Pseudozero set decides on polynomial stability

Stef GRAILLAT
Université de Perpignan
graillat@univ-perp.fr

http://gala.univ-perp.fr/~graillat
Joint work with Philippe LANGLOIS
Sixteenth International Symposium on Mathematical Theory of Networks and Systems

Katholieke Universiteit Leuven, Belgium, July 5-9, 2004

Motivations

Polynomial coefficients are often approximate values
Three well known sources of approximation are considered in scientific computation :
(1) errors due to discretization and truncation,
(2) errors due to roundoff, and
(3) errors due to uncertainty in the data.
\Longrightarrow Use tools designed for such approximate polynomials in control theory

Outline of the talk

1 - Pseudozero set

- Definition
- Computation

2 - Applications of pseudozeros in control theory

- Robust stability for polynomials
- Stability radius for polynomials

Pseudozero set : definition

Let p be a given polynomial of $\mathbf{C}_{n}[z]$

Perturbation :

Neighborhood of polynomial p

$$
N_{\varepsilon}(p)=\left\{\widehat{p} \in \mathbf{C}_{n}[z]:\|p-\widehat{p}\| \leqslant \varepsilon\right\} .
$$

Definition of the ε-pseudozero set :

$$
Z_{\varepsilon}(p)=\left\{z \in \mathbb{C}: \widehat{p}(z)=0 \text { for } \widehat{p} \in N_{\varepsilon}(p)\right\} .
$$

$\|\cdot\|$ a norm on the vector of the coefficients of p
Pseudozero set : the set of the zeros of polynomials "near p ".

Pseudozeros are easily computable

Theorem [Stetter] :
The ε-pseudozeros set satisfies

$$
Z_{\varepsilon}(p)=\left\{z \in \mathbb{C}:|g(z)|:=\frac{|p(z)|}{\|\underline{z}\|_{*}} \leqslant \varepsilon\right\},
$$

where $\underline{z}=\left(1, z, \ldots, z^{n}\right)$ and $\|\cdot\|_{*}$ is the dual norm of $\|\cdot\|$,

$$
\|y\|_{*}=\sup _{x \neq 0} \frac{\left|y^{*} x\right|}{\|x\|}
$$

Pseudozero set : algorithm of computation

1. We mesh a square containing all the roots of p (Matlab command : meshgrid).
2. We compute $g(z):=\frac{|p(z)|}{\|\underline{z}\|_{*}}$ for all the nodes z of the grid.
3. We plot the contour level $|g(z)|=\varepsilon$ (MATLAB command : contour).

Initialization :

- Find a square containing all the roots of p and all the pseudozeros.
- Find a grid step that separates all the roots.

A famous example

Pseudozero set of the Wilkinson polynomial

$$
\begin{aligned}
W_{20} & =(z-1)(z-2) \cdots(z-20), \\
& =z^{20}-210 z^{19}+\cdots+20!
\end{aligned}
$$

We only perturb the coefficient of z^{19} with $\varepsilon=2^{-23}$.
One uses the weighted-norm $\|\cdot\|_{\infty}$:

$$
\|p\|_{\infty}=\max _{i} \frac{\left|p_{i}\right|}{m_{i}} \text { with } m_{i} \text { non negative }
$$

with $m_{19}=1, m_{i}=0$ otherwise and the convention $m / 0=\infty$ if $m>0$ and $0 / 0=0$.

Evolution of ε-pseudozero w.r.t ε

Pseudozero set of the polynomial $p(z)=1+z+\cdots+z^{20}$ for different values of ε.

(a) $\varepsilon=10^{-1}$

(c) $\varepsilon=10^{-1.3}$

(b) $\varepsilon=10^{-1.2}$

(d) $\varepsilon=10^{-1.4}$

Pseudozeros: brief survey of existing references

- Mosier (1986) : Definition and study for the ∞-norm.
- Hinrichsen and Kelb (1993) : Spectral value sets.
- Trefethen and Toh (1994) : Study for the 2-norm. pseudozeros \approx pseudospectra of the companion matrix.
- Zhang (2001) : Study the influence of the basis for the 2-norm (condition number of the evaluation).
- Stetter (2004) : Numerical Polynomial Algebra (SIAM). Generalization of the previous works.

Other applications of pseudozero set :

Robust stability and Stability

$$
\begin{gathered}
\text { radius } \\
\text { for polynomials }
\end{gathered}
$$

Schur robust stability in control theory

Schur stability : \mid roots of $p \mid<1$.
ε-pseudozero set of $p(z)=(z-0.8)^{2}$ for $\varepsilon=0.1$ and $\varepsilon=0.01$.

Hurwitz robust stability in control theory

Hurwitz stability: Real part of roots of $p<0$.
ε-pseudozero set of $p(z)=(z+1)^{2}$ for $\varepsilon=0.4$.

Computation of stability radius

\mathcal{P}_{n} : polynomials of $\mathbf{C}[X]$ of degree at most n
\mathcal{M}_{n} : monic polynomials of \mathcal{P}_{n} of degree n
$\|\cdot\|$: the 2 -norm of the coefficients of a polynomial
Definition. A polynomial is stable if all its roots have negative real part and unstable otherwise (Hurwitz stability).

The function abscissa $a: \mathcal{P} \rightarrow \mathbf{R}$ is defined by

$$
a(p)=\max \{\operatorname{Re}(z): p(z)=0\} .
$$

A polynomial p is stable $\Longleftrightarrow a(p)<0$

Motivation

In control theory, transfer functions are often written as $H(p)=\frac{N(p)}{D(p)}$ where N and D are polynomials.

$$
\text { The system is stable if } D \text { is a stable polynomial . }
$$

Question: if D is stable, how far is it from an unstable system?

Problem : Find the distance to the nearest unstable system.
(we assume that D is monic)

How to compute the stability radius

Stability radius $\beta(p)$: distance of the polynomial $p \in \mathcal{M}_{n}$ from the set of monic unstable polynomials.

$$
\beta(p)=\min \left\{\|p-q\|: q \in \mathcal{M}_{n} \text { and } a(q) \geqslant 0\right\} .
$$

Statement of the problem :

Given a polynomial $p \in \mathcal{M}_{n}$, let us compute $\beta(p)$.

Our solution

Tools

- an explicit formula that defines the pseudozeros
- the continuous dependency of the roots w.r.t the polynomial coefficients
- Sturm sequences to count the real roots

The results

- an algorithm that approximates $\beta(p)$ up to an arbitrary accuracy τ
- a plot showing the pseudozeros at the distance $\beta(p)$
\longrightarrow a qualitative analysis of the result
$\longrightarrow a$ visualization of the result

Pseudozero set for monic polynomials

Perturbation : Neighborhood of polynomial p

$$
N_{\varepsilon}(p)=\left\{\widehat{p} \in \mathcal{M}_{n}:\|p-\widehat{p}\| \leqslant \varepsilon\right\} .
$$

Definition of the ε-pseudozero set :

$$
Z_{\varepsilon}(p)=\left\{z \in \mathbb{C}: \widehat{p}(z)=0 \text { for } \widehat{p} \in N_{\varepsilon}(p)\right\} .
$$

$\|\cdot\|$ is the 2 -norm on the vector of the coefficients of p
The ε-pseudozeros set satisfies

$$
Z_{\varepsilon}(p)=\left\{z \in \mathbb{C}:|g(z)|:=\frac{|p(z)|}{\|\underline{z}\|} \leqslant \varepsilon\right\}
$$

where $\underline{z}=\left(1, z, \ldots, z^{n-1}\right)$

Another characterization of $Z_{\varepsilon}(p)$

Let us denote $h_{p, \varepsilon}: \mathbf{R}^{2} \rightarrow \mathbf{R}$, the function

$$
h_{p, \varepsilon}(x, y)=|p(x+i y)|^{2}-\varepsilon^{2} \sum_{j=0}^{n-1}\left(x^{2}+y^{2}\right)^{j}
$$

Then one has

$$
Z_{\varepsilon}(p)=\left\{(x, y) \in \mathbf{R}^{2}: h_{p, \varepsilon}(x, y) \leqslant 0\right\}
$$

$\Longrightarrow h_{\varepsilon}(\cdot, y)$ et $h_{\varepsilon}(x, \cdot)$ are polynomials of degree $2 n$.
Theorem. The equation $h_{p, \varepsilon}(0, y)=0$ has a real solution y if and only if $\beta(p) \leqslant \varepsilon$.

Algorithm (bisection)

Require : a stable polynomial p and a tolerance τ
Ensure : a number α such that $|\alpha-\beta(p)| \leqslant \tau$
1: $\gamma:=0, \quad \delta:=\left\|p-z^{n}\right\|$
2: while $|\gamma-\delta|>\tau$ do
3: $\quad \varepsilon:=\frac{\gamma+\delta}{2}$
4: if the equation $h_{p, \varepsilon}(0, y)=0$ has a real solution then
5: $\quad \delta:=\varepsilon$
6: else
7: $\quad \gamma:=\varepsilon$
8: end if
9: end while
10: return $\alpha=\frac{\gamma+\delta}{2}$

Numerical simulation

For $p(z)=z+1$, the algorithm gives $\beta(p) \approx 0.999996$

FIG. 1: $\beta(p)$-pseudozero set of $p(z)=z+1$

Numerical simulation (contd)

For $p(z)=z^{2}+z+1 / 2$, the algorithm gives $\beta(p) \approx 0.485868$

Fig. 2: $\beta(p)$-pseudozero set of $p(z)=z^{2}+z+1 / 2$

Numerical simulation (contd)

For $p(z)=z^{3}+4 z^{2}+6 z+4$, the algorithm gives $\beta(p) \approx 2.610226$

Fig. 3: $\beta(p)$-pseudozero set of $p(z)=z^{3}+4 z^{2}+6 z+4$

Conclusion

Pseudozero set provides

- a better understanding of the effect of coefficient perturbations
- some applications for robust stability

