
Compensated Horner scheme in complex floating point
arithmetic

Stef Graillat, Valérie Ménissier-Morain
UPMC Univ Paris 06, UMR 7606, LIP6

4 place Jussieu, F-75252, Paris cedex 05, France
stef.graillat@lip6.fr,valerie.menissier-morain@lip6.fr

Abstract

Several different techniques and softwares intend to improve the accuracy of results computed
in a fixed finite precision. Here we focus on a method to improve the accuracy of polynomial
evaluation via Horner’s scheme. Such an algorithm exists for polynomials with real floating
point coefficients. In this paper, we provide a new algorithm which deals with polynomials with
complex floating point coefficients. We show that the computed result is as accurate as if com-
puted in twice the working precision. The algorithm is simple since it only requires addition,
subtraction and multiplication of floating point numbers in the same working precision as the
given data. Such an algorithm can be useful for example to compute zeros of polynomial by
Newton-like methods.

1 Introduction

It is well-known that computing with finite precision implies some rounding errors. These
errors can lead to inexact results for a computation. An important tool to try to avoid this
are error-free transformations: to compute not only a floating point approximation but also
an exact error term without overlapping. This can be viewed as a double-double floating point
numbers [10] but without the renormalisation step.

Error-free transformations have been widely used to provide some new accurate algorithms
in real floating point arithmetic (see [12, 14] for accurate sum and dot product and [5] for poly-
nomial evaluation). Complex error-free transformations are then the next step for providing
accurate algorithms using complex numbers.

The rest of the paper is organized as follows. In Section 2, we recall some results on real
floating point arithmetic and error-free transformations. In Section 3, we present the complex
floating point arithmetic and we propose some new error-free transformations for this arith-
metic. In Section 4, we study different polynomial evaluation algorithms. We first describe
the Horner scheme in complex floating point arithmetic. We then present the compensated
Horner scheme in complex arithmetic. We provide an error analysis for both versions of the
Horner scheme and we conclude by presenting some numerical experiments confirming the
accuracy of our algorithm.

2 Real floating point arithmetic

In this section, we first recall the principle of real floating point arithmetic. Then we present
the well-known error-free transformations associated with the classical operations addition,
subtraction, multiplication.

2.1 Notations and fundamental property of real floating point arithmetic

Throughout the paper, we assume to work with a floating point arithmetic adhering to
IEEE 754 floating point standard [8]. We assume that no overflow nor underflow occur. The
set of floating point numbers is denoted by F, the relative rounding error by eps. For IEEE
754 double precision, we have eps = 2−53 and for single precision eps = 2−24.

We denote by fl(·) the result of a floating point computation, where all operations inside
parentheses are done in floating point working precision. Floating point operations in IEEE
754 satisfy [7]

fl(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for ◦ = {+,−, ·, /} and |εν | ≤ eps.

This implies that

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b| and |a ◦ b− fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ = {+,−, ·, /}. (2.1)

We use standard notation for error estimations. The quantities γn are defined as usual [7] by

γn :=
neps

1− neps
for n ∈ N,

where we implicitly assume that neps ≤ 1 and we will use inequality eps ≤
√

2γ2 in the
following proofs.

2.2 Error-free transformations in real floating point arithmetic

One can notice that a ◦ b ∈ R and fl(a ◦ b) ∈ F but in general we do not have a ◦ b ∈ F.
It is known that for the basic operations +,−, ·, the approximation error of a floating point
operation is still a floating point number (see for example [3]):

x = fl(a± b) ⇒ a± b = x + y with y ∈ F,
x = fl(a · b) ⇒ a · b = x + y with y ∈ F.

(2.2)

These are error-free transformations of the pair (a, b) into the pair (x, y). Fortunately, the
quantities x and y in (2.2) can be computed exactly in floating point arithmetic.
We use Matlab-like notations to describe the algorithms.

2.2.1 Addition

For addition, we can use the following algorithm by Knuth [9, Thm B. p.236].

Algorithm 2.1 (Knuth [9]). Error-free transformation of the sum of two float-
ing point numbers

function [x, y] = TwoSum(a, b)
x = fl(a + b); z = fl(x− a); y = fl((a− (x− z)) + (b− z))

Another algorithm to compute an error-free transformation is the following algorithm from
Dekker [3]. The drawback of this algorithm is that we have x + y = a + b provided that
|a| ≥ |b|. Generally, on modern computers, a comparison followed by a branching and 3
operations costs more than 6 operations. As a consequence, TwoSum is generally more efficient
than FastTwoSum.

Algorithm 2.2 (Dekker [3]). Error-free transformation of the sum of two float-
ing point numbers with |a| ≥ |b|

function [x, y] = FastTwoSum(a, b)
x = fl(a + b); y = fl((a− x) + b)

2.2.2 Multiplication

For the error-free transformation of a product, we first need to split the input argument into
two parts.

Splitting
Let p be the integer number given by eps = 2−p and define s = dp/2e and factor = fl(2s +1).

For example, if the working precision is IEEE 754 double precision, then p = 53 and s = 27
and factor = 1. 00 . . . 00︸ ︷︷ ︸

26

1 00 . . . 00︸ ︷︷ ︸
26

227 allows by multiplying a number to split the mantissa

of this number into its most and least significant halves. The quantities p, s and factor are
constants of the floating point arithmetic.

The following algorithm by Dekker [3] splits a floating point number a ∈ F into two parts
x and y such that

a = x + y and x and y non overlapping with |y| ≤ |x|.

Two floating point values x and y with |y| ≤ |x| are nonoverlapping if the least significant
nonzero bit of x is more significant than the most significant nonzero bit of y.

Algorithm 2.3 (Dekker [3]). Error-free split of a floating point number into two
parts

function [x, y] = Split(a, b)
c = fl(factor · a); x = fl(c− (c− a)); y = fl(a− x)

Product
An algorithm from Veltkamp (see [3]) makes it possible to compute an error-free transfor-

mation for the product of two floating point numbers by splitting the two arguments.
This algorithm returns two floating point numbers x and y such that

a · b = x + y with x = fl(a · b).

Algorithm 2.4 (Veltkamp [3]). Error-free transformation of the product of two
floating point numbers

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a); [b1, b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1)− a2 · b1)− a1 · b2))

2.2.3 Properties

The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

Theorem 2.1 (Ogita, Rump and Oishi [12]).

Addition Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoSum(a, b) (Algorithm 2.1).
Then,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|. (2.3)

The algorithm TwoSum requires 6 flops.

Product Let a, b ∈ F and let x, y ∈ F such that [x, y] = TwoProduct(a, b) (Algorithm 2.4).
Then,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x|, |y| ≤ eps|a · b|. (2.4)

The algorithm TwoProduct requires 17 flops.

2.2.4 Multiplication with FMA

The TwoProduct algorithm can be re-written in a very simple way if a Fused-Multiply-and-
Add (FMA) operator is available on the targeted architecture [11, 1]. This means that for
a, b, c ∈ F, the result of FMA(a, b, c) is the nearest floating point number of a · b + c ∈ R. The
FMA operator satisfies

FMA(a, b, c) = (a · b + c)(1 + ε1) = (a · b + c)/(1 + ε2) with |εν | ≤ eps.

Algorithm 2.5 (Ogita, Rump and Oishi [12]). Error-free transformation of the
product of two floating point numbers using an FMA

function [x, y] = TwoProductFMA(a, b)
x = fl(a · b); y = FMA(a, b,−x)

The TwoProductFMA algorithm requires only 2 flops.

3 Complex floating point arithmetic

3.1 Notations and fundamental property of complex floating point arithmetic

We denote by F+iF the set of complex floating point numbers. As in the real case, we denote
by fl(·) the result of a floating point computation, where all operations inside parentheses are
done in floating point working precision in the obvious way [7, p.71]. The following properties
hold [7, 13] for x, y ∈ F + iF,

fl(x ◦ y) = (x ◦ y)(1 + ε1) = (x ◦ y)/(1 + ε2), for ◦ = {+,−} and |εν | ≤ eps, (3.5)

and
fl(x · y) = (x · y)(1 + ε1), |ε1| ≤

√
2γ2. (3.6)

This implies that

|a ◦ b− fl(a ◦ b)| ≤ eps|a ◦ b| and |a ◦ b− fl(a ◦ b)| ≤ eps|fl(a ◦ b)| for ◦ = {+,−}

and
|x · y − fl(x · y)| ≤

√
2γ2|x · y|.

For the complex multiplication, we can replace the term
√

2γ2 by
√

5eps which is nearly
optimal (see [2]). As a consequence, in the sequel, all the bounds for algorithms involving a
multiplication can be improved by a small constant factor.

We will also use the notation γ̃n for the quantities

γ̃n :=
n
√

2γ2

1− n
√

2γ2

.

And we will use inequalities (1 +
√

2γ2)(1 + γ̃n) ≤ (1 + γ̃n+1) and (1 +
√

2γ2)γ̃n−1 ≤ γ̃n.

3.2 Sum and product

The error-free transformations presented hereafter were first described in [6]. The sum
requires still only one error term as for the real case but the product needs three error terms.

3.2.1 Addition

Algorithm 3.1. Error-free transformation of the sum of two complex floating
point numbers x = a + ib and y = c + id

function [s, e] = TwoSumCplx(x, y)
[s1, e1] = TwoSum(a, c); [s2, e2] = TwoSum(b, d)
s = s1 + is2; e = e1 + ie2

Theorem 3.1. Let x, y ∈ F + iF and let s, e ∈ F + iF such that [s, e] = TwoSumCplx(x, y)
(Algorithm 3.1). Then,

x + y = s + e, s = fl(x + y), |e| ≤ eps|s|, |e| ≤ eps|x + y|. (3.7)

The algorithm TwoSumCplx requires 12 flops.

Proof. From Theorem 2.1 with TwoSum, we have s1 + e1 = a + c and s2 + e2 = b + d. It
follows that s + e = x + y with s = fl(x + y). From (3.5), we derive that |e| ≤ eps|s| and
|e| ≤ eps|x + y|.

3.2.2 Multiplication

Algorithm 2.4 cannot be straightforward generalized to complex multplication. We need the
new following algorithm.

Algorithm 3.2. Error-free transformation of the product of two complex
floating point numbers x = a + ib and y = c + id

function [p, e, f, g] = TwoProductCplx(x, y)
[z1, h1] = TwoProduct(a, c); [z2, h2] = TwoProduct(b, d)
[z3, h3] = TwoProduct(a, d); [z4, h4] = TwoProduct(b, c)
[z5, h5] = TwoSum(z1,−z2); [z6, h6] = TwoSum(z3, z4)
p = z5 + iz6; e = h1 + ih3; f = −h2 + ih4; g = h5 + ih6

Theorem 3.2. Let x, y ∈ F+iF and let p, e, f, g ∈ F+iF such that [p, e, f, g] = TwoProductCplx(x, y)
(Algorithm 2.4). Then,

x · y = p + e + f + g p = fl(x · y), |e + f + g| ≤
√

2γ2|x · y|, (3.8)

The algorithm TwoProductCplx requires 80 flops.

Proof. From Theorem 2.1, it holds that z1 + h1 = a · c, z2 + h2 = b · d, z3 + h3 = a · d,
z4 + h4 = b · c, z5 + h5 = z1 − z2 and z6 + h6 = z3 + z4. By the definition of p, e, f ,
g, we conclude that x · y = p + e + f + g with p = fl(x · y). From (3.6), we deduce that
|e + f + g| = |x · y − fl(x · y)| ≤

√
2γ2|x · y|.

Optimization of the algorithm
In Algorithm 3.2, in each call to TwoProduct, we have to split the two arguments. Yet, we

split the same numbers a, b, c and d twice. With only one split for each of these numbers, the
cost is 64 flops. The previous algorithm can be expanded as follows:

Algorithm 3.3. Error-free transformation of the product of two complex
floating point numbers x = a + ib and y = c + id with single splitting

function [p, e, f, g] = TwoProductCplxSingleSplitting(x, y)
[a1, a2] = Split(a), [b1, b2] = Split(b), [c1, c2] = Split(c), [d1, d2] = Split(d)
z1 = fl(a · c), z2 = fl(b · d), z3 = fl(a · d), z4 = fl(b · c)
h1 = fl(a2 · c2 − (((x− a1 · c1)− a2 · c1)− a1 · c2))
h2 = fl(b2 · d2 − (((x− b1 · d1)− b2 · d1)− b1 · d2))
h3 = fl(a2 · d2 − (((x− a1 · d1)− a2 · d1)− a1 · d2))
h4 = fl(b2 · c2 − (((x− b1 · c1)− b2 · c1)− b1 · c2))
[z5, h5] = TwoSum(z1,−z2), [z6, h6] = TwoSum(z3, z4)
p = z5 + iz6, e = h1 + ih3, f = −h2 + ih4, g = h5 + ih6

3.2.3 Multiplication with FMA

Of course we obtain a much faster algorithm if we use TwoProductFMA instead of TwoProduct.
In that case, the numbers of flops falls down to 20.

Algorithm 3.4. Error-free transformation of the product of two complex
floating point numbers x = a + ib and y = c + id using FMA

function [p, e, f, g] = TwoProductFMACplx(x, y)
[z1, h1] = TwoProductFMA(a, c); [z2, h2] = TwoProductFMA(b, d)
[z3, h3] = TwoProductFMA(a, d); [z4, h4] = TwoProductFMA(b, c)
[z5, h5] = TwoSum(z1,−z2); [z6, h6] = TwoSum(z3, z4)
p = z5 + iz6; e = h1 + ih3; f = −h2 + ih4; g = h5 + ih6

The 8.5:1 ratio between the cost of TwoProduct and TwoProductFMA algorithms and the
3.2:1 ratio between the cost of TwoProductCplxSingleSplitting and TwoProductFMACplx
algorithms show that the availability of an FMA is crucial for fast error-free transformations in
real and complex arithmetic.

4 Accurate polynomial evaluation

First of all we describe the classical Horner scheme to evaluate polynomial p with complex
floating point coefficients on x a complex floating point value. The computed value res
is generally not the mathematical value p(x) rounded to the working precision. We want
then to reduce the gap between these values so we modify this algorithm to compute res
and additionally four polynomial error terms that we will have to evaluate on x to deduce a
complex floating point correction term c that we have to add to res. Afterwards we will study
mathematically and experimentally the improvement of the accuracy consisting in replacing
res by fl(res + c).

4.1 Classical Horner scheme for complex floating point arithmetic

The classical method for evaluating a polynomial

p(x) =
n∑

i=0

aix
i, ai, x ∈ F + iF

is the Horner scheme which consists on the following algorithm:

Algorithm 4.1. Polynomial evaluation with Horner’s scheme

function res = Horner(p, x)
sn = an

for i = n− 1 : −1 : 0
si = si+1 · x + ai

end
res = s0

Proposition 4.1. A forward error bound is

|p(x)− Horner(p, x)| ≤ γ̃2n

n∑
i=0

|ai||x|i = γ̃2np̃(|x|) (4.9)

where p̃(x) =
∑n

i=0 |ai|xi.

Proof. This is a straightforward adaptation of the proof found in [7, p.95] using (3.5) and
(3.6) for complex floating point arithmetic.

The classical condition number that describes the evaluation of p(x) =
∑n

i=0 aix
i at x is

cond(p, x) =
∑n

i=0 |ai||x|i

|∑n
i=0 aixi|

=
p̃(|x|)
|p(x)|

. (4.10)

Thus if p(x) 6= 0, Equations (4.9) and (4.10) can be combined so that

|p(x)− Horner(p, x)|
|p(x)|

≤ γ̃2n cond(p, x). (4.11)

4.2 Compensated Horner scheme

We now propose an error-free transformation for polynomial evaluation with the Horner
scheme. We produce four polynomial error terms monomial-by-monomial: a monomial for
each polynomial at each iteration.

Algorithm 4.2. Error-free transformation for the Horner scheme

function [res, pπ, pµ, pν , pσ] = EFTHorner(p, x)
sn = an

for i = n− 1 : −1 : 0
[pi, πi, µi, νi] = TwoProductCplx(si+1, x)
[si, σi] = TwoSumCplx(pi, ai)
Set πi, µi, νi, σi respectively as the coefficient of degree i in pπ, pµ, pν , pσ

end
res = s0

The next theorems and proofs are very similar to the ones of [5]. It is just necessary to
change real error-free transformations into complex error-free transformations and to change
eps into

√
2γ2. This leads to change the γn into γ̃n.

Theorem 4.2 (Equality). Let p(x) =
∑n

i=0 aix
i be a polynomial of degree n with complex

floating point coefficients, and let x be a complex floating point value. Then Algorithm 4.2
computes both

i) the floating point evaluation res = Horner(p, x) and

ii) four polynomials pπ, pµ, pν and pσ of degree n−1 with complex floating point coefficients,

Then,
p(x) = res + (pπ + pσ + pµ + pν)(x), (4.12)

Proof. Thanks to the error-free transformations, we have pi + πi + µi + νi = si+1.x and
si + σi = pi + ai. By induction, it is easy to show that

n∑
i=0

aix
i = s0 +

n−1∑
i=0

πix
i +

n−1∑
i=0

µix
i +

n−1∑
i=0

νix
i +

n−1∑
i=0

σix
i,

which is exactly (4.12).

Proposition 4.3 (Bound on the error). Given p(x) =
∑n

i=0 aix
i a polynomial of degree n

with complex floating point coefficients, and x a complex floating point value. Let res be the
floating point value, pπ, pµ, pν and pσ be the four polynomials of degree n − 1, with complex
floating point coefficients, such that [res, pπ, pµ, pν , pσ] = EFTHorner(p, x). Then,

(Â�(pπ + pµ + pν) + p̃σ)(|x|) ≤ γ̃2np̃(|x|).

Proof. The proof is organized as follows: we prove a bound on |pn−i||x|n−i and |sn−i||x|n−i

from which we deduce a bound on |πi+µi+νi| and |σi| and we use these bounds on each coeffi-
cient of the polynomial error terms to obtain finally the expected bound on these polynomials.

• By definition, for i = 1, . . . , n, pn−i = sn−i+1 · x and sn−i = pn−i + an−i. From Equa-
tion(3.6), we deduce fl(sn−i+1 · x) = (1 + ε1)sn−i+1 · x with |ε1| ≤

√
2γ2. From Equa-

tion (3.5), we deduce fl(pn−i + an−i) = (1 + ε2)(pn−i + an−i) with |ε2| ≤ eps ≤
√

2γ2.
Consequently

|pn−i| ≤ (1 +
√

2γ2) |sn−i+1||x| and |sn−i| ≤ (1 +
√

2γ2) (|pn−i|+ |an−i|). (4.13)

• These two bounds will be used in the basic case and the inductive case of the following
double property: for i = 1, . . . , n,

|pn−i| ≤ (1 + γ̃2i−1)
i∑

j=1

|an−i+j ||xj | and |sn−i| ≤ (1 + γ̃2i)
i∑

j=0

|an−i+j ||xj |. (4.14)

For i = 1:
Since sn = an the bound of Equation (4.13) can be rewritten as |pn−1| ≤ (1 +√

2γ2)|an||x| ≤ (1 + γ̃1)|an||x|. We combine this bound on |pn−1| to (4.13) to obtain
|sn−1| ≤ (1 +

√
2γ2) ((1 + γ̃1)|an||x|+ |an−1|) ≤ (1 + γ̃2) (|an||x|+ |an−1|). Thus (4.14)

is satisfied for i = 1.
Let us now suppose that (4.14) is true for some integer i such that 1 ≤ i < n. According
to (4.13), we have |pn−(i+1)| ≤ (1+

√
2γ2)|sn−i||x|. Thanks to the induction hypothesis,

we derive,

|pn−(i+1)| ≤ (1 +
√

2γ2)(1 + γ̃2i)
i∑

j=0

|an−i+j ||xj+1| ≤ (1 + γ̃2(i+1)−1)
i+1∑
j=1

|an−(i+1)+j ||xj |.

Let us combine (4.13) with this inequality, we have,

|sn−(i+1)| ≤ (1 +
√

2γ2)(|pn−(i+1)|+ |an−(i+1)|)

≤ (1 +
√

2γ2)(1 + γ̃2(i+1)−1)

i+1∑
j=1

|an−(i+1)+j ||xj |+ |an−(i+1)|

≤ (1 + γ̃2(i+1))

i+1∑
j=0

|an−(i+1)+j ||xj |.

So (4.14) is proved by induction. We bound each of these sums by p(|x|)/|xn−i| and
obtain for i = 1, . . . , n,

|pn−i||xn−i| ≤ (1 + γ̃2i−1)p̃(|x|) and |sn−i||xn−i| ≤ (1 + γ̃2i)p̃(|x|). (4.15)

• From Theorem 3.1 and Theorem 3.2, for i = 0, . . . , n−1, we have |πi+µi+νi| ≤
√

2γ2|pi|
and |σi| ≤ eps|si| ≤

√
2γ2|si|. Therefore,Â�(pπ + pµ + pν)+p̃σ)(|x|) =

n−1∑
i=0

(|πi+µi+νi|+|σi|)|xi| ≤
n−1∑
i=0

Ä√
2γ2|pi||xi|

ä
+

n−1∑
i=0

Ä√
2γ2|si||xi|

ä
.

We now transform the summation intoÂ�(pπ + pµ + pν) + p̃σ)(|x|) ≤
√

2γ2

n∑
i=1

(|pn−i||xn−i|+ |sn−i||xn−i|)

and use the preceding equation (4.15) and the growth of the sequence γ̃k so thatÂ�(pπ + pµ + pν) + p̃σ)(|x|) ≤
√

2γ2

n∑
i=1

((1 + γ̃2i−1)p̃(|x|) + (1 + γ̃2i)p̃(|x|))

≤
√

2γ2

n∑
i=1

2(1 + γ̃2n)p̃(|x|) = 2n
√

2γ2(1 + γ̃2n)p̃(|x|).

Since 2n
√

2γ2(1 + γ̃2n) = γ̃2n, we finally obtain Â�(pπ + pµ + pν) + p̃σ)(|x|) ≤ γ̃2np̃(|x|).

From Theorem 4.2 the forward error affecting the evaluation of p at x according to the
Horner scheme is

e(x) = p(x)− Horner(p, x) = (pπ + pµ + pν + pσ)(x).

The coefficients of these polynomials are exactly computed by Algorithm 4.2, together with
Horner(p, x).

If we try to compute a complete error-free transformation for the evaluation of a polynomial
of degree n, we will have to perform recursively the same computation for four polynomial of
degree n − 1 and so on. This will produce at the end of the computation

∑n
i=0 4i = 4n+1−1

4−1
error terms (for example for a polynomial of degree 10 we would obtain more than one million
error terms), almost all of which are null with underflow and the other ones do not have the
essential non-overlapping property. It will takes a very long time to compute this result (even
more probably than with exact symbolic computation) and we will have to make a drastic
selection on the huge amount of data to keep only a few meaningful terms as a usable result.
We only consider here intentionally the first-order error term to obtain a really satisfactory
improvement of the result of the evaluation with a reasonable running time.

Consequently we compute here a single complex floating point number as the first-order
error term, the most significant correction term. The key is then to compute an approxi-
mate of the error e(x) in working precision, and then to compute a corrected result res′ =
fl(Horner(p, x) + e(x)).

Our aim is now to compute the correction term c = fl(e(x)) = fl((pπ +pσ +pµ +pν)(x)). For
that we evaluate the polynomial P whose coefficients are those of pπ + pσ + pµ + pν faithfully
rounded1 since the sums of the coefficients pi + qi + ri + si are not necessarily floating point
numbers. We compute the coefficients of polynomial P thanks to Accsum algorithm [14]. This
can also be done via other accurate summation algorithms (see [4] for example). We modify
the classical Horner scheme applied to P , to compute P at the same time.

Algorithm 4.3. Evaluation of the sum of four polynomials with degree n

function c = HornerSumAcc(p, q, r, s, x)
vn = Accsum(pn + qn + rn + sn)
for i = n− 1 : −1 : 0

vi = fl(vi+1 · x+Accsum(pi + qi + ri + si))
end
c = v0

1Faithful rounding means that the computed result is equal to the exact result if the latter is a floating
point number and otherwise is one of the two adjacent floating point numbers of the exact result.

Lemma 4.4. Let us consider the floating point evaluation of (p+ q + r + s)(x) computed with
HornerSumAcc(p, q, r, s, x). Then, the computed result satisfies the following forward error
bound,

|HornerSumAcc(p, q, r, s, x)− (p + q + r + s)(x)| ≤ γ̃2n+1(Â�(p + q + r) + s̃)(|x|),

Proof. We will use as in [7, p.68] the notation 〈k〉 to denote the product of k terms of the form
1+ εi for some εi such that |εi| ≤

√
2γ2. A product of j such terms multiplied by the product

of k such terms is a product of j + k such terms and consequently we have 〈j〉〈k〉 = 〈j + k〉.
Considering Algorithm 4.3, we have vn = Accsum(pn + qn + rn + sn) so according to the

property of the Accsum algorithm we have vn = (pn + qn + rn + sn)〈1〉.
For i = n− 1, . . . , 0, the computation of vi from vi+1 leads to an error term for the product

and for the Accsum algorithm and then another on the sum and we have

vi = fl(vi+1x + Accsum(pi + qi + ri + si)) = vi+1x〈2〉+ (pi + qi + ri + si)〈2〉.

Therefore we can prove by induction on i that

vn−i = (pn + qn + rn + sn)xi〈2i + 1〉+
i−1∑
k=0

(pn−i+k + qn−i+k + rn−i+k + sn−i+k)xk〈2(k + 1)〉

and then for i = n we obtain

c = v0 = (pn + qn + rn + sn)xn〈2n + 1〉+
n−1∑
k=0

(pk + qk + rk + sk)xk〈2(k + 1)〉.

Consequently we have

c−
n∑

i=0

(pi+qi+ri+si)xi = (pn+qn+rn+sn)xn(〈2n+1〉−1)+
n−1∑
k=0

(pk+qk+rk+sk)xk(〈2(k+1)〉−1).

Since for any ε implied in 〈k〉 notation, we have |ε| ≤
√

2γ2, we have

|〈k〉 − 1| ≤ (1 +
√

2γ2)k − 1 ≤ 1
1− k

√
2γ2

− 1 =
k
√

2γ2

1− k
√

2γ2

= γ̃k

and the γ̃k sequence is growing, thus |〈k〉 − 1| ≤ γ̃k ≤‡γ2n+1 pour tout k ≤ 2n + 1. We finally
obtain∣∣∣∣∣c− n∑

i=0

(pi + qi + ri + si)xi

∣∣∣∣∣ ≤ γ̃2n+1

n∑
i=0

(|pi + qi + ri|+ |si|)|xi| ≤ γ̃2n+1(Â�(p + q + r) + s̃)(|x|).

We combine now the error-free transformation for the Horner scheme that produces four
polynomials and the algorithm for the evaluation of the sum of four polynomials to obtain a
compensated Horner scheme algorithm that improves the numerical accuracy of the classical
Horner scheme on complex numbers.

Algorithm 4.4. Compensated Horner scheme

function res’ = CompHorner(p, x)
[res, pπ, pµ, pν , pσ] = EFTHorner(p, x)
c = HornerSumAcc(pπ, pµ, pν , pσ, x)
res’= fl(res + c)

We prove hereafter that the result of a polynomial evaluation computed with the compen-
sated Horner scheme (4.4) is as accurate as if computed by the classic Horner scheme using
twice the working precision and then rounded to the working precision.

Theorem 4.5. Given a polynomial p =
∑n

i=0 pix
i of degree n with floating point coefficients,

and x a floating point value. We consider the result CompHorner(p, x) computed by Algo-
rithm 4.4. Then,

|CompHorner(p, x)− p(x)| ≤ eps|p(x)|+ γ̃2
2np̃(|x|), (4.16)

Proof. As res′ = fl(res+ c) so, according to Theorem 3.1, res′ = (1 + ε)(res+ c) with |ε| ≤
eps ≤

√
2γ2. Thus we have |res′−p(x)| = |fl(res+c)−p(x)| = |(1+ε)(res+c−p(x))+εp(x)|.

Since p(x) = res + e(x), we have |res′ − p| = |(1 + ε)(c − e(x)) + εp(x)| ≤ eps|p(x)| + (1 +
eps)|e(x)− c|. By Lemma 4.4 applied to four polynomials of degree n− 1, we have

|e(x)− c| ≤ γ̃2n−1(Â�(pπ + pµ + pν) + p̃σ)(|x|).

By Proposition 4.3 we have also (Â�(pπ + pµ + pν)+ p̃σ)(|x|) ≤ γ̃2np̃(|x|). We combine these two
bounds and obtain |e(x)− c| ≤ γ̃2n−1γ̃2np̃(|x|). As a consequence, |res′ − p(x)| ≤ eps|p(x)|+
(1 +

√
2γ2)γ̃2n−1γ̃2np̃(|x|). Since (1 +

√
2γ2)γ̃2n−1 ≤ γ̃2n, it follows that |res′ − p(x)| ≤

eps|p(x)|+ γ̃2
2np̃(x).

4.3 Numerical experiments

Equation (4.16) can be written

|CompHorner(p, x)− p(x)|
|p(x)|

≤ eps + γ̃2
2n cond(p, x). (4.17)

The comparison with the bound (4.11) for the classical Horner scheme shows that the coeffi-
cient of the condition number vanish from γ̃2n to γ̃2

2n.
We present here comparison curves for the classical and the compensated Horner scheme.
All our experiments are performed using the IEEE 754 double precision with Matlab 7.

When needed, we use the Symbolic Math Toolbox to accurately compute the polynomial
evaluation (in order to compute the relative forward error).

We test the compensated Horner scheme on the expanded form of the polynomial pn(x) =
(x− (1+ i))n at x = fl(1.333+1.333i) for n = 3 : 42. The condition number cond(pn, x) varies
from 103 to 1033.

The following figure shows the relative accuracy |res−pn(x)|/|pn(x)| where res is the com-
puted value by the two algorithms 4.1 and 4.4. We also plot the a priori error estimation (4.11)
and (4.17).

As we can see below, the compensated Horner scheme exhibits the expected behavior, that
is to say, the compensated rule of thumb (4.17). As long as the condition number is less than
eps−1 ≈ 1016, the compensated Horner scheme produces results with full precision (forward
relative error of the order of eps ≈ 10−16). For condition numbers greater than eps−1 ≈ 1016,
the accuracy decreases until no accuracy at all when the condition number is greater than
eps−2 ≈ 1032.

105 1010 1015 1020 1025 1030 1035

10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

condition number

re
la

tiv
e

fo
rw

ar
d

er
ro

r

Conditionning and relative forward error

γ2n cond u+γ2n
2 cond

classic Horner scheme
compensated Horner scheme

5 Conclusion and future work

In this article, we derived some new error-free transformations for complex floating point
arithmetic. This makes it possible to provide a complex version of the compensated Horner
scheme.

Nevertheless, the error bound provided in this article is a theoretical one since it contains
the quantity |p(x)|. It would be very interesting to derive a validated error bound α ∈ F that
can be computed in floating point arithmetic satisfying |CompHorner(p, x) − p(x)| ≤ α. This
can be done via a kind of running error analysis [15].

References

[1] Sylvie Boldo and Jean-Michel Muller. Some functions computable with a Fused-mac. In
Proceedings of the 17th Symposium on Computer Arithmetic, Cape Cod, USA, 2005.

[2] Richard Brent, Colin Percival, and Paul Zimmermann. Error bounds on complex floating-
point multiplication. Math. Comp., 76(259):1469–1481 (electronic), 2007.

[3] T. J. Dekker. A floating-point technique for extending the available precision. Numer.
Math., 18:224–242, 1971.

[4] James W. Demmel and Yozo Hida. Accurate and efficient floating point summation.
SIAM J. Sci. Comput., 25(4):1214–1248 (electronic), 2003.

[5] Stef Graillat, Nicolas Louvet, and Philippe Langlois. Compensated Horner scheme. Re-
search Report 04, Équipe de recherche DALI, Laboratoire LP2A, Université de Perpignan
Via Domitia, France, July 2005.

[6] Stef Graillat and Valérie Menissier-Morain. Error-free transformations in real and com-
plex floating point arithmetic. In Proceedings of the International Symposium on Nonlin-
ear Theory and its Applications, pages 341–344, Vancouver, Canada, September 16-19,
2007.

[7] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.

[8] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.
Institute of Electrical and Electronics Engineers, New York, 1985. Reprinted in SIGPLAN
Notices, 22(2):9–25, 1987.

[9] Donald E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical Algo-
rithms. Addison-Wesley, Reading, MA, USA, third edition, 1998.

[10] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jimmy Iskan-
dar, William Kahan, Suh Y. Kang, Anil Kapur, Michael C. Martin, Brandon J. Thomp-
son, Teresa Tung, and Daniel J. Yoo. Design, implementation and testing of extended
and mixed precision BLAS. ACM Trans. Math. Softw., 28(2):152–205, 2002.

[11] Yves Nievergelt. Scalar fused multiply-add instructions produce floating-point matrix
arithmetic provably accurate to the penultimate digit. ACM Trans. Math. Software,
29(1):27–48, 2003.

[12] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product.
SIAM J. Sci. Comput., 26(6):1955–1988, 2005.

[13] S. M. Rump. Verification of positive definiteness. BIT, 46(2):433–452, 2006.

[14] Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi. Accurate floating-point sum-
mation. Technical Report 05.12, Faculty for Information and Communication Sciences,
Hamburg University of Technology, nov 2005.

[15] James H. Wilkinson. Rounding errors in algebraic processes. Prentice-Hall Inc., Engle-
wood Cliffs, N.J., 1963.

