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Why structured matrices?

Structured matrices are used in various fields such as signal
processing, etc.
Using the structure of a matrix, we get some better properties
Substantial interest in algorithms for structured problems in
recent years
Growing interest in structured perturbation analysis
In general perturbation and error analysis for structured solvers
are performed with general perturbations: for a structured
solver nothing else but structured perturbations are possible
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Our structures

Toeplitz matrices (ti−j)
n−1
i ,j=0


t0 t−1 · · · t1−n

t1 t0
. . .

...
...

. . . . . . t−1
tn−1 · · · t1 t0



Hankel matrices (hi ,j)
n−1
i ,j=0


h0 h1 · · · hn−1

h1 h2 . .. hn
... . .. . ..

...
hn−1 hn · · · h2n−2



Circulant matrices (vi )
n−1
i=0


v0 vn−1 · · · v1

v1 v0
. . .

...
...

. . . . . . vn−1
vn−1 · · · v1 v0
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Number of independant parameters

In the following table, k represents the number of independant
parameters for the different structures

Structure general Toeplitz circulant Hankel
k n2 2n − 1 n 2n − 1
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Notations

In this talk, we will use the following notation:

struct Toeplitz, circulant or Hankel
Mn(C) set of complex n × n matrices
Mstruct

n (C) set of structured complex n × n matrices
‖ · ‖ spectral norm
I , In identity matrix (with n rows and columns)
σmin(A) smallest singular value of A
Λ(A) spectrum of A
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Definition of pseudospectra

The ε-pseudospectrum of a matrix A, denoted Λε(A), is the subset
of complex numbers consisting of all eigenvalues of all complex
matrices within a distance ε of A

Definition
For a real ε > 0, the ε-pseudospectrum of a matrix A ∈ Mn(C) is
the set

Λε(A) = {z ∈ C : z ∈ Λ(X ) where X ∈ Mn(C) and ‖X − A‖ ≤ ε}.
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Distance to singularity

Definition
Given a nonsingular matrix A ∈ Mn(C), we define the distance to
singularity by

d(A) = min{‖∆A‖ : A + ∆A singular,∆A ∈ Mn(C)}.

Lemma
Let nonsingular A ∈ Mn(C). Then we have

d(A) = ‖A−1‖−1.
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Characterisation of pseudospectra

Theorem
The following assertions are equivalent

(i) Λε(A) is the ε-pseudospectrum of a matrix A
(ii) Λε(A) = {z ∈ C : ‖(zI − A)−1‖ ≥ ε−1}
(iii) Λε(A) = {z ∈ C : σmin(zI − A)‖ ≤ ε}
(iv) Λε(A) = {z ∈ C : d(zI − A) ≤ ε}
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Definition of structured pseudospectra

The structured ε-pseudospectrum of a matrix A, denoted
Λstruct

ε (A), is the subset of complex numbers consisting of all
eigenvalues of all complex structured matrices within a distance ε
of A

Definition
For a real ε > 0, the structured ε-pseudospectrum of a matrix
A ∈ Mstruct

n (C) is the set

Λstruct
ε (A) = {z ∈ C : z ∈ Λ(X ) where X ∈ Mstruct

n (C)

and ‖X − A‖ ≤ ε}.
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Structured distance to singularity

Definition

Given a nonsingular matrix A ∈ Mstruct
n (C), we define the

structured distance to singularity by

d struct(A) = min{‖∆A‖ : A + ∆A singular,∆A ∈ Mstruct
n (C)}.

Theorem (Rump [8, Thm 12.2])

Let nonsingular A ∈ Mstruct
n (C) with struct being Toeplitz , Hankel

or circulant. Then we have

d struct(A) = d(A) = ‖A−1‖−1.
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Characterisation of structured pseudospectra

Lemma

Given ε > 0 and A ∈ Mstruct
n (C) with struct Toeplitz or circulant,

the structured ε-pseudospectrum satisfies

Λstruct
ε (A) = {z ∈ C : d struct(A− zI ) ≤ ε}.

Theorem

Given ε > 0 and A ∈ Mstruct
n (C) with struct Toeplitz or circulant,

the ε-pseudospectrum and the structured ε-pseudospectrum satisfy

Λstruct
ε (A) = Λε(A).
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What for others linear structures?

We do not have equality for Hermitian and skew-Hermitian
structures.
For example for Hermitian structure we always have Λherm

ε (A) ( R
whereas one can find an Hermitian matrix such that Λε(A) * R.
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The polynomial eigenvalue problem

Problem
Find the solutions (x , λ) ∈ Cn × C of

P(λ)x = 0,

where
P(λ) = λmAm + λm−1Am−1 + · · ·+ A0,

with Ak ∈ Mn(C), k = 0 : m

If x 6= 0 then λ is called an eigenvalue and x the corresponding
eigenvector. The set of eigenvalues of P is denoted Λ(P). We
assume that P has only finite eigenvalues (and pseudoeigenvalues)
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Definition of pseudospectra

Let us define

∆P(λ) = λm∆Am + λm−1∆Am−1 + · · ·+ ∆A0,

where ∆Ak ∈ Mn(C).

Definition
For a given ε > 0, the ε-pseudospectrum of P is the set

Λε(P) = {λ ∈ C : (P(λ) + ∆P(λ))x = 0 for some x 6= 0
with ‖∆Ak‖ ≤ αkε, k = 0 : m}.

The nonnegative parameters α1, . . . , αm allow freedom in how
perturbations are measured
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Characterisation of pseudospectra

Lemma (Tisseur and Higham [9])

Λε(P) = {λ ∈ C : d(P(λ)) ≤ εp(|λ|)},

where p(x) =
∑m

k=0 αkxk .
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Definition of structured pseudospectra

We suppose that ∆Ak have a structure belonging to struct. We
also suppose that all the matrices Ak and ∆Ak , k = 0 : n, belong
to Mstruct

n (C) for a given structure struct. Let

P(λ) = λmAm + λm−1Am−1 + · · ·+ A0,

with Ak ∈ Mstruct
n (C), k = 0 : m and

∆P(λ) = λm∆Am + λm−1∆Am−1 + · · ·+ ∆A0,

where ∆Ak ∈ Mstruct
n (C). P(λ) and ∆P(λ) belong to Mstruct

n (C).

Definition
We define the structured ε-pseudospectrum of P by

Λstruct
ε (P) = {λ ∈ C : (P(λ) + ∆P(λ))x = 0 for some x 6= 0

with ∆Ak ∈ Mstruct
n (C), ‖∆Ak‖ ≤ αkε, k = 0 : n}.
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Characterisation of structured pseudospectra

Lemma
For struct ∈ {Toep, circ, Hankel}, we have

Λstruct
ε (P) = {λ ∈ C : d struct(P(λ)) ≤ εp(|λ|)},

where p(x) =
∑n

k=0 αkxk .

Theorem

Given ε > 0 and P(λ) ∈ Mstruct
n (C) a matrix polynomial with

struct ∈ {Toep, circ, Hankel}, the ε-pseudospectrum and the
structured ε-pseudospectrum satisfy

Λstruct
ε (P) = Λε(P).
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Real structured perturbations

Consider
P(λ) = λmAm + λm−1Am−1 + · · ·+ A0,

with Ak ∈ Mn(R), k = 0 : m and

∆P(λ) = λm∆Am + λm−1∆Am−1 + · · ·+ ∆A0,

where ∆Ak ∈ Mn(R). Suppose that P(λ) is subject to structured
perturbations:

[∆A0, . . . ,∆Am] = DΘ[E0, . . . , Em],

with D ∈ Mn,1(R), Θ ∈ M1,t(R) and Ek ∈ Mt,n(R), k = 0 : m.
For notational convenience, we introduce

E (λ) = E [In, λIn, . . . , λmIn]T = λmEm + λm−1Em−1 + · · ·+ E0,

and

G (λ) = E (λ)P(λ)−1D = GR(λ) + iGI (λ), GR(λ), GI (λ) ∈ Rt .
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Definition and characterisation of pseudospectra

Definition
The structured ε-pseudospectrum is defined by

Λε(P) = {λ ∈ C : (P(λ)+DΘE (λ))x = 0 for some x 6= 0, ‖Θ‖ ≤ ε}

We denote for x , y ∈ Rt ,

d(x ,Ry) = inf
α∈R

‖x − αy‖,

the distance of the point x from the linear subspace
Ry = {αy , α ∈ R}.

Theorem
Λε(P) = {λ ∈ C \ Λ(P) : d(GR(λ),RGI (λ)) ≥ 1/ε} ∪ Λ(P)
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Conclusion

We have
The structured pseudospectrum is equal to the
pseudospectrum for the two following structures: Toeplitz and
circulant
This result is false for structures Hermitian and skew-Hermitian
We have generalized these results to pseudospectra of matrix
polynomials.
We have given a formula for structured pseudospectra of real
matrix polynomials
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