A method of calculating faithful rounding of l_2 -norm for *n*-vectors

Stef Graillat

LIP6/PEQUAN, Sorbonne Universités, UPMC Univ Paris 06, CNRS

Joint work with Christoph Lauter, Peter Tang, Naoya Yamanaka and Shin'ichi Oishi

SCAN 2014, 16th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Verified Numerical Computation

Würzburg, Germany, September 21-26, 2014

Let $\mathbb F$ be a set of floating-point numbers, ε unit roundoff, \circ rounding to nearest

For the sake of simplicity, we can assume that \mathbb{F} is the set of binary64 floating-point numbers in IEEE 754 standard.

Let $\mathbb F$ be a set of floating-point numbers, ε unit roundoff, \circ rounding to nearest

For the sake of simplicity, we can assume that \mathbb{F} is the set of binary64 floating-point numbers in IEEE 754 standard.

Aim

We are concerned with the problem of calculating l_2 -norm of *n*-vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)^t \in \mathbb{F}^n$,

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$

Motivations

- The computation of *l*₂-norm is used in
 - the normalization of vectors
 - in Gram-Schmidt process for orthonormalizing vectors
 - in QR decomposition using Householder reflections
 - in some algorithms to compute eigenvalues (power iteration method)

Motivations

- The computation of *l*₂-norm is used in
 - the normalization of vectors
 - in Gram-Schmidt process for orthonormalizing vectors
 - in QR decomposition using Householder reflections
 - in some algorithms to compute eigenvalues (power iteration method)
- With some guaranteed accuracy,
 - we increase the accuracy
 - we simplify error analysis
 - we make a step toward more accurate algorithms
 - we improve the chance to get reproducible results when computations are done in parallel

Purpose (1/2)

Our aim is to get a faithful rounding of $\|\mathbf{x}\|_2$ at a reasonable cost.

Our aim is to get a faithful rounding of $\|\mathbf{x}\|_2$ at a reasonable cost.

- To get a floating-point number faithful to $\|\mathbf{x}\|_2$, calculating $\sum x_i^2$ up to nearest and taking the square root is enough.
- However, calculating ∑ x_i² up to nearest sometimes requires a lot of computations.
- Calculating $\sum x_i^2$ up to faithful is not enough to get a faithful rounding of $||\mathbf{x}||_2$.

Thus, our purpose is to seek an efficient algorithm to calculate a floating-point number faithful to $\|\mathbf{x}\|_2$ for $\mathbf{x} \in \mathbb{F}^n$.

- First calculate $S \approx \sum x_i^2 \coloneqq \sigma$ with a little bit rough accuracy compared with nearest but more accurate compared with faithful.
- Then, calculate \sqrt{S} using the square root of IEEE754.

Thus, our purpose is to seek an efficient algorithm to calculate a floating-point number faithful to $\|\mathbf{x}\|_2$ for $\mathbf{x} \in \mathbb{F}^n$.

- First calculate S ≈ ∑x_i² := σ with a little bit rough accuracy compared with nearest but more accurate compared with faithful.
- Then, calculate \sqrt{S} using the square root of IEEE754.

Problem

To which accuracy, we need to calculate $S \approx \sum x_i^2$ so as to a floating-point number $\circ(\sqrt{S})$ becomes faithful to $\|\mathbf{x}\|_2$.

 \rightarrow We also want to deal with underflow and overflow

Existing solutions

• Common implementations such as the public version of LAPACK released by netlib essentially compute the *l*₂-norm as

$$\widehat{x} \times \|\mathbf{x}/\widehat{x}\|_2$$

where $\widehat{x} = \max_j |x_j|$.

- That implementation requires *n* divisions in total, which is significantly more expensive than the naïve formula would suggest.
- In the worst-case scenario, the last $\log_{10}(n)$ digits of the result could be corrupted.
- Avoid overflow but not underflow

Problem

To what accuracy, we need to calculate $S \approx \sum x_i^2$ so as to a floating-point number $\circ(\sqrt{S})$ becomes faithful to $\|\mathbf{x}\|_2$.

Let $\sigma = \sum x_i^2$ then $\|\mathbf{x}\|_2 = \sqrt{\sigma}$

Problem

To what accuracy, we need to calculate $S \approx \sum x_i^2$ so as to a floating-point number $\circ(\sqrt{S})$ becomes faithful to $\|\mathbf{x}\|_2$.

Let
$$\sigma = \sum x_i^2$$
 then $\|\mathbf{x}\|_2 = \sqrt{\sigma}$

Theorem

Let σ be a real number and $S, s \in \mathbb{F}$ where $\circ(S + s) = S$. If $|(S + s) - \sigma| < \varepsilon \sigma/8$, then $\circ(\sqrt{S}) \in \diamond(\sqrt{\sigma})$.

Using double-FP

function SumNonNeg(A, B) // [A, a] + [B, b] // A = [A, a], B = [B, b] nonnegative: $A + a, B + b \ge 0$ H \leftarrow TwoSum(A, B) // H = [H, h], H + h = A + B exactly $c \leftarrow a \oplus b$ // $c = a + b + \delta_c$ $d \leftarrow h \oplus c$ // $d = h + c + \delta_d$. S \leftarrow FastTwoSum(H, d) // S = [S, s], S + s = H + d exactly return S end SumNonNeg

Using double-FP

function SumNonNeg(A, B) // [A, a] + [B, b] // A = [A, a], B = [B, b] nonnegative: $A + a, B + b \ge 0$ H \leftarrow TwoSum(A, B) // H = [H, h], H + h = A + B exactly $c \leftarrow a \oplus b$ // $c = a + b + \delta_c$ $d \leftarrow h \oplus c$ // $d = h + c + \delta_d$. S \leftarrow FastTwoSum(H, d) // S = [S, s], S + s = H + d exactly return S end SumNonNeg

Theorem

Let S = [S, s] be the result from applying SumNonNeg on nonnegatives A = [A, a] and B = [B, b]. Let $\alpha = A + a \ge 0$, $\beta = B + b \ge 0$ denote the exact input values, and $\sigma = \alpha + \beta$ denote the exact sum. Then $|(S + s) - \sigma| \le 3\varepsilon^2 \sigma$.

Computing Sum Of Square with double-FP

function SumOfSquares(x) // Accurate accumulation

$$S \leftarrow [0, 0]$$

for $j = 1, 2, ..., n$ do:
$$P \leftarrow TwoProd(x_j, x_j) \qquad // P = [P, p], P + p = x_j^2 \text{ exactly}$$

$$S \leftarrow SumNonNeg(S, P)$$

return S

end SumOfSquares

Computing Sum Of Square with double-FP

function SumOfSquares(x) // Accurate accumulation

$$S \leftarrow [0,0]$$

for $j = 1, 2, ..., n$ do:
$$P \leftarrow TwoProd(x_j, x_j) \qquad // P = [P, p], P + p = x_j^2 \text{ exactly}$$

$$S \leftarrow SumNonNeg(S, P)$$

return S

end SumOfSquares

Theorem

Let n be the length of a vector \mathbf{x} in safe range and σ denote $\sum_j x_j^2$. Let SumOfSquares(\mathbf{x}) return the result [S, s]. Then

$$|(S+s) - \sigma| \leq \Delta_{n-1}(3\varepsilon^2)\sigma$$
, where $\Delta_{\ell}(\delta) = \ell \delta/(1-\ell \delta)$.

In particular, if the length *n* satisfies $n < ((24 + \varepsilon)\varepsilon)^{-1}$, then

$$|(S+s)-\sigma|<\varepsilon\sigma/8.$$

Parallel version (1/2)

- partition the input vector \mathbf{x} to τ subvectors of roughly equal length
- Perform the sum of squares on each subvector in parallel
- The partial sums of squares are then accumulated in a serial manner.

function SumOfSquaresP(x) // Parallel SumOfSquares

Partition **x** into τ portions, $\mathbf{x}^{(t)}$, $t = 1, 2, ..., \tau$ // length of each $\mathbf{x}^{(t)}$ is no more than $m = \lceil n/\tau \rceil$. $\mathbf{S}^{(t)} \leftarrow \text{SumOfSquares}(\mathbf{x}^{(t)}), \quad t = 1, 2, ..., \tau$. // In parallel, each $\mathbf{S}^{(t)} = \lfloor S^{(t)}, s^{(t)} \rfloor$ is a double-FP. $\mathbf{S} \leftarrow \lfloor 0, 0 \rfloor; \quad \mathbf{S} \leftarrow \text{SumNonNeg}(\mathbf{S}, \mathbf{S}^{(t)}), \quad t = 1, 2, ..., \tau$. // In serial, summing the τ partial sums of squares // $\mathbf{S} = \lfloor S, s \rfloor$ at this point; $S + s \approx \sum_{j}^{n} x_{j}^{2}$. return \mathbf{S} end SumOfSquaresP

Theorem

Let *n* be the length of **x** and **S** = [*S*, *s*] be the result of SumOfSquaresP(**x**) with τ portions and $m = \lceil n/\tau \rceil$. Then

$$|(S+s)-\sigma|\leq \Delta_{m+\tau}(3\varepsilon^2)\sigma.$$

In particular,

$$|(S+s)-\sigma| \leq \Delta_{n-1}(3\varepsilon^2)\sigma$$

whenever $m + \tau \leq n - 1$.

Dealing with underflow and overflow (1/2)

Problems

- Direct computation of $P + p = x_i^2$ not possible
 - square would overflow for large *x_j*
 - square would underflow for small x_j
 - square stays on normal range only for medium x_i

Dealing with underflow and overflow (1/2)

Problems

- Direct computation of $P + p = x_i^2$ not possible
 - square would overflow for large *x_j*
 - square would underflow for small *x_j*
 - square stays on normal range only for medium x_i

Solution

- Use of the "tree bins" strategy [Blue 1978]
 - scale large x_j down with γ a statically chosen power of 2, accumulate in bin A
 - scale small x_j up with γ^{-1} , accumulate in bin C
 - let medium x_j as-is, accumulate in bin \mathcal{B}

Dealing with underflow and overflow (2/2)

Given the input vector $\mathbf{x} = [x_1, x_2, ..., x_n]^T$, the three bins are

By design $\beta_{lo} \leq |\widehat{x}_j| < \beta_{hi}$ for $\widehat{x}_j \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$. Denote the partial, scaled, sums-of-squares as

$$\widehat{\sigma}_{\mathcal{A}} = \sum_{\widehat{x}_j \in \mathcal{A}} \widehat{x}_j^2, \quad \widehat{\sigma}_{\mathcal{B}} = \sum_{\widehat{x}_j \in \mathcal{B}} \widehat{x}_j^2, \quad \text{and} \quad \widehat{\sigma}_{\mathcal{C}} = \sum_{\widehat{x}_j \in \mathcal{C}} \widehat{x}_j^2.$$

Furthermore,

$$\sigma = \sum_{j} x_{j}^{2} = \gamma^{-2} \,\widehat{\sigma}_{\mathcal{A}} + \widehat{\sigma}_{\mathcal{B}} + \gamma^{2} \,\widehat{\sigma}_{\mathcal{C}}.$$
 (1)

General case (1/3)

function SumOfSquaresBins(x) // general inputs Obtain bins \mathcal{U} , \mathcal{V} , and integer k as discussed // $\gamma^k (\widehat{\sigma}_{\mathcal{U}} + \gamma^2 \widehat{\sigma}_{\mathcal{V}})$ approximates $\sum_i x_i^2$ accurately // k = -2 if \mathcal{U} is $\mathcal{A}, k = 0$ if \mathcal{U} is \mathcal{B} // Note that k = -2 if and only if bin \mathcal{A} is nonempty $[U, u] \leftarrow \text{SumOfSquaresP}(\mathbf{x}^{(\mathcal{U})});$ $[V, v] \leftarrow \text{SumOfSquaresP}(\mathbf{x}^{(\mathcal{V})});$ **if** U = 0 // A and B are both empty $m \leftarrow 2, [S, s] \leftarrow [V, v],$ **return** m and $\mathbf{S} = [S, s]$. if $U \ge \beta_{\rm lo}^2 / \varepsilon^3$ or $V \le \beta_{\rm bi}^2 \varepsilon^2$ $m \leftarrow k, [S, s] \leftarrow [U, u]$ **return** *m* and $\mathbf{S} = [S, s]$ if $|v| \leq \beta_{\rm h}^2 \varepsilon^2$, $v \leftarrow 0$. $[U, u] \leftarrow [v^{-1}U, v^{-1}u]; [V, v] \leftarrow [vV, vv]; m \leftarrow k+1;$ $[S, s] \leftarrow \text{SumNonNeg}([U, u], [V, v])$ **return** m and $\mathbf{S} = [S, s]$ end SumOfSquaresBins

S. Graillat (Univ. Paris 6)

General case (2/3)

Theorem

Let SumOfSquaresBins(**x**) return m and **S** = [S, s]. Denote by $\widehat{\sigma}$ the scaled sums of squares $\widehat{\sigma} = \gamma^{-m} \sigma = \gamma^{-m} \sum_j x_j^2$. If the length n of **x** satisfies $n + 3 < ((24 + \varepsilon)\varepsilon)^{-1}$, then $\circ(\sqrt{S}) \in \diamond(\sqrt{\widehat{\sigma}})$.

function AccuNrm2(**x**) // general faithful l_2 -norm $(m, \mathbf{S}) \leftarrow \text{SumOfSquaresBins}(\mathbf{x})$ // m is an integer in the range [-2, 2] and $\gamma^m(S + s) \approx \sum_j x_j^2$ // By design, γ^m is an even power of 2. $Z \leftarrow \text{sqrt}(S)$ **return** $\gamma^{m/2} \otimes Z$ **end** AccuNrm2

Theorem

Let **x** be a vector of length n. If n < L' with $L' = ((24 + 3\varepsilon)\varepsilon)^{-1} - 3$, then AccuNrm2(**x**) $\in \diamond(||\mathbf{x}||_2)$ and reports overflow and underflow faithfully.

	Vector length bound $n < L'$
binary32	L' = 699047
binary64	$L' = 3.75299968947538 \cdot 10^{14}$

- Tests on a 4-core Intel Core i7 at 2.67 GHz with 4Gb of RAM and on a 8-core Intel Xeon E3-1275 v3 at 3.50 GHz with 32Gb of RAM
- All implementations were written in C and compiled using gcc version 4.8 and options -std=c99 -O3 -march=native
- Timings are given cycles per vector element

Numerical experiments (2/4)

Maximum error in ulps observed for various domains and vector lengths *n*, plain SSE implementation

	vectors with		vectors for which			
	normal results		results underflow			
	$n = 10^3$ $n = 10^7$		$n = 10^3$	$n = 10^{7}$		
NaiveNorm	∞	∞	$8.84\cdot10^{12}$	$5.46 \cdot 10^{10}$		
NetlibNorm	2.01	524	0.496	0.698		
MPFRNorm	0.494	0.481	0.490	0.498		
FaithfulNorm	0.620	0.628	0.497	0.499		

	vectors with		vectors with chosen	
	entries around 1.0		"half-ulp" entries	
	$n = 10^3$ $n = 10^7$		$n = 10^3$	$n = 10^7$
NaiveNorm	7.73	861	250	$2.50 \cdot 10^{6}$
NetlibNorm	7.58	609	250	$2.50 \cdot 10^6$
MPFRNorm	0.468	0.497	0.0749	0.484
FaithfulNorm	0.605 0.701		0.0749	0.484

Numerical experiments (3/4)

Computation time in cycles per vector element, plain SSE version on Intel Core 1/						
	vectors with	vectors for	vectors with	vectors for	vectors	
	normal	which results	entries around	which results	provoking spuri-	
	results	underflow	1.0	overflow	ous underflow	
					in NetlibNorm	
NaiveNorm	47.0	137.	3.48	46.8	128.	
NetlibNorm	156.	472.	19.1	156.	274.	
MPFRNorm	1080	2670	818.	1090	1660	
FaithfulNorm	34.2	289.	25.3	34.2	62.2	

Computation time in cycles per vector element, plain SSE version on Intel Xeon E3-1275

	vectors with	vectors for	vectors with	vectors for	vectors
	normal	which results	entries around	which results	provoking spuri-
	results	underflow	1.0	overflow	ous underflow
					in NetlibNorm
NaiveNorm	4.95	4.75	4.72	4.70	4.52
NetlibNorm	21.9	158.	12.8	21.1	21.8
MPFRNorm	810.	1160	536.	803.	717.
FaithfulNorm	21.5	87.3	21.8	21.7	20.3

Numerical experiments (4/4)

Computation time in cycles per vector element	, AVX version w/o FMA on Intel Xeon E3-1275
---	---

	vectors with	vectors for	vectors with	vectors for	vectors
	normal	which results	entries around	which results	provoking spuri-
	results	underflow	1.0	overflow	ous underflow
					in NetlibNorm
NaiveNorm	4.85	4.61	4.68	4.86	4.52
NetlibNorm	21.1	157.	13.3	21.6	21.8
MPFRNorm	795.	1250	552.	765.	720.
FaithfulNorm	12.0	50.7	12.5	12.6	14.8

Computation time in cycles per vector element, AVX version using FMA on Intel Xeon E3-1275

	vectors with	vectors for	vectors with	vectors for	vectors
	normal	which results	entries around	which results	provoking spuri-
	results	underflow	1.0	overflow	ous underflow
					in NetlibNorm
NaiveNorm	4.52	4.52	4.52	4.52	4.52
NetlibNorm	20.5	151.	12.6	20.5	22.0
MPFRNorm	722.	1110	481.	723.	770.
FaithfulNorm	6.94	42.3	6.94	6.94	10.4

Conclusion and future work

Conclusion:

- an efficient algorithm to compute a faithful rounding of the l_2 -norm of a floating-point vector
- this algorithm does not generate overflows nor underflows spuriously
- this algorithm is well suited for parallel implementation and vectorization
- the implementation runs up to 3 times faster than the netlib version on current processors.

Future work:

- finding an efficient algorithm for vectors of small size
- finding an efficient algorithm with rounding to nearest result

Thank you for your attention