
Motivations
Accurate polynomial evaluation

Accurate polynomial evaluation in floating point
arithmetic

Stef Graillat

Université de Perpignan Via Domitia
Laboratoire LP2A

Équipe de recherche en Informatique DALI

MIMS Seminar, February, 10th 2006

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

General motivation

Provide numerical algorithms and software being
a few times more accurate than the result from IEEE 754
working precision:
B the actual accuracy is proved to satisfy improved versions of
the “classic rule of thumb”;
efficient in term of running-time without too much portability
sacrifice:
B only working with IEEE 754 precision: single,double;
together with a residual error bound to control the accuracy of
the computed result:
B dynamic and validated error bound computable in IEEE 754
arithmetic.

Example for polynomial evaluation with Horner scheme:
→ the Compensated Horner Scheme1

1SG, N. Louvet, Ph. Langlois. Compensated Horner Scheme. Submitted to SISC

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Loss of accuracy in the polynomial evaluation

Evaluation of the polynomial p(x) = (x − 2)3 = x3− 6x2 + 12x − 8
for about 200 points near x = 2 in single and double precision

1.99 1.992 1.994 1.996 1.998 2 2.002 2.004 2.006 2.008 2.01
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10−6

Evaluation in single precision
Evaluation in double precision

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Problems in finite precision computation

Aims : Solving the previous problems being accurate and reliable
Understanding the influence of the finite precision on the
numerical quality of numerical software

inaccurate results;
numerical instabilities.

controlling and limiting harmful effect

How to be more accurate without large overheads?

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Problems in computing with uncertainties

Understanding the difficulties to deal with uncertainties:
Controlling the effects of uncertainties:

How to measure the difficulty of solving the problem?
How to appreciate the reliability of the algorithm?
How to estimate the accuracy of the computed solution?

Limiting the effect of finite precision
How to improve the accuracy of the solution?

Which notions to answer these questions?

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Error analysis

x̂ = Ĝ (y)

x = G (y)

Input space D

y
G

Output space R

Ĝ Forward error

Forward error analysis
Backward error analysis
Identify x̂ as the solution of a perturbed problem:
x̂ = G (y + ∆y).

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Error analysis

x̂ = Ĝ (y)

x = G (y)

Input space D

y + ∆y

y

Backward error

G

G
Output space R

Ĝ Forward error

Forward error analysis
Backward error analysis
Identify x̂ as the solution of a perturbed problem:
x̂ = G (y + ∆y).

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Advantages of backward error analysis

How to estimate the accuracy of the computed solution?
At the first order, we have the rule of thumb:

forward error . condition number × backward error.

How to measure the difficulty of solving the problem ?
Condition number measures the sensitivity of the solution to
perturbation in the data

Condition number : K (P, y) := lim
ε→0

sup
∆y∈P(ε)

{
‖∆x‖R
‖∆y‖D

}
How to appreciate the reliability of the algorithm?
Backward error measures the distance between the problem we
solved and the initial problem.

Backward error : η(x̂) = min
∆y∈D

{‖∆y‖D : x̂ = G (y + ∆y)}

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Advantages of backward error analysis

How to estimate the accuracy of the computed solution?
At the first order, we have the rule of thumb:

forward error . condition number × backward error.

How to measure the difficulty of solving the problem ?
Condition number measures the sensitivity of the solution to
perturbation in the data

Condition number : K (P, y) := lim
ε→0

sup
∆y∈P(ε)

{
‖∆x‖R
‖∆y‖D

}
How to appreciate the reliability of the algorithm?
Backward error measures the distance between the problem we
solved and the initial problem.

Backward error : η(x̂) = min
∆y∈D

{‖∆y‖D : x̂ = G (y + ∆y)}

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Advantages of backward error analysis

How to estimate the accuracy of the computed solution?
At the first order, we have the rule of thumb:

forward error . condition number × backward error.

How to measure the difficulty of solving the problem ?
Condition number measures the sensitivity of the solution to
perturbation in the data

Condition number : K (P, y) := lim
ε→0

sup
∆y∈P(ε)

{
‖∆x‖R
‖∆y‖D

}
How to appreciate the reliability of the algorithm?
Backward error measures the distance between the problem we
solved and the initial problem.

Backward error : η(x̂) = min
∆y∈D

{‖∆y‖D : x̂ = G (y + ∆y)}

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Outline

1 Motivations

2 Accurate polynomial evaluation

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Floating point number

Floating point system F ⊂ R:

x = ± x0.x1 . . . xp−1︸ ︷︷ ︸
mantissa

×be , 0 ≤ xi ≤ b − 1, x0 6= 0

b : basis, p : precision, e : exponent range s.t. emin ≤ e ≤ emax

Machine epsilon ε = b1−p, |1+ − 1| = ε

Approximation of R by F, rounding fl : R → F
Let x ∈ R then

fl(x) = x(1 + δ), |δ| ≤ u.

Unit roundoff u = ε/2 for round-to-nearest

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Standard model of floating point arithmetic

Let x , y ∈ F,

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ u, ◦ ∈ {+,−, ·, /}

IEEE 754 standard (1985)

Type Size Mantissa Exponent Unit roundoff Range
Single 32 bits 23+1 bits 8 bits u = 2−24 ≈ 5, 96× 10−8 ≈ 10±38

Double 64 bits 52+1 bits 11 bits u = 2−53 ≈ 1, 11× 10−16 ≈ 10±308

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

For a more precise evaluation scheme

Accurate evaluation of p(x): the compensated Horner scheme
and the compensated rule of thumb
An improved and validated error bound
Theoretical and experimental results exhibit the

actual accuracy: twice the current working precision behavior,
actual speed: twice faster than the corresponding
double-double implementation

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

More accuracy, how ?

More internal precision:
hardware

extended precision in x86 architecture
software

fixed length expansions libraries: double-double (Briggs, Bailey,
Hida, Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries: Priest, Shewchuk
arbitrary multiprecision libraries: MP, MPFUN/ARPREC,
MPFR

Correcting rounding errors:
compensated summation (Kahan,1965) and doubly
compensated summation (Priest,1991), etc.
accurate sum and dot product: Ogita, Rump and Oishi (2005)
→ twice the current working precision behavior and fast
compared to double-double library

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

More accuracy, how ?

More internal precision:
hardware

extended precision in x86 architecture
software

fixed length expansions libraries: double-double (Briggs, Bailey,
Hida, Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries: Priest, Shewchuk
arbitrary multiprecision libraries: MP, MPFUN/ARPREC,
MPFR

Correcting rounding errors:
compensated summation (Kahan,1965) and doubly
compensated summation (Priest,1991), etc.
accurate sum and dot product: Ogita, Rump and Oishi (2005)
→ twice the current working precision behavior and fast
compared to double-double library

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

At current working precision ...

Rule of thumb for backward stable algorithms :

solution accuracy ≈ condition number × computing precision

1 IEEE-754 precision: double (u = 2−53 ≈ 10−16)
2 Condition number for the evaluation of p(x) =

∑n
i=0 aix i :

cond(p, x) =

∑n
i=0 |ai ||x |i

|
∑n

i=0 aix i |
=

p̃(|x |)
|p(x)|

, always ≥ 1.

3 Accuracy of the solution p̂(x):

|p(x)− p̂(x)|
|p(x)|

≤ α(n)× cond(p, x)× u

with α(n) ≈ 2n

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

What means “twice the working precision behavior”?

Compensated rule of thumb:

solution accuracy . precision + condition number× precision2

Three regimes in precision for the evaluation of p̂(x):
1) condition number ≤ 1/u: the accuracy of p̂(x) is optimal

|p̂(x)−p(x)|
|p(x)| ≈ u

105 1010 1015 1020 1025 1030 1035

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

γ2n cond u+γ2n
2 cond

Condition number and relative forward error

Condition number

Re
la

tiv
e

fo
rw

ar
d

er
ro

r

Classic Horner scheme
Compensated Horner scheme

1/u 1/u2

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

What means “twice the working precision behavior”?

Compensated rule of thumb:

solution accuracy . precision + condition number× precision2

Three regimes in precision for the evaluation of p̂(x):
2) 1/u ≤ condition number≤ 1/u2 : the result p̂(x) verifies

|p̂(x)−p(x)|
|p(x)| ≈ cond× u2

105 1010 1015 1020 1025 1030 1035

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

γ2n cond u+γ2n
2 cond

Condition number and relative forward error

Condition number

Re
la

tiv
e

fo
rw

ar
d

er
ro

r

Classic Horner scheme
Compensated Horner scheme

1/u 1/u2

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

What means “twice the working precision behavior”?

Compensated rule of thumb:

solution accuracy . precision + condition number× precision2

Three regimes in precision for the evaluation of p̂(x):
3) no more accuracy when condition number > 1/u2.

105 1010 1015 1020 1025 1030 1035

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

γ2n cond u+γ2n
2 cond

Condition number and relative forward error

Condition number

Re
la

tiv
e

fo
rw

ar
d

er
ro

r

Classic Horner scheme
Compensated Horner scheme

1/u 1/u2

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

The Horner scheme

Algorithm 1 (Horner scheme)

function res = Horner(p, x)
sn = an
for i = n − 1 : −1 : 0

pi = fl(si+1 · x) % rounding error πi
si = fl(pi + ai) % rounding error σi

end
res = s0

γn = nu/(1− nu) ≈ nu

|p(x)− Horner(p, x)|
|p(x)|

≤ γ2n︸︷︷︸
≈2nu

cond(p, x)

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Error-free transformations for sum

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F,

For the sum, algorithms by Dekker (1971) and Knuth (1974)

Algorithm 2 (Error-free transformation of the sum of 2 floating
point numbers, needs |a| ≥ |b|)

function [x , y] = FastTwoSum(a, b)
x = fl(a + b)
y = fl((a − x) + b)

Algorithm 3 (Error-free transformation of the sum of 2 floating
point numbers)

function [x , y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Error-free transformations for product (1/3)

x = fl(a · b) ⇒ a · b = x + y with y ∈ F,

For the product : algorithm TwoProduct by Veltkamp and
Dekker (1971)

a = x + y and x and y nonoverlapping with |y | ≤ |x |.

Algorithm 4 (Error-free split of a floating point number into two
parts)

function [x , y] = Split(a, b)
factor = 2s + 1
c = fl(factor · a)
x = fl(c − (c − a))
y = fl(a − x)

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Error-free transformations for product (2/3)

Algorithm 5 (Error-free transformation of the product of two
floating point numbers)

function [x , y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x − a1 · b1)− a2 · b1)− a1 · b2))

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Error-free transformations for product (3/3)

What is a Fused Multiply and Add (FMA) in floating point
arithmetic?
→ Given a, b and c three floating point numbers, FMA(a, b, c)
computes a · b + c rounded according to the current rounding mode
⇒ only one rounding error for two operations!
FMA is available on Intel Itanium, IBM RS/6000, IBM Power PC,
etc.

Algorithm 6 (Error-free transformation of the product of two
floating point numbers with FMA)

function [x , y] = TwoProductFMA(a, b)
x = a · b
y = FMA(a, b,−x)

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Error-free transformation for the Horner scheme

p(x) = Horner(p, x) + (pπ + pσ)(x)

Algorithm 7 (Error-free transformation for the Horner scheme)

function [Horner(p, x), pπ, pσ] = EFTHorner(p, x)
sn = an
for i = n − 1 : −1 : 0

[pi , πi] = TwoProduct(si+1, x)
[si , σi] = TwoSum(pi , ai)
Let πi be the coefficient of degree i of pπ

Let σi be the coefficient of degree i of pσ

end
Horner(p, x) = s0

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Compensated Horner scheme

Algorithm 8 (Compensated Horner scheme)

function res = CompHorner(p, x)
[h, pπ, pσ] = EFTHorner(p, x)
c = Horner(pπ + pσ, x)
res = fl(h + c)

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Accuracy of the compensated Horner scheme

Theorem 1
Let p be a polynomial of degree n with floating point coefficients,
and x be a floating point value. Then if no underflow occurs,

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u + γ2
2n︸︷︷︸

≈4n2u2

cond(p, x).

Key point in the proof:

(p̃π + p̃σ)(|x |) ≤ γ2np̃(|x |)

a similar bound is proved in presence of underflow

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Numerical experiments: testing the accuracy

Evaluation of pn(x) = (x − 1)n for x = fl(1.333) and n = 3, . . . , 42

105 1010 1015 1020 1025 1030 1035

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

γ2n cond u+γ2n
2 cond

Condition number and relative forward error

Condition number

Re
la

tiv
e

fo
rw

ar
d

er
ro

r

Classic Horner scheme
Compensated Horner scheme

1/u 1/u2

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Numerical experiments: testing the speed efficiency

We compare
Horner: IEEE 754 double precision Horner scheme
CompHorner: our Compensated Horner scheme
DDHorner: Horner scheme with internal double-double
computation

All computations are performed in C language and IEEE 754 double
precision
For every polynomials pn with n varying from 3 to 42:

we perform 100 runs measuring (100) numbers of cycles (TSC
counter for IA-32),
we keep the mean value, the min and the max of the 10
smallest numbers of cycles.

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Speed efficiency: measured and theoretical ratios

Pentium 4: 3.0GHz, 1024kB cache L2 - GCC 3.4.1
ratio minimum mean maximum theoretical

CompHorner/Horner 1.5 2.9 3.2 13
DDHorner/Horner 2.3 8.4 9.4 17

Intel Celeron: 2.4GHz, 256kB cache L2 - GCC 3.4.1
ratio minimum mean maximum theoretical

CompHorner/Horner 1.4 3.1 3.4 13
DDHorner/Horner 2.3 8.4 9.4 17

→ compensated Horner scheme = Horner scheme with
double-double without renormalization

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

The corrected algorithm runs twice faster than
corresponding double-double

 0

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300 350 400 450 500

R
at

io
 o

f t
he

 c
om

pt
in

g
tim

es

Degree of the polynomial

Normalized execution times [Intel Celeron, 2.4GHz, 256kB L2 cache]

CorrectedHorner / Horner
DDHorner / Horner

MPFRHorner / Horner

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

R
at

io
 o

f t
he

 c
om

pt
in

g
tim

es

Degree of the polynomial

Normalized execution times [Intel Pentium 4, 3.0GHz, 1024kB L2 cache]

CorrectedHorner / Horner
DDHorner / Horner

MPFRHorner / Horner

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

A dynamic error bound

Theorem 2
Given a polynomial p of degree n with floating point coefficients,
and a floating point value x, we consider res = CompHorner(p, x).
The absolute forward error affecting the evaluation is bounded
according to

|CompHorner(p, x)− p(x)| ≤
fl((u|res|+ (γ4n+2Horner(p̃π + p̃σ, |x |) + 2u2|res|))).

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Accuracy of the bound for p5(x) = (x − 1)5

0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01
10−36

10−34

10−32

10−30

10−28

10−26

10−24
Accuracy of error bounds

Argument x

ab
so

lu
te

 e
rro

r
forward error
theoritical error bound
a priori error bound

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Conclusion and future work

The compensated Horner scheme provides
actual accuracy as doubling the working precision,
actual speed being twice faster than the corresponding
double-double subroutine,
together with a dynamic and validated error bound.

Past, current and future developments
Compensated Horner scheme: underflow, with FMA, for FMA
same techniques with Newton methods

The new revision of IEEE 754 standard should include tailadd,
tailsubtract and tailmultiply that compute the error during
an addition, a subtraction and a multiplication.

Stef Graillat Accurate polynomial evaluation

Motivations
Accurate polynomial evaluation

Thank you for your attention

Stef Graillat Accurate polynomial evaluation

	Motivations
	Accurate polynomial evaluation

