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Motivations (1/2)

Condition numbers and backward errors play an important role
in numerical linear algebra.

forward error . condition number× backward error.

Growing interest in structured perturbation analysis.
Substantial development of algorithms for structured problems.
Backward error analysis of structure preserving algorithms may
be difficult.
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Motivations (2/2)

For symmetric linear systems and for distances measured in the
2– or Frobenius norm:
It makes no difference whether perturbations are restricted to
be symmetric or not.
Same holds for skew-symmetric and persymmetric structures.
[S. Rump, 03].

Our contribution:
Extend and unify these results to

Structured matrices in Lie and Jordan algebras,
Several structured matrix problems.
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Structured Problems

Normwise structured condition numbers for

Linear systems,
Matrix inversion,
Nearness to singularity.

Normwise structured backward errors for

Linear systems,
Eigenvalue problems.
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Scalar Product

A scalar product 〈·, ·〉M is a nondegenerate (M nonsingular) bilinear
or sesquilinear form on Kn (K = R or C).

〈x , y〉M =

{
xTMy , real or complex bilinear forms,
x∗My , sesquilinear forms.

Adjoint A? of A ∈ Kn×n wrt 〈·, ·〉M :

〈A?x , y〉M = 〈x , A?y〉M , ∀x , y ∈ Kn,

A? =

{
M−1ATM, for bilinear forms,
M−1A∗M, for sesquilinear forms.

〈·, ·〉M orthosymmetric if

{
MT = ±M, (bilinear),
M∗ = αM, |α| = 1, (sesquilinear).
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Matrix Groups, Jordan and Lie Algebras

Three important classes of matrices associated with 〈·, ·〉M :
Automorphism group: G = {A ∈ Kn×n : A? = A−1}

Lie algebra: L = {A ∈ Kn×n : A? = −A}.

Jordan algebra: J = {A ∈ Kn×n : A? = A}.

Recall that

A? =

{
M−1ATM, for bilinear forms,
M−1A∗M, for sesquilinear forms.

Concentrate on Jordan and Lie algebras of orthosymmetric scalar
products 〈·, ·〉M with M unitary.
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Some Structured Matrices

Space M Jordan Algebra Lie Algebra

Bilinear forms
Rn I Symm. Skew-symm.
Cn I Complex symm. Complex skew-symm.
Rn R Persymmetric Perskew-symm.
Rn Σp,q Pseudo symm. Pseudo skew-symm.
R2n J Skew-Hamiltonian. Hamiltonian

Sesquilinear form
Cn I Hermitian Skew-Herm.
Cn Σp,q Pseudo Hermitian Pseudo skew-Herm.
C2n J J-skew-Hermitian J-Hermitian

R=

[
1. . .

1

]
, J=

264 0 In

−In 0

375, Σp,q=

264Ip 0

0 −Iq

375
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Key Tools

Define Sym(K) = {A ∈ Kn×n : AT = A}, K = R or C,
Skew(K) = {A ∈ Kn×n : AT = −A},
Herm(C) = {A ∈ Cn×n : A∗ = A}.

S: Lie algebra L or Jordan algebra J of orthosymm. 〈·, ·〉M.

M · S =


Sym(K) if

{
M = MT and S = J,
M = −MT and S = L,

Skew(K) if
{

M = MT and S = L,
M = −MT and S = J.

(bilinear forms)

M · S =

{
Herm(C) if S = J,
i Herm(C) if S = L.

(sesquilinear forms)
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Linear Systems

Structured condition number for linear system Ax = b, x 6= 0:

condν(A, x ; S) = lim
ε→0

sup
{
‖∆x‖2

ε‖x‖2
: (A + ∆A)(x + ∆x) = b + ∆b,

‖∆A‖ν

‖A‖ν
≤ ε,

‖∆b‖2

‖b‖2
≤ ε, A + ∆A ∈ S

}
, ν = 2, F .

S: Jordan or Lie algebra of 〈·, ·〉M orthosymm. with M unitary.

For nonsingular A ∈ S, x 6= 0 and ν = 2, F ,

condν(A, x ; Cn×n)√
2

≤ condν(A, x ; S) ≤ condν(A, x ; Cn×n).
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Linear Systems with Nonlinear Structures

Structured condition number for linear system Ax = b, x 6= 0:

condν(A, x ; G) = lim
ε→0

sup
{
‖∆x‖2

ε‖x‖2
: (A + ∆A)(x + ∆x) = b + ∆b,

‖∆A‖ν

‖A‖ν
≤ ε,

‖∆b‖2

‖b‖2
≤ ε, A + ∆A ∈ G

}
, ν = 2, F .

G: automorphism group of 〈·, ·〉M orthosymm. with M unitary.

For nonsingular A ∈ G, x 6= 0 and ν = 2, F ,

γ
condν(A, x ; Cn×n)

‖A‖2‖A−1‖2
≤ condν(A, x ; G) ≤ condν(A, x ; Cn×n).

where γ = 1/
√

2 if ν = 2 and γ = 1/2 if ν = F .
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Matrix Inversion

Structured condition number for matrix inverse (ν = 2, F ):

κν(A; S) := lim
ε→0

sup
{
‖(A + ∆A)−1 − A−1‖ν

ε‖A−1‖ν
:
‖∆A‖ν

‖A‖ν
≤ ε, A + ∆A ∈ S

}
.

S: Jordan or Lie algebra of orthosymm. 〈·, ·〉M with M unitary.

For nonsingular A ∈ S,

κ2(A; S) = κ2(A; Cn×n) = ‖A‖2‖A−1‖2,

κF (A; S) = κF (A; Cn×n) =
‖A‖F‖A−1‖2

2
‖A−1‖F

.
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Matrix Inversion with Nonlinear Structures

G: automorphism group of orthosymm. 〈·, ·〉M with M unitary.

B a pattern matrix for TAG = A · L, i.e.,
for every E ∈ TAG there exists a uniquely defined parameter vector
p with

vec(E ) = Bp, ‖E‖F = ‖p‖2.

For nonsingular A ∈ G,

κF(A; G) =
‖A‖F

‖A−1‖F
‖(AT ⊗ A)−1B‖2
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Distance to Singularity

Structured distance to singularity (ν = 2, F ):

δν(A; S) = min
{

ε :
‖∆A‖ν

‖A‖ν
≤ ε, A + ∆A singular,∆A ∈ S

}
.

S: Jordan or Lie algebra of 〈·, ·〉M orthosymm. with M unitary.

For nonsingular A ∈ S,

δ2(A; S) = δ2(A; Cn×n) =
1

‖A‖2‖A−1‖2
,

δF (A; Cn×n) ≤ δF (A; S) ≤
√

2 δF (A; Cn×n).
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Structured Backward Errors (1/2)

Structured backward error (ν = 2, F ):

µν(y , r , S) = min{‖∆A‖ν : ∆Ay = r , ∆A ∈ S}.

For linear systems: y 6= 0 is the approx. sol. to Ax = b and
r = b − Ay .
For eigenproblems: (y , λ) approx. eigenpair of A,
r = (λI − A)y .

S: Jordan or Lie algebra of 〈·, ·〉M orthosymm. with M unitary.
µν(y , r , S) 6= ∞ iff y , r satisfies the conditions:

M · S Condition
Sym(K) none
Skew(K) rT y = 0
Herm(C) r∗y ∈ R.
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Structured Backward Errors (2/2)

µν(y , r , S) = min{‖∆A‖ν : ∆Ay = r , ∆A ∈ S}, ν = 2, F .

Recall µν(y , r ; Cn×n) = ‖r‖2/‖y‖2.

S: Jordan or Lie algebra of 〈·, ·〉M orthosymm. with M unitary.
If µν(y , r , S) 6= ∞ (ν = 2, F ),

µν(y , r ; Cn×n) ≤ µν(y , r ; S) ≤
√

2 µν(y , r ; Cn×n).

In particular for ν = F ,

µF (y , r ; S) =
1

‖y‖2

√
2‖r‖2

2 −
|〈y , r〉M |2
β2‖y‖2

2
.

Stef Graillat Structured Perturbations in Scalar Product Spaces



Motivations
Product Scalar Spaces

Normwise Structured Condition Numbers
Normwise Structured Backward Errors

Conclusion

For matrices in Jordan or Lie algebra of 〈·, ·〉M orthosymm. with M
unitary,

Usual unstructured perturbation analysis sufficient for
linear system,
matrix inversion,
distance to singularity.

Structured backward error:
may be ∞,
when finite, is within a small factor of the unstructured one.

Eigenvalue condition number:
Recent results from Karow, Kressner and Tisseur (2005).
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