Validated Pseudozero Set of Polynomials

Stef Graillat Université de Perpignan Via Domitia 52, avenue Paul Alduy F-66860 Perpignan Cedex France graillat@univ-perp.fr

Abstract

The pseudozero set ([2-4]) of a polynomial p is the set of complex numbers that are roots of polynomials which are near to p. This is a powerful tool to analyze the sensitivity of roots with respect to perturbations of the coefficients. Some applications in algebraic computation and robust control theory have been proposed recently.

The set \mathcal{P}_n denotes the set of polynomials with complex coefficients and degree at most n. Let $p \in \mathcal{P}_n$ given by

$$p(z) = p_0 + p_1 z + \dots + p_n z^n.$$

Representing polynomial p by the vector of its coefficients, we choose the norm $\|\cdot\|$ on \mathcal{P}_n being some norm on \mathbb{C}^{n+1} of the polynomial coefficient vector. For this norm, we define an ε -neighborhood of p to be the set of every polynomial of degree at most n, closed enough to p, that is,

$$N_{\varepsilon}(p) = \{\widehat{p} \in \mathcal{P}_n : \|p - \widehat{p}\| \le \varepsilon\}$$

Then the ε -pseudozero set of p is defined to include all the zeros of the ε -neighborhood of p. A non constructive definition of this set is

$$Z_{\varepsilon}(p) = \{ z \in \mathbf{C} : \widehat{p}(z) = 0 \text{ for } \widehat{p} \in N_{\varepsilon}(p) \}.$$

An explicit formula to compute this set is given ([3]) by

$$Z_{\varepsilon}(p) = \left\{ z \in \mathbf{C} : \frac{|p(z)|}{\|\underline{z}\|_*} \le \varepsilon \right\},\,$$

where $\underline{z} = (1, z, \dots, z^n)$ and $\|\cdot\|_*$ is the dual norm of $\|\cdot\|$,

$$\|y\|_* = \sup_{x \neq 0} \frac{|y^*x|}{\|x\|}.$$

The drawing of this set is often done using a level contour command like **contour** in MATLAB. In this case, we cannot certify the drawing. Our aim is to present a robust algorithm to draw certify drawing of the set. For this, we use algorithms from [1] to draw inner and outer approximations of that set using interval arithmetic. We also present a graphical MATLAB interface to draw such sets.

An *interval polynomial* is a polynomial whose coefficients are real intervals. An interval polynomial of degree n can be written as

$$p(z) = \sum_{i=0}^{n} [a_i, b_i] z^i.$$

The zeros of the interval polynomial is the set (denoted $\mathbf{Z}(p)$) defined by

$$\mathbf{Z}(p) := \{ z \in \mathbf{C} : \text{there exist } m_i \in [a_i, b_i], i = 0 : n \text{ such that } \sum_{i=0}^n m_i z^i = 0 \}.$$

Thanks to the theory of pseudozero set, it is possible to derive an explicit formula to compute the set $\mathbf{Z}(p)$ and so to derive an algorithm to compute certified drawing of the zeros of interval polynomials.

References:

- Jaulin, L., Kieffer, M., Didrit, O. and Walter, É.; Applied interval analysis, Springer-Verlag London Ltd., London, 2001.
- [2] Mosier, R.; Root neighborhoods of a polynomial, Math. Comp., 47(175):265– 273, 1986.
- [3] Stetter, H.; Numerical Polynomial Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2004.
- [4] Toh, K. and Trefethen, L.; Pseudozeros of polynomials and pseudospectra of companion matrices, Numer. Math., 68(3):403–425, 1994.

Keywords: pseudozero set, polynomial root, interval polynomial, validated computation