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Aim of the talk

@ Use Newton's method to accurately compute the simple roots of a

polynomial.
@ This needs to accurately calculate the residual (i.e. to accurately

evaluate a polynomial)
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QOutline of the talk

@ Accurate polynomial evaluation

© Accurate Newton's method
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What are Error-Free Transformations (EFT)?

Assume floating point arithmetic adhering IEEE 754 with rounding to
nearest with rounding unit u (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the
generated elementary rounding errors,

a,bentries € F, aob="fl(aob)+e, witheecF

Key tools for accurate computation

o fixed length expansions libraries : double-double (Briggs, Bailey, Hida,
Li), quad-double (Bailey, Hida, Li)

@ arbitrary length expansions libraries : Priest, Shewchuk

e compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet)
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EFT for the summation

x=fllaxb) = atb=x+y withyel,
Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 1 (EFT of the sum of 2 floating point numbers with
|a| > |b])

function [x, y] = FastTwoSum(a, b)

x = fl(a+ b)

y =fl((a—x)+ b)

\

Algorithm 2 (EFT of the sum of 2 floating point numbers)

function [x, y] = TwoSum(a, b)
x = fl(a+ b)
z=fl(x — a)
y=1H((a=(x=2))+(b-2))
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EFT for the product (1/2)

x=fl(a-b) = a-b=x+y withyePF,
Algorithm TwoProduct by Veltkamp and Dekker (1971)

a=x+y and xandy non overlapping with |y| < |x|.

Algorithm 3 (Error-free split of a floating point number into two
parts)

function [x,y] = Split(a)
factor = fl(2° 4+ 1) %u=2"P s=1[p/2]
c = fl(factor - a)
x =fl(c — (c — a))
y =fl(a—x)
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EFT for the product (2/2)

Algorithm 4 (EFT of the product of 2 floating point numbers)

function [x, y] = TwoProduct(a, b)
x =fl(a- b)
[a1, a2] = Split(a)
[bl, b2] = Split(b)
y:ﬂ(ag-bg—(((x—al-b1)—ag-b1)—al-b2))
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The Horner scheme

Algorithm 5 (Horner scheme)

function res = Horner(p, x)
Sp = an
fori=n—1:-1:0
pi = fl(sit1 - x) % rounding error T;
si = fl(pi + ai) % rounding error o;
end
res = sg

Yo = nu/(1 — nu) = nu

\p(X) _ Horner(P7X)| < Yo cond(P,X)
p(x)| S

~2nu
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Error-free transformation for the Horner scheme

|p(x) = Hornex(p. x) + (px + ps)(x) |

Algorithm 6 (Error-free transformation for the Horner scheme)

function [Horner(p, x), pr, ps] = EFTHorner(p, x)
Sp = an
fori=n—1:-1:0
[pi, mi] = TwoProduct(sjy1, X)
[5,', O’,'] = TwoSum(p,-, a,-)
Let 7; be the coefficient of degree i of p,
Let o be the coefficient of degree i of p,
end
Horner(p, x) = so
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Compensated Horner scheme and its accuracy

Algorithm 7 (Compensated Horner scheme)

function res = CompHorner(p, x)
[h, pr, ps] = EFTHorner(p, x)

¢ = Horner(pr + ps, X)

res = fl(h + ¢)

Theorem 1

Let p be a polynomial of degree n with floating point coefficients, and x be
a floating point value. Then if no underflow occurs,

|CompHorner(p, x) — p(x)|

p(x)]

<u+ ~3, cond(p,x).
~~

~4n2u?
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Numerical experiments : testing the accuracy

Evaluation of p,(x) = (x — 1)" for x = f[(1.333) and n = 3,...,42

Condition number and relative forward error
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QOutline of the talk

© Accurate Newton's method
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Condition number for root finding

Definition 1

Let p(z) = Y_"_, aiz’ be a polynomial of degree n and x be a simple zero
of p. The condition number of x is defined by

_ Ax
cond(p, x) = EII_%SUP {% s Aaj| < e\a,-|} .

Theorem 2 (Chaitin-Chatelin and Frayssé)

Let p be a polynomial of degree n and x be a simple zero of p. The
condition number of x is given by

cond(o.x) = _PUXD
4P = Lol

S. Graillat (Univ. Paris 6) Accurate simple zeros of polynomials 14 / 19



Classic Newton's method

Algorithm 8 (Classic Newton's method)

|Xi+1 - X|

~ d
X ~2n cond(p, x)
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Accurate Newton's method

Algorithm 9 (Accurate Newton's method)

xo=¢§

CompHorner(p,x;)
Xiyl = Xj — =y

p’(xi)

1

Using a theorem of Tisseur, one can show

Theorem 3

Assume that there is an x such that p(x) = 0 and p’(x) # 0 is not too
small. Assume also that u - cond(p, x) < 1/8 for all i.

Then, for all xo such that 3|p'(x)~t||xo — x| < 1/8, Newton's method in
floating point arithmetic generates a sequence of {x;} whose relative error
decreases until the first i for which

|Xi+1 - X|

] ~ u+ 3 cond(p, x).

Newton's Method in Floating Point Arithmetic and Iterative Refinement of
Generalized Eigenvalue Problems, SIAM J. Matrix Anal. Appl., 22(4) : 1038-1057, 2001
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Numerical experiments

Condition number and relative forward error
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Accuracy of the classic Newton iteration and of the accurate Newton
iteration
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Conclusion

@ Deal with zeros with multiplicities via an accurate modified Newton's
method

@ Use of deflation to also deal with multiplicities
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Thank you for your attention
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