
Solving the Table Maker’s Dilemma

by reducing divergence on GPU

Pierre Fortin and Mourad Gouicem and Stef Graillat

UPMC Univ Paris 06 and CNRS UMR 7606, LIP6,
4 place Jussieu, F-75252, Paris cedex 05, France

{pierre.fortin, mourad.gouicem, stef.graillat}@lip6.fr

Keywords: Table Maker’s Dilemma, Graphical Processing Unit, correct
rounding, elementary functions

The IEEE 754-2008 standard recommends correctly rounding elementary
functions. However, these functions are transcendental and their results can
only be approximated with error ε > 0. If ◦p is a rounding function at precision
p, there may exist some arguments x, called (p, ε) hard-to-round arguments, such
that ◦p(f(x) − ε) #= ◦p(f(x) + ε), inducing an uncertainty on the rounding of
f(x). Finding an error ε such that there are no (p, ε) hard-to-round arguments
is known as the Table Maker’s Dilemma (TMD).

There exist two major algorithms to solve the TMD for elementary func-
tions which are Lefvre’s and SLZ algorithms [2, 3]. The most computationally
intensive step of these algorithms is the (p, ε) hard-to-round argument search
since its complexity is exponential in the size of the targeted format. It takes
for example several years of computation to get all of them for the classic ex-
ponential function in double precision and the same holds for all other classical
elementary functions. Hence, getting (p, ε) hard-to-round arguments is a chal-
lenging problem. In order to obtain these (p, ε) hard-to-round arguments for
larger formats (extended precision, quadruple precision), the implemented al-
gorithms should be able to efficiently operate on petaflops systems. In the long
term, we would expect to require the correct rounding of some functions in the
next versions of the IEEE 754 standard, which will allow to completely specify
all the components of numerical software.

High-performance computing systems increasingly rely on many-core chips
such as Graphical Processing Units (GPU), which present a partial SIMD exe-
cution (Single Instruction Multiple Data). However, when the control flows of
the threads on a SIMD unit diverge, the execution paths are serialized. Hence,
in order to efficiently use GPU, one has thus to avoid divergence, i.e. manage
to have regular control flow within each group of threads executed on the same

45



SIMD unit.

This work is a first step for solving the TMD on many-core architectures.
We focused on Lefèvre’s algorithm [2] as it is efficient for double precision.
Also, it is embarrassingly parallel and fine-grained which makes it suitable for
GPU. We first deployed this algorithm on GPU using the most efficient (to
our knowledge) implementation techniques [5]. Then we redesigned it using
the concept of continued fractions. This made it possible to obtain a better
understanding of Lefèvre’s algorithm and a new algorithm which is much more
regular. More precisely, we strongly reduce two major sources of divergence
of Lefèvre’s algorithm: loop divergence and branch divergence. Compared to
the reference implementation of Lefèvre’s algorithm on a single high-end CPU
core, the deployment of Lefèvre’s algorithm on an NVIDIA Fermi GPU offers a
speedup of 15x whereas the new algorithm enables a speedup of 52x.

References:

[1] J.M. Muller, N. Brisebarre, F. de Dinechin, C.P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, S. Torres,
Handbook of Floating-point Arithmetic, Birkhauser, 2009.

[2] V. Lefèvre, New Results on the Distance Between a Segment and Z2.
Application to the Exact Rounding, Proceedings of the 17th IEEE Sym-
posium on Computer Arithmetic, 2005, pp. 68–75.

[3] D. Stehlé, V. Lefèvre, Paul Zimmermann, Searching worst cases
of a one-variable function using lattice reduction, IEEE Transactions on
Computers, 54 (2005), pp. 340–346.

[4] A. Ziv, Fast evaluation of elementary mathematical functions with cor-
rectly rounded last bit, ACM Trans. Math. Softw., 17 (1991), pp. 410–423.

[5] P. Fortin, M. Gouicem, S. Graillat, Towards solving the Table
Maker’s Dilemma on GPU, Proceedings of the 20th International Euromi-
cro Conference on Parallel, Distributed and Network-based Processing,
2012, pp. 407–415.

46


