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Abstract

Since 1985, the IEEE 754 standard defines formats,
rounding modes and basic operations for floating-point
arithmetic. In 2008 the standard has been extended, and
recommendations have been added about the rounding of
some elementary functions such as trigonometric functions
(cosine, sine, tangent and their inverses), exponentials, and
logarithms. However to guarantee the exact rounding of
these functions one has to approximate them with a suffi-
cient precision. Finding this precision is known as the Table

Maker’s Dilemma. To determine this precision, it is neces-
sary to find the hardest-to-round argument of these func-
tions. Lefèvre et al. proposed in 1998 an algorithm which
improves the exhaustive search by computing a lower bound
on the distance between a line segment and a grid. We
present in this paper an analysis of this algorithm in or-
der to deploy it efficiently on GPU. We manage to obtain a
speedup of 15.4 on a NVIDIA Fermi GPU over one single
high-end CPU core.

1 Introduction

The IEEE 754 standard specifies the implementation of

floating-point operations in order to have portable and pre-

dictable numerical softwares. It defines formats (half, sin-

gle, double and quadruple precision), rounding modes (to

the nearest and toward 0, −∞ and +∞) and operations

(+,−,×, /,√ ).
In 2008 this standard has been revised, recommending

correct rounding of some transcendental functions, like log,

exp and the trigonometric functions. One way to compute

efficiently these functions is to approximate them by poly-

nomials. However, it is hard to decide which precision is re-

quired to guarantee a correctly rounded result – the rounded

evaluation of the approximation polynomial must be equal

to the rounded evaluation of the function with infinite preci-

sion. This problem is known as the Table Maker’s Dilemma
or TMD. A common way to solve the TMD is to find the

floating-point arguments of these functions which require

high precision for correct rounding. These hard-to-round
floating-point numbers are also named HR-cases. Know-

ing the hardest-to-round floating-point number, one can de-

termine the precision required to approximate the targeted

function and to ensure the correct rounding of all returned

evaluations.

For general functions, the first improvement over the

prohibitive exhaustive search of HR-cases was proposed by

Lefèvre in [6]. The main idea of his algorithm is to split

the domain into several intervals and to “isolate” HR-cases.

This isolation is efficiently performed using local affine

approximations of the targeted function. Stehlé, Lefèvre

and Zimmermann extended this method in 2003 [12, 13]

(SLZ algorithm) for higher degree approximations, using

the Coppersmith method for finding small roots of univari-

ate modular equation1.

Both algorithms are very computationally intensive (sev-

eral months for double precision on a single CPU), as well

as highly parallel since the HR-case searches on each inter-

val are independent, and since the number of such intervals

is huge. The purpose of this work is therefore to accelerate

these computations on Graphical Processing Units (GPUs),

which theoretically perform one order of magnitude better

than CPUs thanks to their massively parallel architecture.

We focus here on Lefèvre’s algorithm, which is simpler than

the SLZ algorithm and efficient for double precision round-

ing. We consider its deployment on latest NVIDIA Fermi

GPUs which offer improved computation performance for

64-bit integers. There has been some recent work on solv-

ing the TMD on FPGA [2], but to our knowledge, this is the

first deployment of Lefèvre’s algorithm on GPU.

In this paper, we will present Lefèvre’s algorithm in Sec-

tion 2 after a brief recall on rounding transcendental func-

tions. Then in Section 3, we will detail how we have par-

tially deployed this algorithm (namely, the HR-case search)

on one NVIDIA Fermi GPU by minimizing the number of

inactive threads and the divergence. Finally, in Section 4 we

will present and analyze our performance results, and we

1http://www.loria.fr/equipes/spaces/slz.en.html
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will compare performance results on multiple GPUs and on

multi-core CPUs.

2 Presentation of Lefèvre’s algorithm for
searching HR-cases

2.1 Background on correctly rounding
transcendental functions

We first present the scheme of transcendental function

evaluation: more details can be found in [9, Chap. 11]. Let

f be such a transcendental function defined over a set D,

and ◦p a given rounding mode with p bits of precision. The

function f being transcendental, we cannot compute f(x)
with infinite precision. Hence, one way to compute f(x) is

to approximate it by a polynomial P . This is done in two

steps.

• Find an interval I such that, for all x ∈ D there exists

y ∈ I for which f(x) can be “deduced” from f(y).

• Compute a polynomial approximation P of f such that

◦p(f(y)) = ◦p(P (y)) with y ∈ I .

The first step, named range reduction, aims at reducing

the domain of the function in order to have a better poly-

nomial approximation. In fact, this step introduces some

problems for functions which are hard to approximate by

a polynomial for some arguments. In particular, this is the

reason why we cannot find efficiently all the HR-cases for

sin, cos and tan for large arguments yet. The second step

guarantees that the evaluation of the polynomial P gives

the correctly rounded evaluation of the function f . More

formally, P is computed such that |f(x) − P (x)| < ε for

all x ∈ I . This means, when we compute P (x) we do not

obtain the value f(x) but the center of an interval of length

2ε, containing f(x).
Now let us call rounding breakpoints the values where ◦p

changes and hard-to-round case an x such that the interval

centered on P (x) of length 2ε contains such a breakpoint.

For these hard-to-round cases, we cannot round correctly as

we do not know on which side of the breakpoint f(x) is

located (see Fig. 1). This problem is known as the Table

Maker’s Dilemma and is defined more formally in problem

1.

Problem 1 (Table Maker’s Dilemma). For a given rounding
mode ◦p and a function f defined over I , find an ε, if it
exists, such that ◦p(f(x)− ε) = ◦p(f(x)+ ε) for all x ∈ I .
The greater ε satisfying the TMD is called the hardness-to-

round of f .

However, such an ε may not exist if there exists x such

that f(x) equals a rounding breakpoint. Fortunately, for

[P (x) − ε, P (x) + ε]

Midpoints

Floating-points

Figure 1. Hard-to-round case for rounding to
nearest, where the rounding breakpoints are
the midpoints of floating-point numbers.

the mathematical elementary functions, these points are eas-

ily determined and can be treated separately. Furthermore,

we can have a probabilistic estimation of the hardness-to-
round for these functions. Let us consider f defined over

[a, b] with a and b two consecutive powers of 2 and a target

precision p. As shown in [9, Chap. 12], if the output bits

after the pth digit are uniformly distributed, the expected

hardness-to-round is around 2−2p (which is a good estima-

tion in practice).

Knowing such an ε, we can approximate f by P such

that P satisfies |f(x) − P (x)| < ε with ε greater than ε
plus the error of the polynomial evaluation. Though, as ε
increases, the degree and the size of the coefficients of P
decrease. Since the complexity of the evaluation of a de-

gree n polynomial directly depends on these two parame-

ters (O(n) arithmetic operations with Horner method), find-

ing the hardness-to-round of f enables us to minimize the

degree and the size of the coefficients of P , and hence to

have an efficient evaluation of P . This is why we search the

hardness-to-round of these functions.

2.2 Description of the algorithm

A common way to find the hardness-to-round of an el-

ementary function is to search for HR-cases for a given

sufficiently small ε and to find among them the hardest-to-
round. If the considered function takes precision-p floating-

point numbers as arguments, we will use an approximation

error of 2−(p+p′), where p′ is the extension of precision. As

the expected hardness-to-round is around 2−2p, we choose

p′ between 0 and p. A small p′ implies a fast HR-case search

but outputs many HR-cases. A p′ close to p implies fewer

HR-cases at output but a more costly HR-case search.

A naive algorithm to find the HR-cases is the exhaus-

tive search. If we want to exhaustively test an unary func-

tion with precision-p floating-point numbers, we will have

to evaluate a univariate polynomial 2p times. The most ef-

ficient algorithm to evaluate a polynomial for arguments
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in arithmetic progression is the difference table method

[2]. The bit complexity of such an algorithm would be

O(2p·n·A(p+ p′)) with n the degree of the approximation

and A(p + p′) the cost of an addition of two numbers of

p+ p′ bits. The computation time of this algorithm is there-

fore prohibitive for binary64 format, and intractable for bi-

nary128.

V. Lefèvre presented in [5] an improved algorithm to find

the HR-cases of an elementary function. The main idea of

his algorithm is to build local affine approximations in order

to use several “filtering” phases on sub-intervals to “isolate”

HR-cases. These filters compute a lower bound on the dis-

tance between a regular grid and a line. This way, we can

exhaustively search the HR-cases in few small intervals. We

will now describe the two major steps of this algorithm. To

simplify notations, we consider ε a variable encompassing

all computation and approximation errors.

The first step of his algorithm is the generation of affine
approximations. Computing accurate affine approximations

is not possible for large intervals as the degree of the ap-

proximation grows with the size of the interval. To build

accurate affine approximations, we have to split the targeted

interval I into smaller intervals J , containing |J | floating-

point numbers. Then, for each of these “sufficiently” small

intervals J , we compute an affine approximation polyno-

mial PJ . This can be achieved efficiently by first generating

the Taylor expansion of the function f for a given precision

over I . By this mean, we obtain a polynomial P such as

|f(x) − P (x)| < ε for all x ∈ I . Then by using a hierar-

chical algorithm based on the difference table method [6],

we can generate PJ from P such that |f(x) − PJ(x)| < ε
for all x ∈ J and such that the degree of PJ is less than the

degree of P .

The second step is the HR-case search in each of the

J intervals. Before presenting this step, it has to be no-

ticed that the TMD can be described as computing the dis-

tances between the regular grid of breakpoints and a curve

defined by PJ(x) as presented in Fig. 2. The grid is de-

fined by points (x, y) such that x is a floating-point number

in J and y a breakpoint. In order to have the grid regu-

lar in ordinate, we consider d the smallest distance between

two breakpoints in the codomain of the polynomial PJ and

add points accordingly. Finding the HR-cases in J then be-

comes similar to find all x ∈ J and y ∈ Z satisfying

|PJ(x)− dy| < ε.

One straightforward method to find these x is the exhaus-

tive search. If we write |J | the number of floating-points in

J , the exhaustive search can be performed in O(|J |) arith-

metic operations, which is prohibitive as |J | grows expo-

nentially with the targeted precision.

To minimize this exhaustive search, Lefèvre [5] uses a

test to isolate HR-cases by computing a lower bound on the

Figure 2. Distances between a curve and the
breakpoint grid. The solid line is the curve
P (x) and the dashed ones are the curves
P (x) + ε and P (x)− ε.

distance between the curve defined by PJ(x) and the grid.

If the degree of PJ is one, computing a lower bound can in-

deed be done efficiently in O(log |J |) arithmetic operations

[7]. If the lower bound is greater than ε, there is no HR-

case in J . Else, as the lower bound can be reached, there

may exist an HR-case in J .

Based on this test, Lefèvre specified a filtering strategy

to minimize the exhaustive search. For each given J we use

the three following phases.

• Phase 1: we compute a first lower bound in J in

O(log |J |) operations.

• Phase 2: if the lower bound computed on J is less than

ε, we refine the affine approximation and split J into

eight intervals Ki. Then, for each of these Ki, we

compute a refined lower bound in O(log |Ki|) oper-

ations.

• Phase 3: for each Ki whose refined lower bound is

less than ε, we search exhaustively for HR-cases in

O(|Ki|) operations.

2.3 Computing a lower bound on the dis-
tance between a line segment and a
regular grid

Now, we present in algorithm 1 the lower bound com-

putation and test algorithm presented by Lefèvre in [8]

and improved in [7]. Let ax + b be an approximation
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Algorithm 1: Lower bound computation and test algo-

rithm with subtractive division.

input : P (x) = ax+ b, ε, N

1 initialisation: x← a; y ← 1; d← b;
u← 1; v ← 1;

2 if d < ε then return Failure;

3 while True do
4 if d < x then
5 while x < y do
6 if u+ v ≥ N then return Success;

7 y ← y − x; u← u+ v;

8 if u+ v ≥ N then return Success;

9 x← x− y; v ← v + u;

10 else
11 d← d− x;

12 if d < ε then return Failure;

13 while y < x do
14 if u+ v ≥ N then return Success;

15 x← x− y; v ← u+ v;

16 if u+ v ≥ N then return Success;

17 y ← y − x; u← u+ v;

of P of precision ε on an interval [0, N − 1] containing

N floating-points. If we consider the floating-points {k·a
mod d | 0 ≤ k < N} on a line segment of length d, these

points partition the line segment into N intervals. For any

0 ≤ k < N , these intervals have at most three different

lengths, which is known as the three-distance theorem [1].

There exists some configurations where the intervals have

two lengths x and y. Lefèvre algorithm is based on com-

puting these configurations with two possible lengths. The

main idea of the algorithm is then, to go through these con-

figurations and locate b to the closest point. If the interval

containing b is split, we change the value of d which repre-

sent the distance between b and the closest point. Else, we

continue splitting the segment. The variable u (respectively

v) counts the number of intervals of size x (resp. y): we

stop when u+ v > N .

Being similar to the Euclidean greatest common divisor

algorithm, we have to compute remainders (while loops at

lines 5 and 13) at each iteration. In practice, we can make

use of different division implementations to compute these

remainders. We can apply a subtractive division, a division

instruction, or combine both in an hybrid approach as pre-

sented in [7].

Let write Cdiv (resp. Csub) the cost of the division in-

struction (resp. the subtraction instruction). The subtractive

division cost is q·Csub with q the computed quotient. The

cost of the division instruction is constant and equals Cdiv .

Then, if the computed quotient is less than Cdiv

Csub
, subtractive

division is more efficient than division instruction, else di-

vision instruction is more efficient than subtractive division.

Lefèvre’s hybrid division consists in choosing the best

division implementation each time we compute a quotient.

As we cannot use the quotient itself as a criteria, it uses the

expected size of the quotient. If we divide a by b, the size

of the expected quotient can be estimated by the difference

of size between a and b. Let k be a threshold on the size of

the expected quotient. If a > 2kb (namely, a is rather big

compared to b) we use the division instruction, else we use

the subtractive division. Setting the threshold k to a relevant

value directly depends on the architecture and is determined

by extensive testings.

Finally, it has to be noticed that in practice Lefèvre adds

specific computations for special instances where early par-

tial quotients are large. We have omitted them here for clar-

ity but they are present in our implementations on GPU.

3 Deployment on GPU

Graphical Processing Units (GPUs) are many-core de-

vices originally intended to graphical computation. How-

ever, they recently became general purpose devices espe-

cially with CUDA [11] and OpenCL [4]. We use here

NVIDIA GPUs along with CUDA version 4.0 [11] and

target NVIDIA Fermi GPUs with improved 64-bit integer

arithmetic performance and cache support.

From a hardware point of view, a GPU is composed of

several multi-processors, each being a SIMD unit. These

multi-processors execute threads by groups of 32, which

are called warps in CUDA. From a software point of view,

the threads are organized by block, and a group of blocks

forms a grid. At execution time, all the threads of a given

grid run the same program, namely a kernel. The threads are

assigned to a multi-processor by block, and are executed by

warps.

In this paper, we only deploy on GPU the HR-case search

step for double precision in each interval I (containing 240

floating-point numbers divided in 225 independent J inter-

vals of 215 arguments in practice). The generation of affine

approximations has not been deployed as multi-precision

arithmetic is needed. To our knowledge, no efficient multi-

precision arithmetic library is indeed available on GPU at

the time of writing this paper. Hence, we compute affine ap-

proximations on the host CPU, we transfer the required co-

efficients to the GPU device via the PCI bus, and we search

HR-cases on GPU. In the following, we will thus focus only

on the computation time of the HR-case search on GPU. In-

deed we plan to implement in the future the generation of

affine approximations on GPU: the data volume transferred

on the PCI bus will then be very low and the transfer time

negligible.
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3.1 HR-case search on GPU

The exhaustive search algorithm perfectly takes advan-

tage of the GPU massive parallelism and of its (partial)

SIMD execution. However, Lefèvre’s algorithm is faster

than the exhaustive search by several orders of magnitude

in practice on CPU. We have therefore decided to deploy

Lefèvre’s algorithm on GPU, and we present here two pos-

sible deployments. For each deployment, we changed the

data layout to a “structure of arrays” in order to have coa-

lesced memory accesses [10, Sect. 3.2.1]. We also avoided

as much as possible consecutive dependent instructions in

order to increase the instruction-level parallelism within

each thread.

A first straightforward way to deploy Lefèvre’s algo-

rithm on GPU is to build one kernel where each thread com-

putes the three phases for one interval J (one kernel deploy-

ment). This kernel is executed over a grid of 225 threads. As

these phases are filtering phases, we will have few threads

executing phase 2, and fewer executing phase 3. Table 1

shows the number of intervals involved in each phase for an

interval I containing 240 floating-point numbers. As we can

see, very few intervals lead to the exhaustive search step.

Consequently, depending on the distribution of the intervals

involved in phases 2 and 3, we can have very few active

threads within each warp.

Phase Number of intervals Per thousand

1 225 ≈ 33.55 · 106 1000‰
2 109048 3.25‰
3 2182 0.07‰

HR-cases 243 0.007‰

Table 1. Details of interval filtering through
Lefèvre’s algorithm, for exp in [1, 1 + 2−13].

To tackle this problem, we propose another deployment

where we use three CUDA kernels, one for each phase

(three kernel deployment). This allows us to re-build the

grid of threads between each phase, and to run the exact

number of threads required by each phase. However, this

implies two additional costs. First, we have to write fail-

ing intervals2 of phase 1 and 2 in consecutive memory lo-

cations as we prepare coalesced reads for the next phase.

As we have very few HR-cases, this is done with atomic

operations on the GPU global memory and not with paral-

lel prefix sum [3]. Second, between two phases, we have

to transfer back to CPU the number of failing intervals to

compute on CPU the optimal grid size for the next phase.

This optimal grid size enables to minimize the number of

useless threads running in the next phase.

2Intervals for which the computed lower bound is less than ε.

Moreover, for these two possible deployments, we have

very fine grain computations. We have therefore introduced

the possibility of having each thread computing more than

one interval J to increase the computation grain. We have

also considered a double buffering technique in order to

overlap the memory accesses with computations between

two consecutive J intervals.

3.2 Divergence minimization

GPU multi-processors are SIMD units. It is therefore

more efficient to have as much as possible all the threads of

a warp following the same execution path. When the threads

of a warp follow different execution paths, we have a diver-
gent warp [10, Sect. 6.1]. This happens when the threads

within a warp do not evaluate a conditional instruction to

the same value. For an if statement, then and else branches

are in this case serially executed. For a while loop, a thread

exiting the loop has to wait until all the threads of the warp

exit the loop.

Contrary to the exhaustive search of phase 3 which is

perfectly SIMD, the lower bound test in phases 1 and 2

presents two sources of divergence that we will now detail.

3.2.1 Divergence on the main loop

The lower bound test (see algorithm 1) presents an uncon-

ditional main loop which is executed in parallel by many

threads, each thread treating one J or Ki interval. This in-

troduces divergence as we can have two (or more) threads

running a different number of iterations in the same warp.

Figure 3 presents the normalized mean deviation to the

maximum number of iteration of this main loop among the

32 threads of each warp, that is to say :

1−
∑32

i=1
ni

32

max
1≤i≤32

(ni)
,

where ni is the number of main loop iterations for the thread

number i. The divergence on the main loop varies thus

greatly from one warp to another and can be very impor-

tant.

A way to minimize this divergence is to re-organize the

data. Unfortunately, we have no a priori information that

would enable us to estimate the number of loop iterations.

However, when considering one thread computing several

intervals, we can make each thread load the next interval co-

efficients and continue looping, instead of exiting and wait-

ing for the other threads of its warp to finish their current

interval.

But there are two side effects to this method. First, the

reads in GPU global memory are no more coalesced. In-

deed, all the threads do not read concurrently their next in-

terval J coefficients as they do not finish at the same time
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Figure 3. Normalized mean deviation to the
maximum of the number of main loop itera-
tions per warp of 32 threads for the exp func-
tion in the interval [1; 1 + 2−13].

treating their current interval J . However, as Fermi GPUs

have one L1 cache, global memory reads results in the load

of the full 128-byte cache line. This way, the extra cost of

the non-coalesced accesses may be offset by the L1 cache.

Second, we add divergence within the loop as we replace a

loop exit instruction by load instructions for the next inter-

val J .

3.2.2 Divergence within the main loop

The second source of divergence is on the main conditional

statement on the value d (see line 4 in algorithm 1). We

aim at reducing the number of instructions controlled by

the branch condition, and, if reduced enough, benefit from

the GPU branch predication [10, Sect. 6.2].

By looking carefully at the content of each branch, we

can notice that they contain the same instructions, except

that the variables x (respectively u) and y (resp. v) are in-

terchanged, and that x is subtracted to b. We therefore swap

the two values x and y (resp. u and v) to remove the com-

mon instructions from the conditional scope as described in

algorithm 2. The swap implies a small extra cost but we thus

reduce the portion of divergent code, and hence the number

of divergent instructions.

To minimize the extra cost of the swap, we swap the val-

ues only when this is required, that is to say we swap the

values only if the evaluation of the condition d < x changes

at line 15 of algorithm 2. This enables us to minimize the

number of swap operations. In practice, each swap is per-

formed thanks to an auxiliary variable.

Algorithm 2: Lefèvre’s algorithm with swap.

input : P (x) = ax+ b, ε, N
1 initialisation:

x← a; y ← 1; d← b;
u← 1; v ← 1; are swapped← false;

2 if d < ε then return Failure;

3 if (d ≥ x) then
4 SWAP(x, y); SWAP(u, v);
5 are swapped← true;

6 while True do
7 if are swapped then
8 d← d− x;

9 if d < ε then return Failure;

10 while x < y do
11 if u+ v ≥ N then return Success;

12 y ← y − x; u← u+ v;

13 if u+ v ≥ N then return Success;

14 x← x− y; v ← v + u;

15 if are swapped xor (d ≥ x) then
16 SWAP(x, y); SWAP(u, v);
17 are swapped← not(are swapped);

4 Performance results

We now present performance results obtained on a server

composed of two high-end hex-core Intel Xeon X5650 pro-

cessors (twelve cores in total) running at 2.67 GHz, two

high-end NVIDIA Fermi C2070 GPUs and 48 GB of DDR3

memory.

Implementations have been compiled with gcc-4.4.5 for

CPU code and nvcc (CUDA 4.0) for GPU code. The refer-

ence CPU code is the one provided by V. Lefèvre.

All the results given in this section are issued from the

HR-case search on the exp function for double precision.

The extension of precision used is p′ = 32. Some tests are

performed over the I interval I0 = [1; 1 + 2−13] and some

over the 1024 I intervals I0..1023 = [1; 1 + 2−3].

4.1 HR-case search on GPU

We first want to find which division version is the fastest

one on GPU among the subtractive division, the hybrid di-

vision or the division instruction presented in Section 2.3.

We varied the parameter k, refering to the threshold on the

size of the quotient, from 0 (division instruction) to 64 (sub-

tractive division as we use 64-bit integers). Since all of the

computed quotients except the first one have very small val-

ues (most of the time 0, 1 or 2), we expect to compute a lot

of subtractive divisions.
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Figure 4. Execution time of HR-case search
in the interval I0 according to k threshold on
a C2070 GPU.

As shown in Fig. 4, on a C2070 GPU with the three
kernel deployment, the optimal k is 3. This result is similar

to the one observed by Lefèvre [7], which had an optimal k
of 3 on CPU. We also run the same test on our X5650 CPU

and obtain an optimal k of 3. This means that the ratio Cdiv

Csub

mentioned in Section 2.3 is the same on CPU and on GPU.

We therefore use the hybrid division with k = 3 in all the

following testings.

After finding the best fitted way to compute remainders

on GPU, we focus on deploying the three phases strategy of

the HR-case search step.

Version Registers Time (s)

Exhaustive
CPU (1 core) - 1079.41

GPU 21 33.23

L
ef

èv
re

’s

al
g

o
ri

th
m

CPU (1 core) - 4.52

One kernel 31 0.348

T
h

re
e

k
er

-

n
el

s

Phase 1 30 0.258

Phase 2 37 0.006

Phase 3 20 0.001

Total - 0.265

Table 2. Times and register consumptions
per thread for searching HR-cases in the in-
terval I0

In Table 2, we present the register consumptions and tim-

ings for different CPU implementations and GPU deploy-

ments for I0. As expected, the exhaustive search is more

efficiently performed on GPU, and we obtain a speedup of

32.5 over one CPU core. However, Lefèvre’s algorithm on

CPU remains more efficient than exhaustive search on GPU,

which justifies its deployment on GPU. With the one kernel
deployment we obtain a speedup of 13.0 over one CPU core

for the HR-case search, whereas the three kernel deploy-
ment offers a speedup of 17.1 . To measure the overhead

implied by the use of atomic operations, we replaced atomic

operations by non-atomic operations : this did not decrease

the computation time mainly because the atomic operations

are infrequent in this computation. The extra cost intro-

duced by the atomic operations is thus negligible, as well as

those introduced by the additional CPU-GPU transfers, the

computation on CPU of the next grid size, and the launching

of a new kernel. Besides, trying to modify Lefèvre’s strat-

egy in order to balance the computation time of the three

phases (for example by changing the number of Ki inter-

vals or by increasing the exhaustive search part) did not im-

proved the performance. We therefore use the three kernel
deployment in our following tests.
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Figure 5. Overhead for the computation time
of each kernel for I0 with respect to the opti-
mal block size.

Moreover, we observe in Table 2 that each phase of the

three kernel deployment does not have the same register

consumption. This difference implies that each kernel may

have a different optimal number of threads per block. Fig-

ure 5 shows for each phase the overhead induced by non-

optimal block sizes. We observe that the three kernels have

different optimal block sizes. With the three kernel de-
ployment we can therefore optimize the block size of each

phase, which explains, along with the higher number of ac-

tive threads per warp, why this deployment outperforms the

one kernel deployment.
We also tried to increase the number of J intervals per
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thread. The best number of J intervals per thread is 6

for phase 1, but the performance gain is only 0.38% since

we have a good occupancy (higher than 50%, see [10,

Sect. 4.1]). Likewise, the double-buffering technique did

not improved the performance, since the memory accesses

are already overlapped with computation thanks to the good

occupancy.

4.2 Divergence minimization

We tried to reduce the divergence on the main loop of

the lower bound test as described in Section 3.2.1. The HR-

case search then requires 1.504 seconds for I0, which is

only 3.2 times faster than CPU. This loss in performance

may be explained by two reasons. First, the C2070 cache

seems to be too small to offset the non-coalesced memory

accesses. Second, the overhead of loading the next interval

coefficients in the loop is greater than the benefit of reduc-

ing the divergence on the main loop.

As explained in Section 3.2.2, we also tried to decrease

the number of divergent instructions executed within the

main loop by swapping values. This way, the HR-case

search requires 0.249 seconds for I0, which represents a

speedup of 18.2 over one CPU core (corresponding to a

6.2% improvement). It has to be noticed that over I0..1023
the swap offers a maximum gain of 9.8% and an aver-

age gain of 6.0%. Such varying gains are directly due to

the number of required swaps in each interval. We also

tried storing variables in arrays and swapping the indexes

or swapping pointers instead of the variables. Even if they

save instructions, they did not improved performance since

indirections which cannot be statically determined by the

compiler are inefficient on GPU.

4.3 Comparison with multi-core CPU

We now compare our best GPU version (three kernels

with swap) on multiple GPUs and on multi-core CPUs for

the 1024 I intervals I0..1023. We use the MPI standard with

OpenMPI version 1.4.3 . For the tests with multiple CPU

cores, we distribute equally the 1024 intervals among the

available CPU cores thanks to a cyclic decomposition which

offers a better load balancing than a block decomposition.

We do not bind processes with MPI, nor to core, neither to

socket, since these bindings do not improve performance.

For the tests with two GPUs, we use the same cyclic de-

composition as for two cores. Figure 6 shows the perfor-

mance results of these tests. The code scales very good on

the multi-core CPUs. We obtain for example a speedup of

11.3 on 12 cores. We do not obtain a perfect speedup for this

embarrassingly parallel application due to internal memory

bandwidth limitations for these multi-core processors: the

efficiency starts to decrease with more than two processes

1 2 3 4 5 6 7 8 9 10 11 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Number of CPU cores

T
im

e
in

se
co

n
d

s

2x Xeon X5650

Perfect CPU scale

C2070

2x C2070

Figure 6. Comparison of multi-core CPUs and
multiples GPUs.

on the same socket. Moreover it can be noticed that when

activating the two-way SMT (Simultaneous multithreading,

or Hyper-threading for Intel) capability of the X5650 CPUs

we can obtain a speedup of 13.7 with 24 threads.

With two GPUs, we obtain a perfect speedup of 2.0 over

one GPU since the computation load is the same on the two

GPUs. Finally, we obtain a speedup of 15.4 for one GPU

over one CPU core, a speedup of 2.7 for one GPU with

respect to one six-core CPU, and a speedup of 2.7 for two

GPUs with respect to two six-core CPUs (2.2 with two-way

SMT). The speedup is lower than with I0 for two reasons.

First, some intervals do not benefit from the swap as they

involve the specific computations mentioned in Section 2.3.

Second, the divergence penalty can be stronger for some

intervals which lowers the computation gain.

5 Conclusion and future work

In this paper, we have proposed a first step in deploying

on GPU an algorithm to solve the Table Maker’s Dilemma.

This made it possible to obtain a speedup of 15.4 compared

to the reference implementation on one CPU core, and a

speedup of 2.7 over six CPU cores for finding HR-cases

over the interval [1; 1 + 2−3].
Nevertheless, only one half of the full algorithm has been

deployed on GPU. Indeed, the generation of the affine ap-

proximations of the function is still performed on the CPU

(in 9.3 seconds for the interval [1; 1+ 2−13]). Moreover the

transfer on the PCI bus of all coefficients of the 225 J in-

tervals requires 0.25 seconds which is greater than our HR-

case search on GPU. This deployment on GPU is therefore
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mandatory to accelerate the generation of affine approxi-

mations and to avoid such costful transfers on the PCI bus.

This is planed as a future work and is challenging since this

requires an efficient multi-precision library on GPU.

As also mentioned in the introduction, there exists an-

other algorithm named SLZ to search HR-cases. The algo-

rithm heavily relies on the use of the LLL algorithm. The

deployment of this algorithm on GPU is far from trivial if

one wants to obtain good performances. The main advan-

tage of the SLZ algorithm is to have fewer intervals to anal-

yse (but this requires better approximations for the function)

which may imply a different deployment on GPU. Porting

this algorithm on GPU will be the next step of this work.
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for helpful discussions on the HR-case search and on GPU

computing. We also thank Polytech-Paris UPMC and their

system administrator team for allowing us to use their CPU-

GPU server.

References

[1] P. Alessandri and V. Berthé. Three distance theorems
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[7] V. Lefèvre. New Results on the Distance Between a Seg-

ment and Z
2. Application to the exact Rounding. 17th IEEE

Symposium on Computer Arithmetic (ARITH-17 ’05), pages

68–75, 2005.
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