A New Algorithm for Computing Certified Numerical Approximations of the Roots of a Zero-dimensional System

Stef Graillat, Philippe Trébuchet

LIP6 - Université Pierre et Marie Curie (Paris 6)

ISSAC 2009

International Symposium on Symbolic and Algebraic Computation Seoul, Korea, July 28-31, 2009

Finding the common solutions to a polynomial system

$$\begin{cases} f_1(x_1,...,x_n) = 0, \\ f_2(x_1,...,x_n) = 0, \\ \vdots \\ f_s(x_1,...,x_n) = 0, \end{cases}$$

with $f_i \in \mathbb{C}[x_1, ..., x_n]$ or in algebraic terms, finding the variety *V* of the ideal $I = \langle f_1, ..., f_s \rangle$

We assume that V is finite (I is 0-dimensional)

- The univariate case
- Prief review of the different approaches
- 3 The multivariate case
- Implementation and numerical experiments

The univariate case

Let $f(x) = f_d x^d + \dots + f_1 x + f_0$ and define $A = \mathbb{C}[x]/\langle f \rangle$ The matrix of the multiplication operator

in the basis $(1, x, \dots, x^{d-1})$ is

$$M_{x} = \begin{pmatrix} 0 & \cdots & 0 & -f_{0}/f_{d} \\ 1 & \ddots & \vdots & \vdots \\ & \ddots & 0 & \vdots \\ 0 & 1 & -f_{d-1}/f_{d} \end{pmatrix}$$

The eigenvalues of M_x^T are the roots ζ_1, \ldots, ζ_d of f

The univariate case (cont'd)

The eigenvectors of

$$M_x^T = \begin{pmatrix} 0 & \cdots & 0 & -f_0/f_d \\ 1 & \ddots & \vdots & \vdots \\ & \ddots & 0 & \vdots \\ 0 & & 1 & -f_{d-1}/f_d \end{pmatrix}^T$$

associated to the eigenvalue ζ_i is $(1, \zeta_i, \dots, \zeta_i^{d-1})$

The geometric multiplicity of eigenvalue ζ_i is always one for all *i*

If one works in the dual of *A*, the vector $(1, \zeta_i, ..., \zeta_i^{d-1})$ can be considered as the evaluation operation at the zero ζ_i since

$$(1, \zeta_i, \dots, \zeta_i^{d-1}) \cdot (a_0, a_1, \dots, a_{d-1})^T = \sum_{i=0}^{d-1} a_i \zeta^i$$

Different methods

- Rational Univariate Representation (RUR) [Rouillier] : a symbolic representation of the roots
- Itomotopic continuation method [Verschelde, Sommese]
- Eigenvalue computation [Corless, Gianni, Trager,...] : simultaneous Schur decomposition of the multiplication matrices
- Eigenvalue/Eigenvector computation [Moller, Stetter] : use either eigenvalue or eigenvector to recover informations on the roots

\rightsquigarrow Contributions :

- use of the structure of the eigenvector to speed up the algorithm
- use of certified numerical algorithms instead of symbolic ones

Multivariate case

Let $f_1, \ldots, f_s \in \mathbb{C}[x_1, \ldots, x_n]$ and define $A = \mathbb{C}[x] / \langle f_1, \ldots, f_s \rangle$

Let *B* a monomial basis of *A*

The matrix of the multiplication operator M_i is defined by

$$\begin{array}{rccc} M_i \colon A & \to & A \\ a & \mapsto & x_i a \end{array}$$

Theorem 1 (Corless/Gianni/Trager 96)

The matrices $M_1, ..., M_n$ commute. So there exists a unitary matrix V such that $V^* M_i V = U_i$ is upper triangular for all i (Schur decomposition). The zeros are

$$\zeta_j = [u_{jj}^1, u_{jj}^2, \dots, u_{jj}^s].$$

Theorem 2 (Stieckelberger)

The common eigenvectors to all the transposed multiplication operators, are the evaluation at the root :

$$\begin{array}{ccc} & & \mathcal{L}_{\zeta_j} : A & \to & \mathbb{C} \\ & & p & \mapsto & p(\zeta_j) \end{array}$$

One can restrict to the multiplication by one variable.

Algorithm 1 (Undernum, Moller & Tenberg)

INPUT : $lm = (M_1, ..., M_n)$ the dual multiplication operators i an integer index

lv a list a vectors expressed on the canonical basis OUTPUT : *A numerical approximation of a common eigenvector to all the* M_i.

- *Sol* = []
- Compute M, the matrix of the restriction of M_i on the vector space spanned by the vectors of lv.
- For each eigenvalue v of M do
 - if the eigenspace associated to v has dimension 1 then
 - Let e be the eigenvector of the eigenspace.
 - Let M_{lv} be the matrix whose columns are the vectors of lv.
 - $e' = M_{lv}e$
 - $Sol = Sol \cup [e']$
 - else
 - Let le denote the list of eigenvectors associated to v.
 - $Sol = Sol \cup Undernum(lm, i+1, le)$

Return Sol

S. Graillat (Univ. Paris 6)

Algorithm 2 (Symbonum, Moller & Tenberg)

INPUT : $M_1, ..., M_n$ the *n* transposed multiplication operators OUTPUT : A numerical approximation of the roots of the system $f_1, ..., f_s$

- Res = []
- Let C be the list of the vectors of the canonical basis.
- $Tmp_sol = Undernum([M_1, ..., M_n], 1, C)$
- For each v in Tmp_sol do
 - tmpres=[]
 - for i from 1 to n do
 - $tmpres = tmpres \cup DotProd(Row(1, M_i), v/v[1])$
 - $Res = Res \cup tmpres$

return Res

Aim : having a numerical version of this algorithm

Problems & drawbacks :

- no certification on what is computed
- numerically speaking, the eigenvectors are not well defined
- the algorithm requires the computation of the multiplication operators by all variables

Example

System :
$$X^2 = 0, Y^2 = 0$$

Monomial basis : $B = \{1, x, y, xy\}$

$$M_{x} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \rightsquigarrow M_{x}^{T} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
eigenvectors :
$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Need to examine the action of M_y^T on this 2-dimensional space!

Numerical observations

 → certified error bounds for eigenvalues and eigenvectors [Rump] Use of interval arithmetic and self-validating methods
→ works only with nonderogatory eigenvalue but

Theorem 3 (Rump)

For $A \in M_n(\mathbb{C})$, let an eigenvalue $\lambda \in \text{Spec}(A)$ (Spec denotes the spectrum) be given with algebraic multiplicity m and let $y \neq 0$, be a vector of \mathbb{C}^n such that $Ay = \lambda y$, i.e. y is an eigenvector associated to λ . Then for all $\epsilon > 0$ there exists \tilde{A} such that $||A - \tilde{A}||_{\infty} \leq \epsilon$ and the following properties hold :

- $\lambda \in \operatorname{Spec}(\tilde{A})$.
- λ is of algebraic multiplicity m.
- λ is of geometric multiplicity one.
- $\tilde{A}y = \lambda y$.

Numerical observations (cont'd)

• certified error bounds for eigenvalues and eigenvectors [Rump]

 \rightarrow compute in general an enclosure of a basis of a full invariant subspace and not an enclosure for only eigenvectors

- \rightarrow but eigenvectors belongs to the full invariant subspace
- \rightarrow the use of the structure of the eigenvectors makes it possible to recover them from the full invariant subspace

 \rightarrow use of fast QR-multishift routine (LAPACK) to compute eigenelements

 \rightarrow certification can be done once at the end of the algorithm

Need to group together eigenvalues that are very closed

Consider an eigenvalue α , and v and u be its associated left eigenvector and right eigenvector : $Au = \alpha u$ and $v^T A = \alpha v^T$.

The reciprocal condition number of α is

$$\operatorname{rcond}_{\alpha} = \frac{|v^* u|}{\|v\| \cdot \|u\|},$$

 α_i and α_j are grouped together if

$$|\alpha_i - \alpha_j| \le \max\left(\frac{\operatorname{prec}}{\operatorname{rcond}_{\alpha_i}}, \frac{\operatorname{prec}}{\operatorname{rcond}_{\alpha_j}}\right)$$

Theorem 4

Let $\alpha_1, \ldots, \alpha_k$ be eigenvalues of respectively $M_{x_1}^T, \ldots, M_{x_k}^T$. Consider the vector space

$$E = \operatorname{Eig}(M_{x_1}^T, \alpha_1) \cap \operatorname{Eig}(M_{x_2}^T, \alpha_2) \cap \cdots \cap \operatorname{Eig}(M_{x_k}^T, \alpha_k)$$

where $\operatorname{Eig}(M_{x_i}^T, \alpha_i)$ denotes the full invariant subspace of the matrix $M_{x_i}^T$ associated to the eigenvalue α_i . Let m be a monomial of the monomial basis B such that $m = x_1^{d_1} \cdots x_k^{d_k}$ Then the common eigenvectors to all the transposed multiplication operators that belong to E are such that : the coordinate of m in these vectors is $\alpha_1^{d_1} \cdots \alpha_k^{d_k}$.

 \rightarrow this gives contraints on the eigenvectors

Example on cyclic5

i=3,dim=2

Implementation in C++ (2500 lines)

The implementation is divided into three main components :

- the routine to compute the normal form of the quotient algebra
- the routine for performing the numerical root computing
- the routine to certify the clusters of the first matrix chosen

Use of a generic BLAS and LAPACK library with GMP and Boost (for interval)

Timings

Laptop Intel Core 2 Duo 8400 with 4 Go running on Linux 2.6.26

Name	arith	Nb. sol.	Time (s)	Prec
cyclic5	double	70	2	1e-15
cyclic5	long double	70	3	1e-16
cyclic5	mpf_class	70	103.84	<1e-50
katsura6	double	64	0.3	1e-10
katsura6	long double	64	0.91	1e-16
katsura6	mpf_class	64	33.91	1e-40
katsura7	double	128	3.8	1e-10
katsura7	long double	128	7.3	1e-16
katsura7	mpf_class	128	515	1e-43
katsura8	double	256	96	1e-4
katsura8	long double	256	127	1e-10
katsura8	mpf_class	256	>1h	1e-10
fabrice24	double	40	0.07	1e-8
fabrice24	long double	40	0.14	1e-11
fabrice24	mpf_class	40	9	1e-41

double = 64 bits. long double = 80 bits. mpf = 200 bits S. Graillat (Univ. Paris 6)

Certified Numerical Approximations of Roots

Conclusion and future work

Algorithm with two steps :

- a first numerical computation that is currently not certified
- a second step that is a verification of the numerical computations

The main improvements of this algorithm are

- the use of certified numerical computation
- the use of duality
- the use of the structure of the evaluation operators to avoid some recursive calls

Future work :

- parallelization of recursive calls (OpenMP)
- algebraic multiplicity of the clusters
- better use of the structure of the representation of the quotient algebra

Thank you for your attention