Pseudozero set decides on polynomial stability

Stef GRAILLAT Université de Perpignan graillat@univ-perp.fr http://gala.univ-perp.fr/~graillat Joint work with Philippe LANGLOIS Sixteenth International Symposium on Mathematical Theory of Networks and Systems

Katholieke Universiteit Leuven, Belgium, July 5-9, 2004

Motivations

Polynomial coefficients are often approximate values

Three well known sources of approximation are considered in scientific computation :

- (1) errors due to discretization and truncation,
- (2) errors due to roundoff, and
- (3) errors due to uncertainty in the data.

 \implies Use tools designed for such approximate polynomials in control theory

Outline of the talk

1 — Pseudozero set

- Definition
- Computation

2 — Applications of pseudozeros in control theory

- Robust stability for polynomials
- Stability radius for polynomials

Pseudozero set : definition

Let p be a given polynomial of $\mathbf{C}_n[z]$

Perturbation :

Neighborhood of polynomial p

$$N_{\varepsilon}(p) = \{ \widehat{p} \in \mathbf{C}_n[z] : ||p - \widehat{p}|| \leq \varepsilon \}.$$

Definition of the ε -pseudozero set :

 $Z_{\varepsilon}(p) = \{ z \in \mathbb{C} : \widehat{p}(z) = 0 \text{ for } \widehat{p} \in N_{\varepsilon}(p) \}.$

 $\|\cdot\|$ a norm on the vector of the coefficients of pPseudozero set : the set of the zeros of polynomials "near p".

S. GRAILLAT

Pseudozeros are easily computable

Theorem [Stetter] :

The ε -pseudozeros set satisfies

$$Z_{\varepsilon}(p) = \left\{ z \in \mathbb{C} : |g(z)| := \frac{|p(z)|}{\|\underline{z}\|_*} \leqslant \varepsilon \right\},\$$

where $\underline{z} = (1, z, \dots, z^n)$ and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|_*$

$$||y||_* = \sup_{x \neq 0} \frac{|y^*x|}{||x||}$$

Pseudozero set : algorithm of computation

- 1. We mesh a square containing all the roots of p (MATLAB command : meshgrid).
- 2. We compute $g(z) := \frac{|p(z)|}{\|\underline{z}\|_*}$ for all the nodes z of the grid.
- 3. We plot the contour level $|g(z)| = \varepsilon$ (MATLAB command : contour).

Initialization :

- Find a square containing all the roots of p and all the pseudozeros.
- Find a grid step that separates all the roots.

A famous example

Pseudozero set of the Wilkinson polynomial

$$W_{20} = (z-1)(z-2)\cdots(z-20),$$

= $z^{20} - 210z^{19} + \cdots + 20!.$

We only perturb the coefficient of z^{19} with $\varepsilon = 2^{-23}$. One uses the weighted-norm $\|\cdot\|_{\infty}$:

$$\|p\|_{\infty} = \max_{i} \frac{|p_i|}{m_i}$$
 with m_i non negative

with $m_{19} = 1$, $m_i = 0$ otherwise and the convention $m/0 = \infty$ if m > 0and 0/0 = 0.

Evolution of ε **-pseudozero w.r.t** ε

Pseudozero set of the polynomial $p(z) = 1 + z + \cdots + z^{20}$ for different values of ε .

Pseudozeros : brief survey of existing references

- ▶ Mosier (1986) : Definition and study for the ∞ -norm.
- Hinrichsen and Kelb (1993) : Spectral value sets.
- ► Trefethen and Toh (1994) : Study for the 2-norm. pseudozeros \approx pseudospectra of the companion matrix.
- Zhang (2001) : Study the influence of the basis for the 2-norm (condition number of the evaluation).
- Stetter (2004) : Numerical Polynomial Algebra (SIAM). Generalization of the previous works.

Other applications of pseudozero set : Robust stability and Stability radius for polynomials

Schur robust stability in control theory

Schur stability : |roots of p| < 1.

 ε -pseudozero set of $p(z) = (z - 0.8)^2$ for $\varepsilon = 0.1$ and $\varepsilon = 0.01$.

Hurwitz robust stability in control theory

Hurwitz stability : Real part of roots of p < 0.

 ε -pseudozero set of $p(z) = (z+1)^2$ for $\varepsilon = 0.4$.

Computation of stability radius

 \mathcal{P}_n : polynomials of $\mathbb{C}[X]$ of degree at most n \mathcal{M}_n : monic polynomials of \mathcal{P}_n of degree n $\|\cdot\|$: the 2-norm of the coefficients of a polynomial

Definition. A polynomial is stable if all its roots have negative real part and unstable otherwise (Hurwitz stability).

The function *abscissa* $a: \mathcal{P} \to \mathbf{R}$ is defined by

$$a(p) = \max\{\operatorname{Re}(z) : p(z) = 0\}.$$

A polynomial p is stable $\iff a(p) < 0$

Motivation

In control theory, transfer functions are often written as $H(p) = \frac{N(p)}{D(p)}$ where N and D are polynomials.

The system is stable if D is a stable polynomial .

Question : if D is stable, how far is it from an unstable system?

Problem : Find the distance to the nearest unstable system.

(we assume that D is monic)

How to compute the stability radius

Stability radius $\beta(p)$: distance of the polynomial $p \in \mathcal{M}_n$ from the set of monic unstable polynomials.

 $\beta(p) = \min\{\|p - q\| : q \in \mathcal{M}_n \text{ and } a(q) \ge 0\}.$

Statement of the problem :

Given a polynomial $p \in \mathcal{M}_n$, let us compute $\beta(p)$.

Our solution

Tools

- an explicit formula that defines the pseudozeros
- the continuous dependency of the roots w.r.t the polynomial coefficients
- Sturm sequences to count the real roots

The results

- \bullet an algorithm that approximates $\beta(p)$ up to an arbitrary accuracy τ
- a plot showing the pseudozeros at the distance $\beta(p)$
 - \longrightarrow a qualitative analysis of the result
 - \longrightarrow a visualization of the result

Pseudozero set for monic polynomials

Perturbation : Neighborhood of polynomial p

 $N_{\varepsilon}(p) = \{\widehat{p} \in \mathcal{M}_n : ||p - \widehat{p}|| \leq \varepsilon\}.$

Definition of the ε **-pseudozero set :**

$$Z_{\varepsilon}(p) = \{ z \in \mathbb{C} : \widehat{p}(z) = 0 \text{ for } \widehat{p} \in N_{\varepsilon}(p) \}.$$

 $\|\cdot\|$ is the 2-norm on the vector of the coefficients of p

The ε -pseudozeros set satisfies

$$Z_{\varepsilon}(p) = \left\{ z \in \mathbb{C} : |g(z)| := \frac{|p(z)|}{\|\underline{z}\|} \leqslant \varepsilon \right\},\$$

where $\underline{z} = (1, z, ..., z^{n-1})$

Another characterization of $Z_{\varepsilon}(p)$

Let us denote $h_{p,\varepsilon}: \mathbf{R}^2 \to \mathbf{R}$, the function

$$h_{p,\varepsilon}(x,y) = |p(x+iy)|^2 - \varepsilon^2 \sum_{j=0}^{n-1} (x^2 + y^2)^j.$$

Then one has

$$Z_{\varepsilon}(p) = \{(x, y) \in \mathbf{R}^2 : h_{p,\varepsilon}(x, y) \leqslant 0\}$$

 $\implies h_{\varepsilon}(\cdot, y)$ et $h_{\varepsilon}(x, \cdot)$ are polynomials of degree 2n.

Theorem. The equation $h_{p,\varepsilon}(0, y) = 0$ has a real solution y if and only if $\beta(p) \leq \varepsilon$.

Algorithm (bisection)

Require : a stable polynomial p and a tolerance τ **Ensure :** a number α such that $|\alpha - \beta(p)| \leq \tau$

- 1: $\gamma := 0, \quad \delta := \|p z^n\|$ 2: while $|\gamma - \delta| > \tau$ do
- 3: $\varepsilon := \frac{\gamma + \delta}{2}$
- 4: **if** the equation $h_{p,\varepsilon}(0,y) = 0$ has a real solution **then**
- 5: $\delta := \varepsilon$
- 6: **else**
- 7: $\gamma := \varepsilon$
- 8: end if
- 9: end while

10: return $\alpha = \frac{\gamma + \delta}{2}$

Numerical simulation

For p(z) = z + 1, the algorithm gives $\beta(p) \approx 0.999996$

FIG. 1: $\beta(p)$ -pseudozero set of p(z) = z + 1

Numerical simulation (contd)

For $p(z) = z^2 + z + 1/2$, the algorithm gives $\beta(p) \approx 0.485868$

FIG. 2: $\beta(p)$ -pseudozero set of $p(z) = z^2 + z + 1/2$

Numerical simulation (contd)

Conclusion

Pseudozero set provides

- a better understanding of the effect of coefficient perturbations
- some applications for robust stability