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Motivation: what is the best way to use FMA for accurate dot products?

IEEE-754 floating point arithmetic + FMA:

F denotes the set of the floating point numbers,

u is the working precision:
e.g., u = 2−53 ≈ 10−16 in IEEE-754 double precision.

x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T belong to Fn×1.

Floating point Fused Multiply and Add (FMA):

given a, b and c in F, FMA(a, b, c) equals a× b+ c rounded to the
nearest floating point value.

only one rounding error for two arithmetic operations!

Available on Intel IA-64, IBM RS/6000 and PowerPC.

Accuracy of Classic Dot Product

We consider dot products without/with FMA:

Classic dot product

function ŝ = Dot(x, y)
ŝ = x1 ⊗ y1

for i = 2 : n
ŝ = ŝ⊕ xi ⊗ yi

Dot product with FMA

function ŝ = DotFMA(x, y)
ŝ = x1 ⊗ y1

for i = 2 : n
ŝ = FMA(xi, yi, ŝ)

The condition number for dot product computation is

cond(xTy) = 2
|x|T |y|

|xTy|
, with xTy 6= 0.

Worst case accuracy: FMA does not improve the accuracy of computed dot
product since Dot and DotFMA both verifies

| ŝ− xTy|

|xTy|
≤

1

2
γn︸︷︷︸
≈nu

cond(xTy).

Practical accuracy: FMA only slightly improves the actual accuracy.
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Classic dot product is not accurate enough when applied to ill-conditioned dot
products e.g., when computing residuals for ill-conditioned linear systems.

Question: How can we obtain more accurate dot products?

Compensated Dot Products

More accuracy can be achieved thanks to

double-double computations (see algorithm DotXBLAS below),

or with compensated algorithms: the forward error in the floating point
evaluation of xTy is

c = xTy − computed(xTy).

The main idea is to compute an approximate ĉ of the global error c thanks
to Error Free Transformations (EFT). Then a compensated result r

is provided correcting the computed xTy as follows,

r = computed(xTy)⊕ ĉ.

From Dot and DotFMA, we derive two compensated algorithms using EFT
(2Sum, 2ProdFMA and 3FMA are presented in the EFT frame below),

CompDot: correcting + and × in Dot with 2Sum and 2ProdFMA

(see [2]).

CompDotFMA: correcting FMA in DotFMA with 3FMA.

Compensated Dot

function r = CompDot(x, y)
[ ŝ, ĉ] = 2ProdFMA(x1, y1)
for i = 2 : n

[ p̂, π] = 2ProdFMA(xi, yi)
[ ŝ, σ] = 2Sum( ŝ, p̂)
ĉ = ĉ⊕ (π ⊕ σ)

end
r = ŝ⊕ ĉ

Compensated DotFMA

function r = CompDotFMA(x, y)
[ ŝ, ĉ] = 2ProdFMA(x1, y1)
for i = 2 : n

[ ŝ, α, β] = 3FMA(xi, yi, ŝ)
ĉ = ĉ⊕ (α⊕ β)

end
r = ŝ⊕ ĉ

The relative accuracy of the compensated result now verifies:

| r − xTy|

|xTy|
≤





u + 1
2 γ2

n︸︷︷︸
≈n2 u2

cond(xTy), with CompDot,

u + 1
2 γn+1 u︸ ︷︷ ︸
≈(n+1)u2

cond(xTy), with CompDotFMA.

CompDot and CompDotFMA are as accurate as classic dot product com-
puted in doubled working precision u2.

Experimental results

Algorithms CompDot and CompDotFMA as accurate as the classic dot
product performed in doubled working precision means:

while cond(xTy) . u−1, the accuracy is about the working precision u,

when u−1 . cond(xTy) . u−2, the accuracy decreases from 16 digits to 0,

for cond(xTy) & u−2, no correct digit is returned.
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What is the running time over-cost compared to DotFMA?

n DotFMA CompDot CompDotFMA DotXBLAS

50 1.0 1.63 2.61 9.87
100 1.0 1.35 2.43 9.65
1000 1.0 1.26 2.6 10.86
10000 1.0 1.25 2.62 10.97
100000 1.0 1.25 2.35 9.8

Measured computing times on Intel Itanium 2
(1.6 GHz, ICC v9.0, IEEE-754 double precision)

Observations:

1. CompDot and CompDotFMA run both faster than DotXBLAS,

2. CompDot is the most efficient alternative to DotXBLAS.

Error Free Transformations (EFT)

Error Free Transformations are properties and algorithms to compute the generated rounding
errors at the working precision u. The following table sums up the EFT for +, × and FMA.

+ (x, y) = 2Sum(a, b) 6 flops Knuth (74)
such that a + b = x + y and x = a⊕ b

× (x, y) = 2ProdFMA(a, b) 2 flops
such that a× b = x + y and x = a⊗ b

Indeed y = a× b− x = FMA(a, b,−x)
FMA (x, y, z) = 3FMA(a, b, c) 17 flops Boldo

such that x = FMA(a, b, c) and a× b + c = x + y + z Muller (05)

Remark: x, y and z belongs to F when a, b and c are in F.

Algorithm 2ProdFMA is used instead of the classic 2Prod (by Dekker and Veltkamp, 17 flops)
to benefit from FMA.

XBLAS Dot Product

XBLAS = BLAS + Bailey’s double-doubles = eXtended and mixed
precision BLAS [1].

A double-double number = unevaluated sum of two IEEE-754 double
precision numbers = at least 106 significand bits.

DotXBLAS = Classic dot product (Dot) + double-doubles.

DotXBLAS also benefits from the availability of FMA.

Conclusions

FMA only slightly improves the accuracy of the classic dot product.

Nevertheless FMA is useful for designing accurate algorithms: CompDot

and CompDotFMA are very efficient for doubling the working precision.

In particular CompDot is about 6 times faster than XBLAS
algorithm DotXBLAS in our experiments.
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