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Aim of the talk

Use Newton’s method to accurately compute the simple roots of a
polynomial.
This needs to accurately calculate the residual (i.e. to accurately
evaluate a polynomial)
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What are Error-Free Transformations (EFT) ?

Assume floating point arithmetic adhering IEEE 754 with rounding to
nearest with rounding unit u (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the
generated elementary rounding errors,

a, b entries ∈ F, a ◦ b = fl(a ◦ b) + e, with e ∈ F

Key tools for accurate computation
fixed length expansions libraries : double-double (Briggs, Bailey, Hida,
Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries : Priest, Shewchuk
compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet)
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EFT for the summation

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F,

Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 1 (EFT of the sum of 2 floating point numbers with
|a| ≥ |b|)
function [x , y ] = FastTwoSum(a, b)

x = fl(a + b)
y = fl((a − x) + b)

Algorithm 2 (EFT of the sum of 2 floating point numbers)

function [x , y ] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))
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EFT for the product (1/2)

x = fl(a · b) ⇒ a · b = x + y with y ∈ F,

Algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x + y and x and y non overlapping with |y | ≤ |x |.

Algorithm 3 (Error-free split of a floating point number into two
parts)

function [x , y ] = Split(a)
factor = fl(2s + 1) % u = 2−p , s = dp/2e
c = fl(factor · a)
x = fl(c − (c − a))
y = fl(a − x)
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EFT for the product (2/2)

Algorithm 4 (EFT of the product of 2 floating point numbers)

function [x , y ] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x − a1 · b1)− a2 · b1)− a1 · b2))
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The Horner scheme

Algorithm 5 (Horner scheme)

function res = Horner(p, x)
sn = an
for i = n − 1 : −1 : 0

pi = fl(si+1 · x) % rounding error πi
si = fl(pi + ai ) % rounding error σi

end
res = s0

γn = nu/(1− nu) ≈ nu

|p(x)− Horner(p, x)|
|p(x)|

≤ γ2n︸︷︷︸
≈2nu

cond(p, x)
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Error-free transformation for the Horner scheme

p(x) = Horner(p, x) + (pπ + pσ)(x)

Algorithm 6 (Error-free transformation for the Horner scheme)

function [Horner(p, x), pπ, pσ] = EFTHorner(p, x)
sn = an
for i = n − 1 : −1 : 0

[pi , πi ] = TwoProduct(si+1, x)
[si , σi ] = TwoSum(pi , ai )
Let πi be the coefficient of degree i of pπ

Let σi be the coefficient of degree i of pσ

end
Horner(p, x) = s0
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Compensated Horner scheme and its accuracy

Algorithm 7 (Compensated Horner scheme)

function res = CompHorner(p, x)
[h, pπ, pσ] = EFTHorner(p, x)
c = Horner(pπ + pσ, x)
res = fl(h + c)

Theorem 1
Let p be a polynomial of degree n with floating point coefficients, and x be
a floating point value. Then if no underflow occurs,

|CompHorner(p, x)− p(x)|
|p(x)|

≤ u + γ2
2n︸︷︷︸

≈4n2u2

cond(p, x).
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Numerical experiments : testing the accuracy

Evaluation of pn(x) = (x − 1)n for x = fl(1.333) and n = 3, . . . , 42
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Condition number for root finding

Definition 1
Let p(z) =

∑n
i=0 aiz i be a polynomial of degree n and x be a simple zero

of p. The condition number of x is defined by

cond(p, x) = lim
ε→0

sup
{
|∆x |
ε|x |

: |∆ai | ≤ ε|ai |
}

.

Theorem 2 (Chaitin-Chatelin and Frayssé)
Let p be a polynomial of degree n and x be a simple zero of p. The
condition number of x is given by

cond(p, x) =
p̃(|x |)

|x ||p′(x)|
.
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Classic Newton’s method

Algorithm 8 (Classic Newton’s method)

x0 = ξ

xi+1 = xi − p(xi )
p′(xi )

|xi+1 − x |
|x |

≈ γ2n cond(p, x)
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Accurate Newton’s method

Algorithm 9 (Accurate Newton’s method)

x0 = ξ

xi+1 = xi − CompHorner(p,xi )
p′(xi )

Using a theorem of Tisseur1, one can show

Theorem 3
Assume that there is an x such that p(x) = 0 and p′(x) 6= 0 is not too
small. Assume also that u · cond(p, x) ≤ 1/8 for all i .
Then, for all x0 such that β|p′(x)−1||x0 − x | ≤ 1/8, Newton’s method in
floating point arithmetic generates a sequence of {xi} whose relative error
decreases until the first i for which

|xi+1 − x |
|x |

≈ u + γ2
2n cond(p, x).

1Newton’s Method in Floating Point Arithmetic and Iterative Refinement of
Generalized Eigenvalue Problems, SIAM J. Matrix Anal. Appl., 22(4) : 1038-1057, 2001

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 16 / 19



Numerical experiments
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Conclusion

Deal with zeros with multiplicities via an accurate modified Newton’s
method
Use of deflation to also deal with multiplicities
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Thank you for your attention
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