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Definition of approximate GCD of polynomials

Classical definition :
Let p and ¢ be two polynomials of degree n and m and let € be a
nonnegative number. We define
e an e-divisor (approximate divisor) : a divisor of perturbed polynomials
p and ¢ satisfying
degp < n,degq < m and max(|[p —pll,l¢ — ql) <e.
e an e-GCD (approximate GCD) : an e-divisor of maximal degree.
Remarks :
e ¢ measures the uncertainty about the coefficients (representing finite
precision).
e Uniqueness of the degree but not of the e-GCD.
e Dependency with respect to the basis field.
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Definition of s-primality

Definition :
Two polynomials p and ¢ are e-coprime
if their e-GCD equals 1.

Computation :
e Optimization : algorithm of Karmarkar and Lakshman (1995).
e Sylvester criterion : algorithm COPRIME [Beckermann and Labahn 1998].

e Graphical : pseudozero set.
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Outline of the talk

| — Pseudozero set
e Definition and computation
e Nearest polynomial with a given root

|l — Pseudozeros and primality

e Presentation of existing algorithms
e Contribution of pseudozero set

Il — Other applications of pseudozeros

e Multiplicity of polynomial roots
e Stability in control theory
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Pseudozeros :
definition, computation and
Interest



Pseudozero set : definition

Perturbation :
Neighborhood of polynomial p

Ne(p) ={p € Culz] : lp —pll < e}

Definition of the =-pseudozero set :

Ze(p) ={2 € C:p(z) =0 for p € Ne(p)}.

This set is formed by the zeros of polynomials “near p".
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Pseudozeros : bibliography

» Mosier (1986) : Definition and study form the oo-norm.

» Trefethen and Toh (1994) : Study for the 2-norm.
pseudozeros ~ pseudospectra of the companion matrix.

» Chatelin and Frayssé (1996) : propose a Synthesis in Lectures on Finite
Precision Computations (SIAM)

» Stetter (1999) : numerical polynomial algebra. Generalisation of the
previous works.

» Zhang (2001) : Study of the influence of the basis for the 2-norm
(condition number of the evaluation).
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Pseudozeros are easily computable

Theorem :
The e-pseudozeros set satisfies

p(z
26) = {z e il = )l < e},
where z = (1,2,...,2") and || - ||« is the dual norm of || - ||.

The proof needs to know “the” nearest polynomial of p with a given root.
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The nearest polynomial
with a given root p,

Let p be in C,[z] and u € C.

Statement of the problem :

Find a polynomial p, € C,|z] satisfying p,(u) = 0 and such that
if there exists a polynomial ¢ € C,|z] with g(u) = 0 then we get

lp = pull < llp—all
We are looking for :

e an expression of p, ;

e uniqueness of p,,.
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Computation of p,

Let us denote w := (1, u,u?,...,u") € C"*1
There exists d € C" " satisfying ‘du = |Jul|, et ||d|| = 1.
Let us define the polynomials » and p,, by

n

r(z) = Zrkzk with 7, = dp,
k=0

pu(Z) — p(Z) _’I“(U)
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Uniqueness of p,

A sufficient condition for uniqueness :
Theorem. [f the norm || - || is strictly convex then p, is unique.

It is the case, for example, for the norms || - ||, for 1 < p < oo0.

We do not have unicity for || - ||; and || - ||co. For p(z) =1+ 2

[T, u=1 [Jo, u=0

1 2 1 2
pe | pV(2) =0 pY() =20-2) | pi"(z) =2 | p§(2) = 32
P — Di z—1 %z—% 1 %z—l—l
lp — pil] 2 2 1 1
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Algorithm of computation

Algorithm to draw the s-pseudozero set :

1. We mesh a square containing all the roots of p (MATLAB command :
meshgrid).

_ |p(z)|
R E

3. We draw the contour level |g(z)| = ¢ (MATLAB commande : contour).

2. We compute g(z) for all the nodes z in the grid.
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Algorithm of computation

Algorithm to draw the s-pseudozero set :

1. We mesh a square containing all the roots of p (MATLAB command :
meshgrid).

2. We compute g(z) := 2 for all the nodes z in the grid.

izl

3. We draw the contour level |g(z)| = ¢ (MATLAB commande : contour).

Problems :

e Find a square containing all the roots of p and all the pseudozeros.

e Find a grid step that separates all the roots.
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Choice of the grid

Let p be a unitary polynomial of degree n and {z;} the set of its n roots.

Let us denote r = max |z;| . We have
1=1;...;n

r <max{1,» |px|}.
k=1

Let us denote R :=max{1,> ", |p;| + ne}. We can prove (in || - ||,)
Z-(p) C B(0, R) the closed ball of centre 0 and radix R.
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Complexity of drawing pseudozero set

Let L be the length of the square and h the step of discretization. The
_ Ip(#)]

evaluation of g(z) = . needs

e the evaluation of polynomial p, that can be done in O(n),

e the computation of the norm of a vector (the complexity depends on
the norm).

Let us denote O(|| - ||«) this complexity. The complexity of the algorithm

to draw the pseudozero set is

O((L/R)*(n+ 1| - 1)) |

L and h depend on n but also on the polynomial coefficients.
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Numerical simulation

Pseudozero set of the Wilkinson polynomial
Wy = (z=1)(z—2)--- (2 —20),
= 2*0-2102" + .- + 20

We perturb only the coefficient of z!? with ¢ = 2723,
One use the weighted-norm || - || :

\pi\

my;

|P||cc = max with m; non negative
1

with m19 = 1, m; = 0 otherwise and the convention m/0 = oo if m > 0

and 0/0 = 0.
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Evolution of c-pseudozero wrt ¢

Pseudozero set of the polynomial p(z) = 1+ z + - -+ + 22° for different

values of ¢.
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Interests of pseudozeros

Pseudozero set provides :

e a qualitative study of polynomials
e a better understanding of the results of polynomial algorithms
e a use of polynomials with coefficients known to a certain accuracy.

Drawback

e the cost
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Application of pseudozeros
to primality
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Algorithm COPRIME

Ipll = 2" pils [(p, @)|] = max{||p[], [|q||} = max{>|p:|, > |al}-

Algorithm of Beckermann and Labahn (1998).
e Input : p and ¢ two polynomials.
e Output : lower bound of €(p, q) defined by

e(p,q) = inf{||(p —p,q¢ — q)|| : (p,q) have a common root and

AN

degp < n,degq
e Complexity : in O((n +m)?).

< m}.
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Sylvester’s Matrix

0

0
Po
P1

Pn

g 0
d1 4o
dm
0 gm
0

0

qo
d1

dm

c C(n—|—m) X (n+m) .

Sylvester criterion : p and ¢ are coprime <= the matrix S(p,q) is non

singular.
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Presentation of the method

1
p,q)" Y

e(p,q) > S

e An estimation of ||S(p,q) || based on a SVD costs a lot.
o We seek an upper bound of ||S(p,q)™!|.
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Pseudozeros : the algorithm

From the definition of the e-pseudozero set, we derive that

e if the intersection of the e-pseudozero sets of p and ¢ is empty then the
two polynomials are e-coprime,
e if the intersection is not empty then they are not s-coprime.
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Numerical simulation

Input : p and ¢ two polynomials.

Output : a graphic.

Drawbacks : qualitative tool.

Example in || - |2 :
p=(2—-1)(2—2)=2%—-32+2
q=(2z—1.08)(z —1.82) = 22 — 2.92 + 1.9656
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p=(2—1)(z—2)=22-324+2, qg=(z—1.08)(z —1.82) = 22 — 2.92 + 1.9656
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p=(2—1)(z—2)=22-324+2, qg=(z—1.08)(z —1.82) = 22 — 2.92 + 1.9656
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Other applications of pseudozeros
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Stability on control theory

Stability : |roots of p| < 1.

e-pseudozero set of p(z) = (z — 0.8)% for e = 0.1 and € = 0.01.
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Multiplicity of polynomial roots

Computation of the e-pseudozeros of polynomials :

pi(z) =2—1, pa(z) = (2= 1)%, ps(2) = (2 —1)",

with, respectively, 1 = ¢, €9 =2, e =¢? and e = 1071,

I 1
\\// '

\/

(e) Z. of p1, p2, 3 (f) Pseudozero sets

and e = 1071 Z:(p1), Z.2(p2)
Z 3(p3) for e =
1071
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Conclusion

The pseudozero set provides
1. a better understanding of the effect of coefficients perturbation;
2. a test for e-primality of two polynomials;

3. an application for stability and multiplicity.
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