operatorname{Split}(a)$
factor $=\mathrm{fl}\left(2^{s}+1\right)$
$\% \mathbf{u}=2^{-p}, s=\lceil p / 2\rceil$
$c=\mathrm{fl}($ factor $\cdot a)$
$x=f 1(c-(c-a))$
$y=\mathrm{fl}(a-x)$

EFT for the product with rounding mode to nearest

Algorithm 6 (EFT of the product of two floating point numbers)

$$
\begin{aligned}
& \text { function }[x, y]=\operatorname{TwoProduct}(a, b) \\
& x=f 1(a \cdot b) \\
& {\left[a_{1}, a_{2}\right]=\operatorname{Split}(a)} \\
& {\left[b_{1}, b_{2}\right]=\operatorname{Split}(b)} \\
& y=f\left(\left(a_{2} \cdot b_{2}-\left(\left(\left(x-a_{1} \cdot b_{1}\right)-a_{2} \cdot b_{1}\right)-a_{1} \cdot b_{2}\right)\right)\right.
\end{aligned}
$$

Cost : 17 FLOPs

EFT for the product with rounding mode to nearest

What is a Fused Multiply and Add (FMA) in floating point arithmetic?
\rightarrow Given a, b and c, three floating point numbers, $\operatorname{FMA}(a, b, c)$ computes $a \cdot b+c$ rounded according to the current rounding mode \Rightarrow only one rounding error for two operations !
FMA is available Cell processors.
Algorithm 7 (EFT of the product of two floating point numbers)
function $[x, y]=\operatorname{TwoProductFMA}(a, b)$

$$
\begin{aligned}
& x=\operatorname{fl}(a \cdot b) \\
& y=\operatorname{FMA}(a, b,-x)
\end{aligned}
$$

\Rightarrow Still valid with rounding toward zero!
Cost : 2 FLOPs

Extended precision

Definition 1 (extended precision)
An extended precision number of n is a non-evalued sum of n floating point number. $\quad x=x_{1}+x_{2}+\ldots+x_{n}$

Normalisation :
(1) to the nearest: $\left|x_{k+1}\right| \leq \frac{1}{2} u l p\left(x_{k}\right)$.
(2) toward zero: $\left|x_{k+1}\right|<u l p\left(x_{k}\right)$ have the same sign.

Precision used on Cell processor : simple precision

- $n=2$: double-simple

Sum of 2 double-simples

Theorem 2
Let $a=a_{h}+a_{l}$ and $b=b_{h}+b_{l}$, two double-simples to add, $r=r_{h}+r_{\text {I }}$ the result and δ the algorithm error. The algorithm error satisfies

$$
r=a+b+\delta
$$

$\operatorname{Lp}_{\text {上 }}|\delta|<\max \left(2^{-23} *\left|a_{l}+b_{l}\right|, 2^{-43} *\left|a_{h}+a_{l}+b_{h}+b_{l}\right|\right)+2^{-45} *|a+b|$.

The exact transformation code

a, b : vector of 4 floating point numbers.

1	TwoSum-toward-zero (a,b)	cycles
2	comp = spu_cmpabsgt(b,a)	12
3	hi $=$ spu_sel(a, b, comp)	-34
4	$\mathrm{lo}=$ spu_sel(b, a, comp)	45
5	s = spu_add(a, b)	012345
6	$\mathrm{d}=$ spu_sub(s, hi)	-678901
7	e $=$ spu_sub (lo, d)	----234567
8	tmp = spu_mul(2, lo)	789012
9	comp $=$ spu_cmpabsgt(d, tmp)	34
10	s = spu_sel(s, hi, comp)	-56
11	$\mathrm{e}=$ spu_sel(e, lo, comp)	
12	return (s, e)	

Renormalisation

1	Renormalise2-toward-zero (a, b)
2	s = spu_add (a, b)
3	comp $=$ spu_cmpabsgt(b,a)
4	hi $=$ spu_sel ($\mathrm{a}, \mathrm{b}, \mathrm{comp}$)
5	$\mathrm{lo}=$ spu_sel(b, a, comp)
6	$\mathrm{d}=$ spu_sub $(\mathrm{s}, \mathrm{hi})$
7	$\mathrm{e}=$ spu_sub (lo , d)
8	return (s, e)

Cost: 18 cycles

Theorem 3
Let a and b be two single floating point numbers. The result returns by RenormaliseZ-toward-zero is a double simple number (s, e) which satisfies

- s and e have the same sign
- $|e|<u l p(s)$
- $a+b=s+e+\delta$ with $\delta \leq 2^{-45}|a+b|$.

Addition of two double-simple : the natural version

$$
\begin{aligned}
& \text { add_ds_ds_vect(a, b) } \\
& (\mathrm{s}, \mathrm{e})=\text { TwoSum-toward-zero(a, b) } \\
& \mathrm{t}=\text { spu_shuffle(s,s,switch-vect) } \\
& \mathrm{t} 1=\text { spu_add(} \mathrm{t}, \mathrm{e}) \\
& (\text { hi,lo })=\text { Renormalise2-toward-zero(s,t1) } \\
& \text { res }=\text { spu_shuffle(hi,lo,merge-vect) } \\
& \text { return res }
\end{aligned}
$$

t

hi

Cost: 50 cycles / 2 operations

addition of two double-simple : version 2

```
add_ds_ds_2vect (vect_a1, vect_a2, vect_b1, vect_b2)
        a_hi = spu_shuffle(vect_a1, vect_a2, _merge1_vect_)
        a_lo = spu_shuffle(vect_a1, vect_a2,_merge2_vect_)
        b_hi = spu_shuffle(vect_b1, vect_b2, _merge1_vect_)
        b_lo = spu_shuffle(vect_b1, vect_b2, _merge2_vect_)
        (s, e) = TwoSum-toward-zero (a_hi, b_hi)
        t1 = spu_add(a_lo,b_lo)
        tmp = spu_add(t1, e)
        (hi, lo) = Renormalise2-toward-zero (s,tmp)
        vect_c1 = spu_shuffle(hi, lo, _merge1_vect_)
        vect_c2 = spu_shuffle(hi, lo, _merge2_vect_)
        return (vect_c1, vect_c2)
```

Cost: $\mathbf{6 4}$ cycles / 4 opérations

Sum of double-simple : optimised version

- The version 2 increases the performance of the sum.
- cycles are still lost.
\Rightarrow to perform version 2 twice in a same function.

Cost: $\mathbf{7 2}$ cycles / 8 operations

Theoretical results

frequency: 3.2 GHz .
The peak performance in double precision :
$2 \times 2 \times 3.2 / 7=1.8 G F L O P s$.

function	Cycles number	Performance
Add_ds_ds_vect	50 cycles / 2	128 MFLOPs
Add_ds_ds_2vect	64 cycles $/ 4$	200 MFLOPs
Add_ds_ds_4vect	72 cycles $/ 8$	355 MFLOPs
Mul_ds_ds_vect	49 cycles $/ 2$	130 MFLOPs
Mul_ds_ds_2vect	60 cycles $/ 4$	213 MFLOPs
Mul_ds_ds_4vect	63 cycles $/ 8$	406 MFLOPs

Il PARISUNIVERSITAS

Comparison with double precision

Addition of two vectors with DMA to load data on SPE

Functions	Theoretical (1SPE)	Measured (1 SPE)	Measured (8 SPEs)
Add_ds_ds_4vect	355	266	2133
Mul_ds_ds_4vect	406	320	2560
double precision addition	914	914	7314
double precision product	914	914	7314

TAB.: Performance without data exchange (MFLOPS)

Quad simple

function	Cycles number	Performance
Add_qs_qs_4vect	449 cycles /4	28.5 MFLOPs
Mul_qs_qs_4vect	583 cycles $/ 4$	21.9 MFLOPs

Conclusions

The true goal :

- to prepare the work for the next CELL :
- fully pipelined double precision floating point number - probably 512 KB on SPE
- a double double library,
- a quad double library.

Rumours on the next generation

- IEEE compliant
- from 8 to 32 SPE
- over 1TFLOPS

Références I

固 Yozo Hida，Xiaoye S．Li，and David H．Baily． Quad－double arithmetic：Algorithms，implementations，and application． 2000.

目 Donald Knuth．
The art of computer programming ：Seminumerical algorithms vol．2，Reading，Massachusetts ：Addison－Wesley，2000．

Re Takeshi Ogita，Siegfried M．Rump，and Shin＇ichi Oishi． Accurate sum and dot product． SIAM J．Sci．Comput．，26（6）：1955－1988， 2005.

圊 Christoph Quirin Lauter．
Basic building blocks for a triple－double intermediate format Tech．report，INRIA， 2005

Références II

围 Douglas M. Priest.
On Properties of Floating Point Arithmetics : Numerical Stability and the Cost of Accurate Computations.
PhD thesis, Mathematics Department, University of California, Berkeley, CA, USA, November 1992.

囯 T.J Dekker.
A floating-point technique for extending the available precision.
Numer. Math., 18 : 224-242, 1971.

