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Motivation and Goal

BLAS-1 [1979]: y := y + αx α ∈ R;x, y ∈ Rn 2/3
α := α+ xT y

BLAS-2 [1988]: A := A+ xyT A ∈ Rn×n;x, y ∈ Rn 2
y := A−1x

BLAS-3 [1990]: C := C +AB A,B,C ∈ Rn×n n/2
C := A−1B

To compute BLAS operations with floating-point numbers
efficiently and with the best possible accuracy on a wide
range of architectures

ExBLAS – Exact BLAS
ExBLAS-1: ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ExSYR, ...

ExBLAS-3: ExGEMM, ExTRSM, ExSYR2K, ...
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Computer Arithmetic

Problems
Floating-point arithmetic suffers from rounding errors

Floating-point operations (+,×) are commutative but
non-associative

(−1 + 1) + 2−53 6= −1 + (1 + 2−53) in double precision

Consequence: results of floating-point computations
depend on the order of computation

Results computed by performance-optimized parallel
floating-point libraries may be often inconsistent: each
run returns a different result
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Reproducibility at ExaScale (1/2)

Reproducibility – ability to obtain bit-wise identical results
from run-to-run on the same input data on the same or
different architectures

ExaScale – ability to perform exaflops (1018 floating-point
operations) per second

Challenges
Increasing power of current computers
→ GPU accelerators, Intel Phi processors, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them leads to round-off error

⇓
Difficult to obtain accurate and reproducible results
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Reproducibility at ExaScale (2/2)

Needs for Reproducibility
Debugging

Look inside the code step-by-step and might need to rerun
multiple times on the same input data

Understanding the reliability of output

Contractual reasons (for security, ...)

Prominent examples:
Nuclear energy
Weather and climate simulation
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Sources of Non-Reproducibility

Performance-optimized floating-point libraries are prone to
non-reproducibility for various reasons:

Changing Data Layouts:
Data partitioning
Data alignment

Changing Hardware Resources
Number of threads
Fused Multiply-Add support
Intermediate precision (64 bits, 80 bits, 128 bits, etc)
Data path (SSE, AVX, GPU warp, etc)
Cache line size
Number of processors
Network topology
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Our approach

Aims at benefiting from both FPEs and Kulisch long accumulators:
Fast and accurate computations with FPEs

“Infinite” precision of Kulisch long accumulators when needed

Algorithm 1 FPE of size n
Function = ExpansionAccumulate(x)

1: for i = 0→ n− 1 do
2: (ai, x)← TwoSum(ai, x)
3: end for
4: if x 6= 0 then
5: Superaccumulate(x)
6: end if

Kulisch long accumulator
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Multi-Level Reproducible Summation

Parallel algorithm with
5-levels

Suitable for today’s parallel
architectures

Based on FPE with EFT and
Kulisch accumulator

Guarantees “inf” precision
→ bit-wise reproductibility
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Level 1: Filtering
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Level 2 and 3: Scalar Superaccumulator
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Level 4 and 5: Reduction and Rounding
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Parallel Summation
Performance Scaling on NVIDIA Tesla K20c
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Parallel Dot Product
Performance Scaling on NVIDIA Tesla K20c

DDOT: α := xT y =
∑N

i xiyi
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Based on TwoProduct
and Reproducible
Summation
TwoProduct(a, b)

1: r ← a ∗ b
2: s← fma(a, b,−r)
fma(a, b, c) = a ∗ b+ c
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Triangular Solver

TRSV (Triangular solver): Lx = b

L x = b

Algorithm 2 Forward substitution
1: x1 ← b1/l11
2: for i = 2→ n do
3: s← bi
4: for j = 1→ i− 1 do
5: s← s− lijxj
6: end for
7: xi ← s/lii
8: end for
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Triangular Solver
Matrix Partitioning

TRSV

TRSV

TRSV

TRSV

GEMV

GEMV

GEMV

b

Figure : Partitioning of L in GotoBLAS

Source: A fast triangular solve on GPUs by Hogg
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Triangular Solver
Accuracy

‖x−x̂‖
‖x‖ ≤ nucond(T, x) + O(u2)
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1: x1 ← fl(b1/l11)
2: for i = 2→ n do
3: s← bi
4: for j = 1→ i− 1 do
5: s← s− lijxj
6: end for
7: xi ← fl(RNDN(s)/lii)
8: end for
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Multi-Level Reproducible TRSV
Performance Scaling on NVIDIA Quadro K5000

TRSV: Lx = b
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memory and
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accumulators→
lower performance

But, it is reproducible
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Conclusions

Reproducible Triangular Solvers
Provides bit-wise identical reproducibility, regardless of

Data permutation, data assignment
Thread scheduling, etc.

Is for the moment too slow

The DTRSV performance needs to be enhanced
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Future Work

ExTRSV on Intel Phi and Intel CPUs

ExTRSV using superaccumulators of different sizes

ExTRSV with iterative refinement and FPEs

ExBLAS – Exact BLAS
ExBLAS-1: ExSCAL, ExDOT, ExAXPY, ...

ExBLAS-2: ExGER, ExGEMV, ExTRSV, ...

ExBLAS-3: ExGEMM, ExTRMM, ExSYR2K, ...
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On the Web

URL: https://exblas.lip6.fr
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