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Problem

Let F be a set of �oating-point numbers, ε unit roundoò, ○ rounding to
nearest

For the sake of simplicity, we can assume that F is the set of binary64
�oating-point numbers in IEEE 754 standard.

Aim
We are concerned with the problem of calculating l2-norm of n-vectors
x = (x1, x2, . . . , xn)t ∈ Fn,

∥x∥2 =

¿
ÁÁÀ

n
∑
i=1

x2
i .
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Motivations

he computation of l2-norm is used in

the normalization of vectors

in Gram-Schmidt process for orthonormalizing vectors

in QR decomposition using Householder re�ections

in some algorithms to compute eigenvalues (power iteration
method)

With some guaranteed accuracy,

we increase the accuracy

we simplify error analysis

wemake a step towardmore accurate algorithms

we improve the chance to get reproducible results when
computations are done in parallel
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Purpose (1/2)

Our aim is to get a faithful rounding of ∥x∥2 at a reasonable cost.

r

f = ♢(r)

To get a �oating-point number faithful to ∥x∥2, calculating∑ x2
i up

to nearest and taking the square root is enough.
However, calculating∑ x2

i up to nearest sometimes requires a lot of
computations.
Calculating∑ x2

i up to faithful is not enough to get a faithful
rounding of ∥x∥2.
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Purpose (2/2)

hus, our purpose is to seek an eõcient algorithm to calculate a
�oating-point number faithful to ∥x∥2 for x ∈ Fn.

First calculate S ≈ ∑ x2
i ∶= σ with a little bit rough accuracy

compared with nearest but more accurate compared with faithful.
hen, calculate

√
S using the square root of IEEE754.

Problem
To which accuracy, we need to calculate S ≈ ∑ x2

i so as to a
�oating-point number ○(

√
S) becomes faithful to ∥x∥2.

→We also want to deal with under�ow and over�ow
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Existing solutions

Common implementations such as the public version of LAPACK
released by netlib essentially compute the l2-norm as

x̂ × ∥x/x̂∥2

where x̂ = max j ∣x j∣.

hat implementation requires n divisions in total, which is
signiûcantly more expensive than the naïve formula would suggest.

In the worst-case scenario, the last log10(n) digits of the result
could be corrupted.

Avoid over�ow but not under�ow
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Main theorem

Problem
To what accuracy, we need to calculate S ≈ ∑ x2

i so as to a �oating-point
number ○(

√
S) becomes faithful to ∥x∥2.

Let σ = ∑ x2
i then ∥x∥2 =

√
σ

heorem
Let σ be a real number and S , s ∈ F where ○(S + s) = S. If
∣(S + s) − σ ∣ < εσ/8, then ○(

√
S) ∈ ♢(

√
σ).
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Using double-FP

function SumNonNeg(A,B) // [A, a] + [B, b]
// A = [A, a],B = [B, b] nonnegative: A+ a, B + b ≥ 0

H← TwoSum(A, B) // H = [H, h], H + h = A+ B exactly
c ← a ⊕ b // c = a + b + δc
d ← h ⊕ c // d = h + c + δd .
S← FastTwoSum(H, d) // S = [S , s], S + s = H + d exactly
return S

end SumNonNeg

heorem
Let S = [S , s] be the result from applying SumNonNeg on nonnegatives
A = [A, a] and B = [B, b]. Let α = A+ a ≥ 0, β = B + b ≥ 0 denote the
exact input values, and σ = α + β denote the exact sum. hen
∣(S + s) − σ ∣ ≤ 3ε2σ .
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Computing Sum Of Square with double-FP
function SumOfSquares(x) // Accurate accumulation

S← [0, 0]
for j = 1, 2, . . . , n do:

P← TwoProd(x j, x j) // P = [P, p], P + p = x2
j exactly

S← SumNonNeg(S,P)
return S

end SumOfSquares
heorem
Let n be the length of a vector x in safe range and σ denote∑ j x2

j . Let
SumOfSquares(x) return the result [S , s]. hen

∣(S + s) − σ ∣ ≤ ∆n−1(3ε2)σ , where ∆ℓ(δ) = ℓδ/(1 − ℓδ).

In particular, if the length n satisûes n < ((24 + ε)ε)−1, then

∣(S + s) − σ ∣ < εσ/8.
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Parallel version (1/2)

partition the input vector x to τ subvectors of roughly equal length
Perform the sum of squares on each subvector in parallel
he partial sums of squares are then accumulated in a serial
manner.

function SumOfSquaresP(x) // Parallel SumOfSquares
Partition x into τ portions, x(t), t = 1, 2, . . . , τ
// length of each x(t) is no more than m = ⌈n/τ⌉.
S(t) ← SumOfSquares(x(t)), t = 1, 2, . . . , τ.
// In parallel, each S(t) = [S(t), s(t)] is a double-FP.
S← [0, 0]; S← SumNonNeg(S, S(t)), t = 1, 2, . . . , τ.
// In serial, summing the τ partial sums of squares
// S = [S , s] at this point; S + s ≈ ∑n

j x2
j .

return S
end SumOfSquaresP
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Parallel version (2/2)

heorem
Let n be the length of x and S = [S , s] be the result of SumOfSquaresP(x)
with τ portions and m = ⌈n/τ⌉. hen

∣(S + s) − σ ∣ ≤ ∆m+τ(3ε2)σ .

In particular,
∣(S + s) − σ ∣ ≤ ∆n−1(3ε2)σ

whenever m + τ ≤ n − 1.
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Dealing with under�ow and over�ow (1/2)

Problems
Direct computation of P + p = x2

j not possible
square would over�ow for large x j
square would under�ow for small x j
square stays on normal range only for medium x j

Solution
Use of the “tree bins” strategy [Blue 1978]

scale large x j down with γ a statically chosen power of 2, accumulate
in binA
scale small x j up with γ−1, accumulate in bin C
let medium x j as-is, accumulate in bin B
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Dealing with under�ow and over�ow (2/2)

Given the input vector x = [x1, x2, . . . , xn]T , the three bins are

A = { γx j ∣ ∣x j∣ ≥ βhi },
B = { x j ∣ βlo ≤ ∣x j∣ < βhi },
C = { x j/γ ∣ ∣x j∣ < βlo }.

By design βlo ≤ ∣x̂ j∣ < βhi for x̂ j ∈ A ∪ B ∪ C. Denote the partial, scaled,
sums-of-squares as

σ̂A= ∑
x̂ j∈A

x̂2
j , σ̂B= ∑

x̂ j∈B
x̂2

j , and σ̂C=∑
x̂ j∈C

x̂2
j .

Furthermore,
σ =∑

j
x2

j = γ−2 σ̂A + σ̂B + γ2 σ̂C . (1)
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General case (1/3)
function SumOfSquaresBins(x) // general inputs

Obtain bins U , V , and integer k as discussed
// γk(σ̂U + γ2σ̂V) approximates∑ j x2

j accurately
// k = −2 if U isA, k = 0 if U is B
// Note that k = −2 if and only if binA is nonempty
[U , u]← SumOfSquaresP(x(U));
[V , v]← SumOfSquaresP(x(V));
if U = 0 //A and B are both empty

m ← 2, [S , s]← [V , v],
return m and S = [S , s].

if U ≥ β2
lo/ε

3 or V ≤ β2
hiε

2

m ← k, [S , s]← [U , u]
return m and S = [S , s]

if ∣v∣ ≤ β2
hiε

2, v ← 0.
[U , u]← [γ−1U , γ−1u]; [V , v]← [γV , γv]; m ← k + 1;
[S , s]← SumNonNeg([U , u], [V , v])
return m and S = [S , s]

end SumOfSquaresBins
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General case (2/3)

heorem
Let SumOfSquaresBins(x) return m and S = [S , s]. Denote by σ̂ the
scaled sums of squares σ̂ = γ−mσ = γ−m∑ j x2

j . If the length n of x satisûes
n + 3 < ((24 + ε)ε)−1, then ○(

√
S) ∈ ♢(

√
σ̂).

function AccuNrm2(x) // general faithful l2-norm
(m, S)← SumOfSquaresBins(x)
// m is an integer in the range [−2, 2] and γm(S + s) ≈ ∑ j x2

j
// By design, γm is an even power of 2.
Z ← sqrt(S)
return γm/2 ⊗ Z

end AccuNrm2
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General case (3/3)

heorem
Let x be a vector of length n. If n < L′ with L′ = ((24 + 3ε)ε)−1 − 3, then
AccuNrm2(x) ∈ ♢(∥x∥2) and reports over�ow and under�ow faithfully.

Vector length bound n < L′
binary32 L′ = 699047
binary64 L′ = 3.75299968947538 ⋅ 1014
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Numerical experiments (1/4)

Tests on a 4-core Intel Core i7 at 2.67 GHz with 4Gb of RAM and
on a 8-core Intel Xeon E3-1275 v3 at 3.50 GHz with 32Gb of RAM

All implementations were written in C and compiled using gcc
version 4.8 and options -std=c99 -O3 -march=native

Timings are given cycles per vector element
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Numerical experiments (2/4)

Maximum error in ulps observed for various domains and vector lengths n, plain SSE
implementation
vectors with vectors for which

normal results results under�ow
n = 103 n = 107 n = 103 n = 107

NaiveNorm ∞ ∞ 8.84 ⋅ 1012 5.46 ⋅ 1010

NetlibNorm 2.01 524 0.496 0.698
MPFRNorm 0.494 0.481 0.490 0.498

FaithfulNorm 0.620 0.628 0.497 0.499

vectors with vectors with chosen
entries around 1.0 “half-ulp” entries
n = 103 n = 107 n = 103 n = 107

NaiveNorm 7.73 861 250 2.50 ⋅ 106

NetlibNorm 7.58 609 250 2.50 ⋅ 106

MPFRNorm 0.468 0.497 0.0749 0.484
FaithfulNorm 0.605 0.701 0.0749 0.484
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Numerical experiments (3/4)

Computation time in cycles per vector element, plain SSE version on Intel Core i7
vectors with vectors for vectors with vectors for vectors

normal which results entries around which results provoking spuri-
results under�ow 1.0 over�ow ous under�ow

in NetlibNorm
NaiveNorm 47.0 137. 3.48 46.8 128.
NetlibNorm 156. 472. 19.1 156. 274.
MPFRNorm 1080 2670 818. 1090 1660

FaithfulNorm 34.2 289. 25.3 34.2 62.2

Computation time in cycles per vector element, plain SSE version on Intel Xeon E3-1275
vectors with vectors for vectors with vectors for vectors

normal which results entries around which results provoking spuri-
results under�ow 1.0 over�ow ous under�ow

in NetlibNorm
NaiveNorm 4.95 4.75 4.72 4.70 4.52
NetlibNorm 21.9 158. 12.8 21.1 21.8
MPFRNorm 810. 1160 536. 803. 717.

FaithfulNorm 21.5 87.3 21.8 21.7 20.3
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Numerical experiments (4/4)

Computation time in cycles per vector element, AVX version w/o FMA on Intel Xeon E3-1275
vectors with vectors for vectors with vectors for vectors

normal which results entries around which results provoking spuri-
results under�ow 1.0 over�ow ous under�ow

in NetlibNorm
NaiveNorm 4.85 4.61 4.68 4.86 4.52
NetlibNorm 21.1 157. 13.3 21.6 21.8
MPFRNorm 795. 1250 552. 765. 720.

FaithfulNorm 12.0 50.7 12.5 12.6 14.8

Computation time in cycles per vector element, AVX version using FMA on Intel Xeon E3-1275
vectors with vectors for vectors with vectors for vectors

normal which results entries around which results provoking spuri-
results under�ow 1.0 over�ow ous under�ow

in NetlibNorm
NaiveNorm 4.52 4.52 4.52 4.52 4.52
NetlibNorm 20.5 151. 12.6 20.5 22.0
MPFRNorm 722. 1110 481. 723. 770.

FaithfulNorm 6.94 42.3 6.94 6.94 10.4
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Conclusion and future work
Conclusion:

an eõcient algorithm to compute a faithful rounding of the
l2-norm of a �oating-point vector

this algorithm does not generate over�ows nor under�ows
spuriously

this algorithm is well suited for parallel implementation and
vectorization

the implementation runs up to 3 times faster than the netlib
version on current processors.

Future work:
ûnding an eõcient algorithm for vectors of small size

ûnding an eõcient algorithm with rounding to nearest result
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hank you for your attention
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