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Motivations

Finding the common solutions to a polynomial system
f1(x1, . . . ,xn) = 0,
f2(x1, . . . ,xn) = 0,

...
fs(x1, . . . ,xn) = 0,

with fi ∈C[x1, . . . ,xn] or in algebraic terms, finding the variety V of
the ideal I = 〈f1, . . . , fs〉

We assume that V is finite (I is 0-dimensional)
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Outline of the talk

1 The univariate case

2 Brief review of the different approaches

3 The multivariate case

4 Implementation and numerical experiments
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The univariate case

Let f (x) = fdxd +·· ·+ f1x+ f0 and define A =C[x]/〈f 〉
The matrix of the multiplication operator

Mx : A → A

a 7→ ax

in the basis (1,x . . . ,xd−1) is

Mx =


0 · · · 0 −f0/fd

1
. . .

...
...

. . . 0
...

0 1 −fd−1/fd


The eigenvalues of MT

x are the roots ζ1, . . . ,ζd of f

S. Graillat (Univ. Paris 6) Certified Numerical Approximations of Roots 4 / 22



The univariate case (cont’d)

The eigenvectors of

MT
x =


0 · · · 0 −f0/fd

1
. . .

...
...

. . . 0
...

0 1 −fd−1/fd


T

associated to the eigenvalue ζi is (1,ζi, . . . ,ζd−1
i )

The geometric multiplicity of eigenvalue ζi is always one for all i

If one works in the dual of A, the vector (1,ζi, . . . ,ζd−1
i ) can be

considered as the evaluation operation at the zero ζi since

(1,ζi, . . . ,ζd−1
i ) · (a0,a1, . . . ,ad−1)T =

d−1∑
i=0

aiζ
i
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Algebraic Methods

Equations
Representation of
the quotient algebra

-Gröbner bases
-Gen. Norm. Forms
-Resultants

-Cyclic
-Robot
-...

Our Contribution

Computations inside
the quotient algebra
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Different methods

1 Rational Univariate Representation (RUR) [Rouillier] : a
symbolic representation of the roots

2 Homotopic continuation method [Verschelde, Sommese]

3 Eigenvalue computation [Corless, Gianni, Trager,...] :
simultaneous Schur decomposition of the multiplication
matrices

4 Eigenvalue/Eigenvector computation [Moller, Stetter] : use
either eigenvalue or eigenvector to recover informations on the
roots
 Contributions :

use of the structure of the eigenvector to speed up the algorithm
use of certified numerical algorithms instead of symbolic ones
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Multivariate case

Let f1, . . . , fs ∈C[x1, . . . ,xn] and define A =C[x]/〈f1, . . . , fs〉
Let B a monomial basis of A

The matrix of the multiplication operator Mi is defined by

Mi : A → A

a 7→ xia

Theorem 1 (Corless/Gianni/Trager 96)
The matrices M1, . . . ,Mn commute. So there exists a unitary matrix V
such that V ∗MiV = Ui is upper triangular for all i (Schur
decomposition). The zeros are

ζj = [u1
jj,u2

jj, . . . ,us
jj].

S. Graillat (Univ. Paris 6) Certified Numerical Approximations of Roots 8 / 22



Multivariate case (cont’d)

Theorem 2 (Stieckelberger)
The common eigenvectors to all the transposed multiplication
operators, are the evaluation at the root :

1ζj : A → C

p 7→ p(ζj)

One can restrict to the multiplication by one variable.

S. Graillat (Univ. Paris 6) Certified Numerical Approximations of Roots 9 / 22



Algorithm 1 (Undernum, Moller & Tenberg)
INPUT : lm = (M1, . . . ,Mn) the dual multiplication operators

i an integer index
lv a list a vectors expressed on the canonical basis

OUTPUT : A numerical approximation of a common eigenvector to all the Mi.

Sol = []

Compute M, the matrix of the restriction of Mi on the vector space spanned by
the vectors of lv.

For each eigenvalue v of M do

if the eigenspace associated to v has dimension 1 then
Let e be the eigenvector of the eigenspace.
Let Mlv be the matrix whose columns are the vectors of lv.
e′ = Mlve
Sol = Sol∪ [e′]

else
Let le denote the list of eigenvectors associated to v.
Sol = Sol∪Undernum(lm, i+1, le)

Return Sol
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Algorithm 2 (Symbonum, Moller & Tenberg)
INPUT : M1, . . . ,Mn the n transposed multiplication operators
OUTPUT : A numerical approximation of the roots of the system
f1, . . . , fs

Res = []

Let C be the list of the vectors of the canonical basis.

Tmp_sol = Undernum([M1, . . . ,Mn],1,C)

For each v in Tmp_sol do
tmpres=[]
for i from 1 to n do

tmpres = tmpres∪DotProd(Row(1,Mi),v/v[1])

Res = Res∪ tmpres

return Res
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A numerical algorithm

Aim : having a numerical version of this algorithm

Problems & drawbacks :

no certification on what is computed

numerically speaking, the eigenvectors are not well defined

the algorithm requires the computation of the multiplication
operators by all variables
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Example

System : X 2 = 0,Y 2 = 0

Monomial basis : B = {1,x,y,xy}

Mx =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 MT
x =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



eigenvectors :


1
0
0
0

 ,


0
0
1
0


Need to examine the action of MT

y on this 2-dimensional space !
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Numerical observations

→ certified error bounds for eigenvalues and eigenvectors [Rump]
Use of interval arithmetic and self-validating methods

→ works only with nonderogatory eigenvalue but

Theorem 3 (Rump)
For A ∈ Mn(C), let an eigenvalue λ ∈ Spec(A) (Spec denotes the
spectrum) be given with algebraic multiplicity m and let y 6= 0, be a
vector of Cn such that Ay =λy, i.e. y is an eigenvector associated to λ.
Then for all ε> 0 there exists Ã such that ‖A− Ã‖∞ ≤ ε and the
following properties hold :

λ ∈ Spec(Ã).

λ is of algebraic multiplicity m.

λ is of geometric multiplicity one.

Ãy =λy.
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Numerical observations (cont’d)

certified error bounds for eigenvalues and eigenvectors [Rump]

→ compute in general an enclosure of a basis of a full invariant
subspace and not an enclosure for only eigenvectors

→ but eigenvectors belongs to the full invariant subspace

→ the use of the structure of the eigenvectors makes it possible
to recover them from the full invariant subspace

→ use of fast QR-multishift routine (LAPACK) to compute
eigenelements

→ certification can be done once at the end of the algorithm
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Clusterization

Need to group together eigenvalues that are very closed

Consider an eigenvalue α, and v and u be its associated left
eigenvector and right eigenvector : Au =αu and vT A =αvT .

The reciprocal condition number of α is

rcondα = |v∗u|
‖v‖ ·‖u‖ ,

αi and αj are grouped together if

|αi −αj| ≤ max

(
prec

rcondαi

,
prec

rcondαj

)
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Structure of the eigenvectors

Theorem 4
Let α1, . . . ,αk be eigenvalues of respectively MT

x1
, . . . ,MT

xk
. Consider the

vector space

E = Eig(MT
x1

,α1)∩Eig(MT
x2

,α2)∩·· ·∩Eig(MT
xk

,αk)

where Eig(MT
xi

,αi) denotes the full invariant subspace of the matrix
MT

xi
associated to the eigenvalue αi. Let m be a monomial of the

monomial basis B such that m = xd1
1 · · ·xdk

k Then the common
eigenvectors to all the transposed multiplication operators that belong
to E are such that : the coordinate of m in these vectors is αd1

1 · · ·αdk
k .

→ this gives contraints on the eigenvectors
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Example on cyclic5

i=1,dim=2 i=1,dim=10

i=0,dim=70

10 3

i=3,dim=2

5

i=2,dim=4

5
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Implementation

Implementation in C++ (2500 lines)

The implementation is divided into three main components :

the routine to compute the normal form of the quotient algebra

the routine for performing the numerical root computing

the routine to certify the clusters of the first matrix chosen

Use of a generic BLAS and LAPACK library with GMP and Boost (for
interval)
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Timings

Laptop Intel Core 2 Duo 8400 with 4 Go running on Linux 2.6.26

Name arith Nb. sol. Time (s) Prec
cyclic5 double 70 2 1e-15
cyclic5 long double 70 3 1e-16
cyclic5 mpf_class 70 103.84 <1e-50

katsura6 double 64 0.3 1e-10
katsura6 long double 64 0.91 1e-16
katsura6 mpf_class 64 33.91 1e-40
katsura7 double 128 3.8 1e-10
katsura7 long double 128 7.3 1e-16
katsura7 mpf_class 128 515 1e-43
katsura8 double 256 96 1e-4
katsura8 long double 256 127 1e-10
katsura8 mpf_class 256 > 1h 1e-10
fabrice24 double 40 0.07 1e-8
fabrice24 long double 40 0.14 1e-11
fabrice24 mpf_class 40 9 1e-41

double = 64 bits, long double = 80 bits, mpf = 200 bits
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Conclusion and future work

Algorithm with two steps :

a first numerical computation that is currently not certified

a second step that is a verification of the numerical
computations

The main improvements of this algorithm are

the use of certified numerical computation

the use of duality

the use of the structure of the evaluation operators to avoid
some recursive calls

Future work :

parallelization of recursive calls (OpenMP)

algebraic multiplicity of the clusters

better use of the structure of the representation of the quotient
algebra
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Thank you for your attention
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