Testing polynomial primality with pseudozeros

Stef Graillat, Philippe Langlois University of Perpignan — France

{graillat,langlois}@univ-perp.fr http://www.univ-perp.fr/~{graillat,langlois}

RNC'5, 5th Conference on Real Numbers and Computers, Lyon, France September 3–5, 2003

Definition of approximate GCD of polynomials

Classical definition:

Let p and q be two polynomials of degree n and m and let ε be a nonnegative number. We define

• an ε -divisor (approximate divisor) : a divisor of perturbed polynomials \widehat{p} and \widehat{q} satisfying

$$\deg \widehat{p} \leqslant n, \deg \widehat{q} \leqslant m \text{ and } \max(\|p - \widehat{p}\|, \|q - \widehat{q}\|) \leqslant \varepsilon.$$

• an ε -GCD (approximate GCD) : an ε -divisor of maximal degree.

Remarks:

- ε measures the uncertainty about the coefficients (representing finite precision).
- Uniqueness of the degree but not of the ε -GCD.
- Dependency with respect to the basis field.

Definition of ε **-primality**

Definition:

Two polynomials p and q are ε -coprime if their ε -GCD equals 1.

Computation:

- Optimization: algorithm of Karmarkar and Lakshman (1995).
- Sylvester criterion: algorithm COPRIME [Beckermann and Labahn 1998].
- Graphical : pseudozero set.

Outline of the talk

I — Pseudozero set

- Definition and computation
- Nearest polynomial with a given root

II — Pseudozeros and primality

- Presentation of existing algorithms
- Contribution of pseudozero set

III — Other applications of pseudozeros

- Multiplicity of polynomial roots
- Stability in control theory

Pseudozeros: definition, computation and interest

Pseudozero set: definition

Perturbation:

Neighborhood of polynomial p

$$N_{\varepsilon}(p) = \{\widehat{p} \in \mathbf{C}_n[z] : ||p - \widehat{p}|| \leq \varepsilon\}.$$

Definition of the ε -pseudozero set :

$$Z_{\varepsilon}(p) = \{ z \in \mathbb{C} : \widehat{p}(z) = 0 \text{ for } \widehat{p} \in N_{\varepsilon}(p) \}.$$

This set is formed by the zeros of polynomials "near p".

Pseudozeros: bibliography

- ▶ Mosier (1986) : Definition and study form the ∞ -norm.
- ▶ Trefethen and Toh (1994) : Study for the 2-norm. pseudozeros \approx pseudospectra of the companion matrix.
- ➤ Chatelin and Frayssé (1996) : propose a Synthesis in Lectures on Finite Precision Computations (SIAM)
- Stetter (1999): numerical polynomial algebra. Generalisation of the previous works.
- \triangleright Zhang (2001): Study of the influence of the basis for the 2-norm (condition number of the evaluation).

Pseudozeros are easily computable

Theorem:

The ε -pseudozeros set satisfies

$$Z_{\varepsilon}(p) = \left\{ z \in \mathbb{C} : |g(z)| := \frac{|p(z)|}{\|\underline{z}\|_{*}} \leqslant \varepsilon \right\},$$

where $\underline{z} = (1, z, \dots, z^n)$ and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|_*$

The proof needs to know "the" nearest polynomial of p with a given root.

The nearest polynomial with a given root p_u

Let p be in $\mathbf{C}_n[z]$ and $u \in \mathbf{C}$.

Statement of the problem:

Find a polynomial $p_u \in \mathbf{C}_n[z]$ satisfying $p_u(u) = 0$ and such that if there exists a polynomial $q \in \mathbf{C}_n[z]$ with q(u) = 0 then we get $||p - p_u|| \le ||p - q||$.

We are looking for:

- ullet an expression of p_u ;
- uniqueness of p_u .

Computation of p_u

Let us denote $\underline{u}:=(1,u,u^2,\ldots,u^n)\in \mathbf{C}^{n+1}$. There exists $d\in \mathbf{C}^{n+1}$ satisfying ${}^td\underline{u}=\|\underline{u}\|_*$ et $\|d\|=1$. Let us define the polynomials r and p_u by

$$r(z) = \sum_{k=0}^{n} r_k z^k$$
 with $r_k = d_k$,

$$p_u(z) = p(z) - \frac{p(u)}{r(u)}r(z).$$

 p_u is the nearest polynomial of p with root u.

Uniqueness of p_u

A sufficient condition for uniqueness:

Theorem. If the norm $\|\cdot\|$ is strictly convex then p_u is unique.

It is the case, for example, for the norms $\|\cdot\|_p$ for 1 .

We do not have unicity for $\|\cdot\|_1$ and $\|\cdot\|_\infty$. For p(z)=1+z

$\ \cdot\ _1, u=1$			$\ \cdot\ _{\infty}, u=0$	
p_u	$p_1^{(1)}(z) = 0$	$p_1^{(2)}(z) = \frac{1}{3}(1-z)$	$p_0^{(1)}(z) = z$	$p_0^{(2)}(z) = \frac{1}{2}z$
$p-p_i$	z-1	$\frac{4}{3}z - \frac{2}{3}$	1	$\frac{1}{2}z + 1$
$ p-p_i $	2	2	1	1

Algorithm of computation

Algorithm to draw the ε -pseudozero set :

- 1. We mesh a square containing all the roots of p (MATLAB command : meshgrid).
- 2. We compute $g(z) := \frac{|p(z)|}{||z||_*}$ for all the nodes z in the grid.
- 3. We draw the contour level $|g(z)| = \varepsilon$ (MATLAB commande : contour).

Algorithm of computation

Algorithm to draw the ε -pseudozero set :

- 1. We mesh a square containing all the roots of p (MATLAB command : meshgrid).
- 2. We compute $g(z) := \frac{|p(z)|}{||z||_*}$ for all the nodes z in the grid.
- 3. We draw the contour level $|g(z)| = \varepsilon$ (MATLAB commande : contour).

Problems:

- \bullet Find a square containing all the roots of p and all the pseudozeros.
- Find a grid step that separates all the roots.

Choice of the grid

Let p be a unitary polynomial of degree n and $\{z_i\}$ the set of its n roots. Let us denote $r=\max_{i=1;\ldots;n}|z_i|$. We have

$$r \leqslant \max\{1, \sum_{k=1}^{n} |p_k|\}.$$

Let us denote $R := \max\{1, \sum_{i=1}^n |p_i| + n\varepsilon\}$. We can prove (in $\|\cdot\|_p$) $Z_{\varepsilon}(p) \subset B(0,R)$ the closed ball of centre 0 and radix R.

Complexity of drawing pseudozero set

Let L be the length of the square and h the step of discretization. The evaluation of $g(z)=\frac{|p(z)|}{||z||_*}$ needs

- the evaluation of polynomial p, that can be done in $\mathcal{O}(n)$,
- the computation of the norm of a vector (the complexity depends on the norm).

Let us denote $\mathcal{O}(\|\cdot\|_*)$ this complexity. The complexity of the algorithm to draw the pseudozero set is

$$\boxed{\mathcal{O}((L/h)^2(n+\|\cdot\|_*))}.$$

L and h depend on n but also on the polynomial coefficients.

Numerical simulation

Pseudozero set of the Wilkinson polynomial

$$W_{20} = (z-1)(z-2)\cdots(z-20),$$

= $z^{20} - 210z^{19} + \cdots + 20!.$

We perturb only the coefficient of z^{19} with $\varepsilon=2^{-23}$. One use the weighted-norm $\|\cdot\|_{\infty}$:

$$\|p\|_{\infty} = \max_i \frac{|p_i|}{m_i}$$
 with m_i non negative

with $m_{19}=1$, $m_i=0$ otherwise and the convention $m/0=\infty$ if m>0 and 0/0=0.

Evolution of ε **-pseudozero wrt** ε

Pseudozero set of the polynomial $p(z)=1+z+\cdots+z^{20}$ for different

values of ε .

(a)
$$\varepsilon = 10^{-1}$$

(c)
$$\varepsilon = 10^{-1.3}$$

(b)
$$\varepsilon = 10^{-1.2}$$

(d)
$$\varepsilon = 10^{-1.4}$$

Interests of pseudozeros

Pseudozero set provides :

- a qualitative study of polynomials
- a better understanding of the results of polynomial algorithms
- a use of polynomials with coefficients known to a certain accuracy.

Drawback

• the cost

Application of pseudozeros to primality

Algorithm COPRIME

$$||p|| = \sum |p_i|, ||(p,q)|| = \max\{||p||, ||q||\} = \max\{\sum |p_i|, \sum |q_i|\}.$$

Algorithm of Beckermann and Labahn (1998).

- **Input**: p and q two polynomials.
- **Output**: lower bound of $\epsilon(p,q)$ defined by

$$\epsilon(p,q)=\inf\{\|(p-\widehat{p},q-\widehat{q})\|:(\widehat{p},\widehat{q}) \text{ have a common root and}$$

$$\deg \widehat{p}\leqslant n,\deg \widehat{q}\leqslant m\}.$$

• Complexity : in $\mathcal{O}((n+m)^2)$.

Sylvester's Matrix

$$S(p,q) = \begin{bmatrix} p_0 & 0 & \cdots & 0 & q_0 & 0 & \cdots & 0 \\ p_1 & p_0 & \cdots & \vdots & q_1 & q_0 & \cdots & \vdots \\ \vdots & \cdots & \cdots & 0 & \vdots & \cdots & \cdots & 0 \\ p_n & & \cdots & p_0 & q_m & & \cdots & q_0 \\ 0 & p_n & & p_1 & 0 & q_m & & q_1 \\ \vdots & \cdots & \cdots & \vdots & \vdots & \cdots & \cdots & \vdots \\ 0 & \cdots & 0 & p_n & 0 & \cdots & 0 & q_m \end{bmatrix} \in \mathbf{C}^{(n+m)\times(n+m)}.$$

Sylvester criterion : p and q are coprime \iff the matrix S(p,q) is non singular.

Presentation of the method

$$\epsilon(p,q) \geqslant \frac{1}{\|S(p,q)^{-1}\|}$$

- An estimation of $||S(p,q)^{-1}||$ based on a SVD costs a lot.
- We seek an upper bound of $||S(p,q)^{-1}||$.

Pseudozeros: the algorithm

From the definition of the ε -pseudozero set, we derive that

- if the intersection of the ε -pseudozero sets of p and q is empty then the two polynomials are ε -coprime,
- if the intersection is not empty then they are not ε -coprime.

Numerical simulation

- **Input**: p and q two polynomials.
- Output: a graphic.
- Drawbacks : qualitative tool.
- Example in $\|\cdot\|_2$:

$$p = (z - 1)(z - 2) = z^{2} - 3z + 2$$

$$q = (z - 1.08)(z - 1.82) = z^{2} - 2.9z + 1.9656$$

Other applications of pseudozeros

Stability on control theory

Stability : |roots of p| < 1.

 ε -pseudozero set of $p(z)=(z-0.8)^2$ for $\varepsilon=0.1$ and $\varepsilon=0.01$.

Multiplicity of polynomial roots

Computation of the ε -pseudozeros of polynomials :

$$p_1(z) = z - 1$$
, $p_2(z) = (z - 1)^2$, $p_3(z) = (z - 1)^3$,

with, respectively, $\varepsilon_1=\varepsilon$, $\varepsilon_2=\varepsilon^2$, $\varepsilon_3=\varepsilon^3$ and $\varepsilon=10^{-1}$.

(f) Pseudozero sets
$$Z_{arepsilon}(p_1)$$
, $Z_{arepsilon^2}(p_2)$, $Z_{arepsilon^3}(p_3)$ for $arepsilon=10^{-1}$

Conclusion

The pseudozero set provides

- 1. a better understanding of the effect of coefficients perturbation;
- 2. a test for ε -primality of two polynomials;
- 3. an application for stability and multiplicity.